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The internal space- time symmetries of relativistic particles are dic­
tated by Wigner's little groups. The 0(3)-like little group for a massive 
particle at rest and the E(2)-like little group of a massless particle are 
two different manifestations of the same covariant little group. Likewise, 
the quark model and parton pictures are two different manifestations of 
the one covariant entity. 

PACS numbers: 11.30 . Fs 

1. Introduction 

Eugene Wigner's 1939 paper on the Poincare group is regarded as one 
of the most fundamental papers in modern physics [1). Wigner observed 
there that relat ivistic particles have their internal space-time degrees of 
freedom , and fo rmulated their symmetries in terms of the little groups of 
the Poincare group. He then showed that the little groups for massive and 
massless particles a re isomorphic to the 0(3) and E(2) groups respectively. 

The purpose of this report is to emphasize that the little group is a 
Lorentz-covariant entity and unifies the internal space-time symmetries of 
both massive and massless particles, just as Einstein 's E = mc2 does for 
t he energy-momentum relation. On the other hand, Wigner did not reach 
t his conclusion in 1939, but his paper raised t he following questions. 

1 Like the three-dimensional rotation group, E(2) is a t hree-parameter 
g roup . It contains two translational degrees of freedom in addit ion 
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to the rotation. What physics is associated with the translational-like 
degrees of freedom for the case of the E(2)-like little group? 

2 As is shown by Inonu and Wigner [2], the rotation group 0(3) can be 
contracted to E(2). Does this mean that the 0(3)-like little group can 
become the E(2)-like little group in a certain limit? 

3 It is possible to interpret the Dirac equation in terms of Wigner's rep­
resentation theory [3]. Then, why is it not possible to find a place for 
Maxwell's equations in the same theory? 

4 The proton had been known to have a finite space-time extension , and it 
is believed to be a bound state of quarks. Is it then possible to construct 
a representation of the Poincare group for particles with space-time 
extensions? 

As for the first question , it has been shown by various authors that the 
translation-like degrees of freedom in the E(2)-like little group is the gauge 
degree of freedom for massless particles[4, 5]. The second question will be 
addressed in detail in Sec. 2. As for the third question , Weinberg found a 
place for the gauge-invariant electromagnetic fields in the Wigner formalism 
by constructing from the SL(2,c) spinors all the representations of massless 
fields which are invariant under gauge transformations [6]. It has also been 
shown that gauge-dependent four-potentials can also be constructed within 
the SL(2 ,c) framework [7]. The Maxwell theory and the Poincare group are 
now perfectly consistent with each other. 

The fourth question is about whether Wigner's little groups a re a ppli­
cable to high-energy particle physics where accelerators produce Lorentz­
boosted extended hadrons such as high-energy protons. The question is 
whether it is possible to construct a representation of the Poincare group 
for hadrons which are believed to be bound states of quarks [5, 8]. This rep­
resentation should describe Lorentz-boosted hadrons. Next question then is 
whether those boosted hadrons give a description of Feynman 's parton pic­
ture [9] in the limit of large momentum/mass [5, 10]. We shall concentrate 
on this fourth question in this report. 

2. Little Groups of the Poincare Group 

The little group is the maximal subgroup of the Lorentz group which 
leaves the four-momentum invariant. While leaving the four-mom entum 
invariant, the little group governs the internal space-time symmetries of 
relativistic particles. The Lorentz group is generated by three rotation gen­
erators Ji .and three boost generators J(i· If a massive particle is at rest , 
the little group is the three-dimensional rotation group generated by h , h 
and h . The four-momentum is not affected by this rotation, but the spin 



Wigner's Influence on Particle Physics ... 2743 

variable changes its direction. For a massless particle moving along the z 
direction, Wigner observed that the little group is generated by h, N1 and 
Nz, where 

(1) 

and that these generators satisfy the Lie algebra for the two-dimensional 
Euclidean group. Here, h is like the rotation generator, while N1 and Nz 
are like translation generators in the two-dimensional Euclidean plane. 

