
|
KDO Research Group |
|
Main Page |
|
Projects |
|
People |
|
Updates |
|
Publications |
|
Teaching |
|
Downloads |
|
Join Us |
|
Selected Publications |
|
1. “Simulation of a rapid qubit readout dependent on the transmission of a single fluxon”, W. Wustmann, K.D. Osborn, arXiv:2504.18915 (2025) 2. “Quantum defects from a single surface exhibit strong mutual interactions”, Chih-Chiao Hung, Tim Kohler, and Kevin D. Osborn, Phys. Rev. Appl. 21, 044021 (2024). 3. “Dual-Resonator Kinetic-Inductance Detector for Distinction between Signal and 1/f Frequency Noise”, N. Foroozani, B. Sarabi, S. H. Mosely, T. Stevenson, E.J. Wollack, O. Noroozian, K. D. Osborn, Phys. Rev. Appl. 21, 014009 (2024). 4. “Evaluating Novel Interconnects for Future Cryogenic Computers”, Trisha Chakraborty, Jonathan Cripe, Karen E. Grutter, Gregory S. Jenkins, Kevin D. Osborn, B. S. Palmer, Paul Petruzzi, The Next Wave, 24(1), 22, (2023). 5. “Asynchronous Reversible Computing Unveiled Using Ballistic Shift Registers”, K.D. Osborn and W. Wustmann, Phys. Rev. Applied 19, 054034 (2023). 6. "Experimentally revealing anomalously large dipoles in the dielectric of a quantum circuit", L. Yu, S. Matityahu, Y. J. Rosen, C. Hung, A. Maksymov, A. L. Burin, M. Schechter, and K. D. Osborn, Scientific Reports, 12, 16960 (2022). 7. “Probing hundreds of individual quantum defects in polycrystalline and amorphous alumina” Chih-Chiao Hung, Liuqi Yu, Neda Foroozani, Stefan Fritz, Dagmar Gerthsen, Kevin D. Osborn, Phys. Rev. Appl., 17, 034025 (2022). 8. “Reversible Fluxon Logic With Optimized CNOT Gate Components” Kevin D. Osborn and Waltraut Wustmann, IEEE Trans. Appl. Supercond. 31 1300213 (2021). DOI: 10.1103/PhysRevLett.116.167002 9. “Reversible Fluxon Logic: Topological particles allow ballistic gates along 1D paths” W. Wustmann, K. D. Osborn, Phys. Rev. B 101, 014516 (2020), DOI: 10.1103/PhysRevB.101.014516 10. "Experimental designs of ballistic reversible logic gates using fluxons," L. Yu, W. Wustmann and K. D. Osborn, 2019 IEEE International Superconductive Electronics Conference (ISEC), 2019, pp. 1-3, doi: 10.1109/ISEC46533.2019.8990914. 11. “Reversible Fluxon Logic for Future Computing” K. D. Osborn, W. Wustmann, 2019 IEEE International Superconductive Electronics Conference (ISEC), Riverside, CA, USA, 2019, pp. 1-5, doi: 10.1109/ISEC46533.2019.8990955 12. “Development of transmon qubits solely from optical lithography on 300mm wafers” N. Foroozani, C. Hobbs, C. C. Hung, S. Olson, D. Ashworth, E. Holland, M. Malloy, P. Kearney, B. O'Brien, B. Bunday, D. DiPaola, W. Advocate, T. Murray, P. Hansen, S. Novak, S. Bennett, M. Rodgers, B. Baker-O'Neal, B. Sapp, E. Barth, J. Hedrick, R. Goldblatt, S. S. Papa Rao, K. D. Osborn, QS&T, 4, 025012 (2019). DOI: 10.1088/2058-9565/ab0ca8 13. “Using Surface Engineering to Modulate Superconducting Coplanar Microwave Resonator Performance” E. H. Lock, P. Xu, T. Kohler, L. Camacho, J. Prestigiacomo, Y. J. Rosen., and K. D. Osborn, IEEE Trans. Appl. Supercond., 29, 1700108 (2019). DOI: 10.1109/TASC.2019.2891883 14. “Ballistic reversible gates matched to bit storage: Plans for an efficient CNOT gate using fluxons”, K. D. Osborn, W. Wustmann, In: Reversible Computation. RC 2018. Lecture Notes in Computer Science, vol. 11106., p. 189, Springer, Cham (2018). DOI: 10.1007/978-3-319-99498-7_13 15. “Materials and Processes for Superconducting Qubits and Superconducting Electronic Circuits on 300mm Wafers”, S. S. Papa Rao, C. Hobbs, S. Olson, N. Foroozani, H. Chonga, H. Stamper, B. Martinick, D. Ashworth, B. Bunday, M. Malloy, E. Holland, J. Nalaskowski, P. Kearney, T. Ngai, I. Wells, M. Yakimov, S. Oktyabrsky, B. O'Brien, V. Kaushik, K. A. Dunn, K. Beckmann, S. Bennett, M. Rodgers, T. Murray, S. Novak, B. Baker-O'Neal, C. Borst, K. D. Osborn, and M. Liehr, ECS Trans. 