KDO Research Group

Publications

 

“Evidence for weakly and strongly interacting two-level systems in amorphous silicon” Liuqi Yu, Shlomi Matityahu, Yaniv J. Rosen, Chih-Chiao Hung, Andrii Maksymov, Alexander L. Burin, Moshe Schecter, Kevin D. Osborn, arXiv:2110.10747  (2021).

 

“Asynchronous Reversible Computing Unveiled Using Ballistic Shift Registers” Kevin D. Osborn and Waltraut Wustmann, arXiv:2201.12999  (2021).

 

“Probing hundreds of individual quantum defects in polycrystalline and amorphous alumina” Chih-Chiao Hung, Liuqi Yu, Neda Foroozani, Stefan Fritz, Dagmar Gerthsen, Kevin D. Osborn, arXiv:2107.04131  , accepted to Physical Review Applied, (2021).

 

Reversible Fluxon Logic With Optimized CNOT Gate Components” Kevin D. Osborn and Waltraut Wustmann, IEEE Trans. Appl. Supercond. 31 1300213 (2021). DOI: 10.1103/PhysRevLett.116.167002

 

“Reversible Fluxon Logic: Topological particles allow ballistic gates along 1D paths” W. Wustmann, K. D. Osborn, Phys. Rev. B 101, 014516 (2020), DOI: 10.1103/PhysRevB.101.014516

 

"Experimental designs of ballistic reversible logic gates using fluxons,"  L. Yu, W. Wustmann and K. D. Osborn, 2019 IEEE International Superconductive Electronics Conference (ISEC), 2019, pp. 1-3, doi: 10.1109/ISEC46533.2019.8990914.

“Reversible Fluxon Logic for Future Computing” K. D. Osborn, W. Wustmann, 2019 IEEE International Superconductive Electronics Conference (ISEC), Riverside, CA, USA, 2019, pp. 1-5, doi: 10.1109/ISEC46533.2019.8990955

 

 

Development of transmon qubits solely from optical lithography on 300mm wafers” N. Foroozani, C. Hobbs, C. C. Hung, S. Olson, D. Ashworth, E. Holland, M. Malloy, P. Kearney, B. O'Brien, B. Bunday, D. DiPaola, W. Advocate, T. Murray, P. Hansen, S. Novak, S. Bennett, M. Rodgers, B. Baker-O'Neal, B. Sapp, E. Barth, J. Hedrick, R. Goldblatt, S. S. Papa Rao, K. D. Osborn, QS&T, 4, 025012 (2019). DOI: 10.1088/2058-9565/ab0ca8 

 

“Using Surface Engineering to Modulate Superconducting Coplanar Microwave Resonator Performance” E. H. Lock, P. Xu, T. Kohler, L. Camacho, J. Prestigiacomo, Y. J. Rosen., and K. D. Osborn, IEEE Trans. Appl. Supercond., 29, 1700108 (2019). DOI: 10.1109/TASC.2019.2891883

 

“Ballistic reversible gates matched to bit storage: Plans for an efficient CNOT gate using fluxons”, K. D. Osborn, W. Wustmann,  In: Reversible Computation. RC 2018. Lecture Notes in Computer Science, vol. 11106., p. 189, Springer, Cham (2018). DOI: 10.1007/978-3-319-99498-7_13 

 

“Materials and Processes for Superconducting Qubits and Superconducting Electronic Circuits on 300mm Wafers”, S. S. Papa Rao, C. Hobbs, S. Olson, N. Foroozani, H. Chonga, H. Stamper, B. Martinick, D. Ashworth, B. Bunday, M. Malloy, E. Holland, J. Nalaskowski, P. Kearney, T. Ngai, I. Wells, M. Yakimov, S. Oktyabrsky, B. O'Brien, V. Kaushik, K. A. Dunn, K. Beckmann, S. Bennett, M. Rodgers, T. Murray, S. Novak, B. Baker-O'Neal, C. Borst, K. D. Osborn, and M. Liehr, ECS Trans. 85, p151-161  (2018). DOI: 10.1149/08506.0151ecst

 

Reversible Fluxon Logic: Topological particles allow ballistic gates along 1D paths”, W. Wustmann, K. D. Osborn, PRB 101, 014516 (2020) DOI: 10.1103/PhysRevB.101.014516 (arXiv:1711.04339).  