In 1953, Inonu and Wigner formulated this problem as the contraction 
of 0(3) to E(2). How about then the little groups which are isomorphic to 
0(3) and E(2)? It is reasonable to expect that the E(2)-like little group 
be obtained as a limiting case for of the 0(3)-like little group for massless 
particles [11 J. It is shown that, under the boost along the z direction, the 
rotation generator around the z axis remains invariant , but the transverse 
rotation generators h and ]z become generators of gauge transformations 
in the large-boost limit [12]. It was later shown that the little group for 
massless particles has the geometry of the cylindrical group [13]. 

In the following sections, we shall discuss how the concept of little 
groups are applicable to space-time symmetries of relativistic extended 
hadrons. 

3. Covariant Harmonic Oscillators 

Let us consider a hadron consisting of two quarks. If the space-time 
position of two quarks are specified by Xa and xb respectively, the system 
can be described by the variables 

(2) 

The four-vector X specifies where the hadron is located in space and time, 
while the variable x measures the space-time separation between the quarks. 

The portion of the wave function which is subject to the 0(3)-like little 
group takes the form 

( 
1 ) 1/2 { 1 } 'l/J[!( z, t) = rrn!
2

n Hn(z) exp - 2' (z2 + t 2
) . (3) 

The subscript 0 means that the wave function is for the hadron at rest. The 
above expression is not Lorentz-invariant, and its localization undergoes a 
Lorentz squeeze as the hadron moves along the z direction [5]. 

It is convenient to use the light-cone variables to describe Lorentz 
boosts . The light-cone coordinate variables are 

(z + t) 
u = -'----=-'-

v'2 
v= 

(z- t) 

v'2 
(4) 
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In terms of these variables, the Lorentz boost takes the simple form 

(5) 

where 17 is the boost parameter and is tanh- 1 (v/c). This is a "squeeze" 
transformation. 

In Eq. (3), the localization property of the wave function is determined 
by the Gaussian factor, and we shall therefore study the ground state and 
its wave function 

(6) 

If the system is boosted, the wave function becomes 

(7) 

The wave function of Eq. (6) is distributed within a circular region in the 
uv plane, and thus in the zt plane. On the other hand, the wave function of 
Eq. (7) is distributed in an elliptic region whose major and minor axes are 
along the light-cone axes . The wave function becomes Lorentz-squeezed! 

4 . Feynman's Parton Picture 

In order to explain the scaling behavior in inelastic scattering, Feynman 
in 1969 observed that a fast-moving hadron can be regarded as a collection 
of many "partons" whose properties do not appear to be identical to those 
of quarks [9]. For example, the number of quarks inside a static proton is 
three, while the number of partons in a rapidly moving proton appears to 
be infinite. The question then is how the proton looking like a bound state 
of quarks to one observer can appear different to an observer in a different 
Lorentz frame? Feynman made the following systematic observations. 

a The picture is valid only for hadrons moving with velocity close to that 
of light. 

b The interaction time between the quarks becomes dilated, and partons 
behave as free independent particles. 

c The momentum distribution of partons becomes widespread as the 
hadron moves fast. 

d The number of partons seems to be infinite or much larger than that of 
quarks. 
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Because the hadron is believed to be a bound state of two or three quarks, 
each of the above phenomena appears as a paradox, particularly b) and c) 
together. In order to resolve this paradox, we need a momentum-energy 
wave function. If t he quarks have the four-momenta Pa and Pb, we can 
construct two independent four-momentum variables [8] 

P = Pa + Pb, (8) 

The four-momentum Pis the total four-momentum and is thus the hadronic 
four-momentum, while q measures the four-momentum separation between 
the quarks. In the light-cone coordinate system , the momentum-energy 
variables are 

(9) 

Then the momentum-energy wave function takes the form 

(10) 

The mo mentum wave function is also squeezed, and the parton momen­
tum di tribut ion becomes wide-spread as the hadronic speed approaches the 
speed of light. It is t hus possible to calculate the parton distribution by 
boosting a hadronic wave fun ction in the rest frame. The calculation based 
on this oscillator model gives a reasonable agreement with the measured 
parton distribution function [14) . 