85, p151-161 (2018). DOI: 10.1149/08506.0151ecst 16. “Reversible Fluxon Logic: Topological particles allow ballistic gates along 1D paths”, W. Wustmann, K. D. Osborn, PRB 101, 014516 (2020) DOI: 10.1103/PhysRevB.101.014516 (arXiv:1711.04339). 17. “Random-Defect Laser: Manipulating Lossy Two-Level Systems to Produce a Circuit with Coherent Gain” Yaniv J. Rosen, Moe S. Khalil, Alexander L. Burin, and Kevin D. Osborn, Phys. Rev. Lett., 116, 163601 (2016). DOI: 10.1103 18. “Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics” B. Sarabi, A. N. Ramanayaka, A. L. Burin, F. C. Wellstood, and K. D. Osborn, Phys. Rev. Lett., 116,167002 (2016). arXiv: 1501.05865 19. “Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state” B. Sarabi, A. N. Ramanayaka, A. L. Burin, F. C. Wellstood, and K. D. Osborn, Appl. Phys. Lett. 106, 172601 (2015). Featured (Cover) Article. arXiv: 1405.0264 20. “Superconducting TiN Films Sputtered Over a Large Range of Substrate DC Bias” H. M. Iftekhar Jaim, J. A. Aguilar, B. Sarabi, Y. J. Rosen, A. N. Ramanayaka, E. H. Lock, C. J. K. Richardson, and K. D. Osborn, IEEE Trans. Appl. Supercond. 25, 1100505 (2015). arXiv:1408.3177 21. “Landau-Zener population control and dipole measurement of a two-level-system bath,” M. S. Khalil, S. Gladchenko, M. J. A. Stoutimore, F. C. Wellstood, A. L. Burin, and K. D. Osborn, Phys. Rev. B. 90,100201(R) (2014). arXiv:1312.4865 22. “Quantum Coherent manipulation of two-level systems in superconducting circuits,” A. L. Burin, A. O. Maksymov, and K. D. Osborn, Supercond. Sci. Technol. 27, 084001 (2014). 23. “Evidence for hydrogen two-level systems in atomic layer deposition oxides,” M. S. Khalil, M. J. A. Stoutimore, S. Gladchenko, A. M. Holder, C. B. Musgrave, A. C. Kozen, G. Rubloff, Y. Q. Liu, R. G. Gordon, J. H. Yum, S. K. Banerjee, C. J. Lobb, K. D. Osborn, Appl. Phys. Lett. 103, 162601 (2013). arXiv:1307.7664 24. “Bulk and Surface Tunneling Hydrogen Defects in Alumina,” Aaron M. Holder, Kevin D. Osborn, C. J. Lobb, Charles B. Musgrave, Phys. Rev. Lett. 111, 065901 (2013). arXiv:1303.6713 25. “Examining the role of hydrogen in the electrical performance of in situ fabricated metal-insulator-metal trilayers using an atomic layer deposited Al2O3 dielectric,” Alexander C. Kozen, Marshall A. Schroeder, Kevin D. Osborn, C. J. Lobb, Gary W. Rubloff, Appl. Phys. Lett., 102, 173501 (2013). 26. “Universal dielectric loss in amorphous solids from simultaneous bias and microwave field,” Alexander L. Burin, Moe S. Khalil, Kevin D. Osborn, Phys. Rev. Lett., 110, 157002 (2013). arXiv:1205.4982 27. “A Josephson junction defect spectrometer for measuring two-level systems,” M. J. A. Stoutimore, M. S. Khalil, C. J. Lobb, K. D. Osborn, Appl. Phys. Lett., 101, 062602 (2012). arXiv: 1203.4431 28. “An analysis method for asymmetric resonator transmission applied to superconducting devices,” M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, K. D. Osborn, J. Appl. Phys. 111, 054510 (2012). arXiv: 1108.3117 29. “Squeezed noise due to two-level systems in superconducting resonator circuits,“ So Takei, Victor M. Galitski, Kevin D. Osborn, PRB 85, 104507 (2012). arXiv:1104.0029 30. “Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms “, Z. Kim, B. Suri, V. Zaretskey, S. Novikov, K. D. Osborn, A. Mizel, F. C. Wellstood, B. S. Palmer , Phys. Rev. Lett. 106, 120501 (2011). arXiv: 1101.4692 31. “Jaynes-Cummings treatment of superconducting resonators with dielectric loss due to two-level systems,” M. Bhattacharya, K. D. Osborn, and Ari Mizel, Phys. Rev. B 84, 104517 (2011). arXiv:1105.3446 32. "Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators," Khalil, M. S.; Wellstood, F. C.; Osborn, K. D.; , Applied Superconductivity, IEEE Transactions on , PP, no.99, doi: 10.1109/TASC.2010.2090330, (2010). PDF|arXiv:1008.2929 33. "Superposition of Inductive and Capacitive Coupling in Superconducting LC Resonators," Gladchenko, S.; Khalil, M.; Lobb, C. J.; Wellstood, F. C.; Osborn, K. D.; Applied Superconductivity, IEEE Transactions on , PP, no.99, doi: 10.1109/TASC.2010.2089774, (2010). PDF|arXiv:1008.3130v1 34. “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits” Hanhee Paik and Kevin D. Osborn, Applied Physics Letters, 96, 072505 (2010). PDF 35. “Vacuum-Gap Capacitors for Low-Loss Superconducting Resonant Circuits” K. Cicak, M.S. Allman, J.A. Strong, K.D. Osborn, R.W. Simmonds, IEEE Transactions on Applied Superconductivity, 19, pp. 948-952 (2009). PDF 36. “Frequency-Tunable Josephson Junction Resonator for Quantum Computing” K.D. Osborn, J.A. Strong, A.J. Sirois, R.W. Simmonds, IEEE Transactions on Applied Superconductivity, 17, pp. 166-8 (2007). PDF 37. “Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier” Seongshik Oh, K. Cicak, J.S. Kline, M.A. Sillanpaa, K.D. Osborn, J.D. Whittaker, R.W. Simmonds, D.P. Pappas, Physical Review B, 74, 100502, (2006). PDF 38. “A single-photon pump” K.D. Osborn, M.W. Keller, Applied Physics Letters, 89, 083518 (2006). PDF 39. “Simultaneous state measurement of coupled Josephson phase qubits” R. McDermott, R.W. Simmonds, M. Steffen, K.B. Cooper, K. Cicak, K.D. Osborn, Seongshik Oh, D.P. Pappas, J.M. Martinis, Science, 307, 1299 (2005). PDF 40. “Decoherence in Josephson qubits from dielectric loss” J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, Seongshik Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu., Physical Review Letters, 95, 210503 (2005). PDF 41. “Low-leakage superconducting tunnel junctions with a single-crystal Al2O3 barrier” S. Oh, K. Cicak, R. McDermott, K.B. Cooper, K.D. Osborn, R.W. Simmonds, M. Steffen, J.M. Martinis, D.P. Pappas, Superconductor Science & Technology, 18, 1396 (2005). PDF 42. “HEMT Amplified SET Measurements of Individual InGaAs Quantum Dots”, K. D. Osborn, Mark W. Keller, R. P. Mirin, AIP Conference Proceedings, Physics of Semiconductors: 27th International Conference on the Physics of Semiconductors, 772, 819 (2005). PDF 43. “Single-electron transistor spectroscopy of InGaAs self-assembled quantum dots” K.D. Osborn, M.W. Keller, R.P. Mirin, Physica E, 21, 501 (2004). PDF 44. “Superconducting qubits and the physics of Josephson Junctions” John M. Martinis, K. Osborn, Proceedings of Les Houches Summer School on Quantum Entanglement and Information Processing (2004). PDF 45. “Superconducting qubits and the physics of Josephson Junctions” John M. Martinis, K. Osborn, Proceedings of Les Houches Summer School on Quantum Entanglement and Information Processing (2004). PDF 46. “Critical dynamics of superconducting Bi2Sr2CaCu2O8+d films” K.D. Osborn, D.J. Van Harlingen, Vivek Aji, Nigel Goldenfeld, S.Oh, J.N. Eckstein, Physical Review B 68, 144516 (2003). PDF |
|
Superconducting circuits with quantum defects for quantum information science and quantized flux for fast energy-efficient information processing |