 

Random-Defect Laser: Manipulating Lossy Two-Level Systems to Produce a Circuit with Coherent Gain” Yaniv J. Rosen, Moe S. Khalil, Alexander L. Burin, and Kevin D. Osborn, Phys. Rev. Lett., 116, 163601 (2016). DOI: 10.1103

 

Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics” B. Sarabi, A. N. Ramanayaka, A. L. Burin, F. C. Wellstood, and K. D. Osborn, Phys. Rev. Lett., 116,167002 (2016). arXiv: 1501.05865

 

Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state” B. Sarabi, A. N. Ramanayaka, A. L. Burin, F. C. Wellstood, and K. D. Osborn, Appl. Phys. Lett. 106, 172601 (2015). Featured (Cover) Article. arXiv: 1405.0264

 

“Superconducting TiN Films Sputtered Over a Large Range of Substrate DC Bias” H. M. Iftekhar Jaim, J. A. Aguilar, B. Sarabi, Y. J. Rosen, A. N. Ramanayaka, E. H. Lock, C. J. K. Richardson, and K. D. Osborn, IEEE Trans. Appl. Supercond. 25, 1100505 (2015). arXiv:1408.3177

“Landau-Zener population control and dipole measurement of a two-level-system bath,” M. S. Khalil, S. Gladchenko, M. J. A. Stoutimore, F. C. Wellstood, A. L. Burin, and K. D. Osborn, Phys. Rev. B. 90,100201(R) (2014). arXiv:1312.4865

“Quantum Coherent manipulation of two-level systems in superconducting circuits,” A. L. Burin, A. O. Maksymov, and K. D. Osborn, Supercond. Sci. Technol. 27, 084001 (2014).

 “Evidence for hydrogen two-level systems in atomic layer deposition oxides,” M. S. Khalil, M. J. A. Stoutimore, S. Gladchenko, A. M. Holder, C. B. Musgrave, A. C. Kozen, G. Rubloff, Y. Q. Liu, R. G. Gordon, J. H. Yum, S. K. Banerjee, C. J. Lobb, K. D. Osborn, Appl. Phys. Lett. 103, 162601 (2013). arXiv:1307.7664

“Bulk and Surface Tunneling Hydrogen Defects in Alumina,” Aaron M. Holder, Kevin D. Osborn, C. J. Lobb, Charles B. Musgrave, Phys. Rev. Lett. 111, 065901 (2013). arXiv:1303.6713

“Examining the role of hydrogen in the electrical performance of in situ fabricated metal-insulator-metal trilayers using an atomic layer deposited Al2O3 dielectric,” Alexander C. Kozen, Marshall A. Schroeder, Kevin D. Osborn, C. J. Lobb, Gary W. Rubloff, Appl. Phys. Lett., 102, 173501 (2013).

“Universal dielectric loss in amorphous solids from simultaneous bias and microwave field,” Alexander L. Burin, Moe S. Khalil, Kevin D. Osborn, Phys. Rev. Lett., 110, 157002 (2013). arXiv:1205.4982

“A Josephson junction defect spectrometer for measuring two-level systems,” M. J. A. Stoutimore, M. S. Khalil, C. J. Lobb, K. D. Osborn, Appl. Phys. Lett., 101, 062602 (2012). arXiv: 1203.4431

“An analysis method for asymmetric resonator transmission applied to superconducting devices,” M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, K. D. Osborn, J. Appl. Phys. 111, 054510 (2012). arXiv: 1108.3117

“Squeezed noise due to two-level systems in superconducting resonator circuits,“ So Takei,

Selected Publications (Fewer are on the preprint arXiv)

Superconducting circuits with quantum defects for quantum information science, quantized flux for high-performance computing