Let us go back to the Lorentz-squeezed space-time wave function given 
in Eq . (7). This wave function gives two time intervals corresponding to the 
major and minor axes of the elliptic distribution. As the hadronic speed 
approaches t he speed of light, the major axis corresponds to the period 
of oscillation . and it increases by factor of e11. This period measures the 
interaction t ime among the quarks. 

The external signal comes into the hadron in the direction opposite to 
the hadron moment um . Thus the minor axis of the ellipse measures the the 
time the external signal spends inside the hadron. This is the interaction 
time between one of the quark and the external signal. This time interval 
decreases as e- 77. The ratio of the interaction time to the oscillator period 
becomes e-217 • The energy of each proton coming out of the Fermilab 
accelerator is 900 GeV. This leads the ratio to 10-6 , which is indeed a 
small number. The external signal is not able to sense the interaction of the 
quarks among themselves inside the hadron. This is why partons appear as 
free particles with a wide-spread momentum distribution. 

The internal space-time symmetry of hadrons in the quark model can be 
framed into the 0(3)-like little group when they are slowly moving particles. 
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to the rotation. What physics is associated with the translational-like 
degrees of freedom for the case of the E(2)-like little group? 

2 As is shown by lnonu and Wigner [2], t he rotation group 0(3) can be 
contracted to E(2) . Does this mean that the 0(3)-like little group can 
become the E(2)-like little group in a certain limit? 

3 It is possible to interpret the Dirac equation in terms of Wigner's rep­
resentation t heory [3]. Then, why is it not possible to find a place for 
Maxwell 's equations in the same theory? 

4 The proton had been known to have a finite space-time extension, and it 
is believed to be a bound state of quarks. Is it then possible to construct 
a representation of the Poincare group for particles with space-time 
extensions? 

As for the first question , it has been shown by various authors that the 
t ranslation-like degrees of freedom in the E(2)-like little group is the gauge 
degree of freedom for massless particles[4, 5]. The second question will be 
addressed in detail in Sec. 2. As for the third question, Weinberg found a 
place for the gauge-invariant electromagnetic fields in the Wigner formalism 
by constructing from the SL(2,c) spinors all the representations of massless 
fields which a re invariant under gauge transformat ions [6]. It has also been 
shown that gauge-dependent four-potentials can also be constru cted within 
the SL(2,c) framework [7] . The Maxwell theory and the Poincare group are 
now perfectly consistent with each other. 

The fourth question is abo ut whether Wigner's little groups are appli­
cable to high-energy particle physics where accelerators produce Lorentz­
boosted extended hadrons such as high-energy protons. The quest ion is 
whether it is possible to construct a representation of the Poincare group 
for hadrons which are believed to be bound states of quarks [5, 8]. This rep­
resentation should describe Lorentz-boosted hadrons. Next question then is 
whether those boosted had rons give a description of Feynman's parton pic­
ture [9] in the limit of large momentum/mass [5, 10]. We shall concentrate 
on this four t h question in t his repor t. 

2. Little Groups of the Poincare Group 

The little group is the maximal subgroup of t he Lorentz group wh ich 
leaves the four-momentum invariant. While leaving the four-moment um 
invariant , the little group governs the intern a l space-time symmetries of 
relativistic particles. The Lorentz group is generated by three rotation gen­
erators Ji .and three boost generators J(i. If a massive particle is at rest, 
t he little group is the t hree-dimensional rotation group generated by h , )z 
and h. The four-momentum is not affected by this rotat ion , but the spin 


