


2742 Y.S. Kim

to the rotation. What physics is associated with the translational-like
degrees of freedom for the case of the £(2)-like little group?

2 As is shown by Inonu and Wigner [2], the rotation group O(3) can be
contracted to F/(2). Does this mean that the O(3)-like little group can
become the E'(2)-like little group in a certain limit?

3 It is possible to interpret the Dirac equation in terms of Wigner’s rep-
resentation theory [3]. Then, why is it not possible to find a place for
Maxwell’s equations in the same theory?

4 The proton had been known to have a finite space-time extension. and it
is believed to be a bound state of quarks. Is it then possible to construct
a representation of the Poincaré group for particles with space-time
extensions?

As for the first question, it has been shown by various authors that the
translation-like degrees of freedom in the E'(2)-like little group is the gauge
degree of freedom for massless particles[4, 5]. The second question will be
addressed in detail in Sec. 2. As for the third question, Weinberg found a
place for the gauge-invariant electromagnetic fields in the Wigner formalism
by constructing from the SL(2,c) spinors all the representations of massless
fields which are invariant under gauge transformations [6]. It has also been
shown that gauge-dependent four-potentials can also be constructed within
the SL(2,c) framework [7]. The Maxwell theory and the Poiucaré group are
now perfectly consistent with each other.

The fourth question is about whether Wigner’s little groups are appli-
cable to high-energy particle physics where accelerators produce Lorentz-
boosted extended hadrons such as high-energy protons. The question is
whether it is possible to construct a representation of the Poincaré group
for hadrons which are believed to be bound states of quarks [5, 8]. This rep-
resentation should describe Lorentz-boosted hadrons. Next question then is
whether those boosted hadrons give a description of Feynman’s parton pic-
ture [9] in the limit of large momentum/mass [5, 10]. We shall concentrate
on this fourth question in this report.

2. Little Groups of the Poincaré Group

The little group is the maximal subgroup of the Lorentz group which
leaves the four-momentum invariant. While leaving the four-momentum
invariant, the little group governs the internal space-time symmetries of
relativistic particles. The Lorentz group is generated by three rotation gen-
erators .J; and three boost generators K;. If a massive particle is at rest.
the little group is the three-dimensional rotation group generated by Jy, J2
and .J3. The four-momentum is not affected by this rotation, but the spin
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variable changes its direction. For a massless particle moving along the z
direction, Wigner observed that the little group is generated by J3, N1 and
Ny, where

Ny =J1 + Ko, Ny =Js~ Ky, (1)

and that these generators satisfy the Lie algebra for the two-dimensional
Euclidean group. Here, .J3 is like the rotation generator, while N; and N3
are like translation generators in the two-dimensional Euclidean plane.

In 1953, Inonu and Wigner formulated this problem as the contraction
of O(3) to F(2). How about then the little groups which are isomorphic to
O(3) and E(2)? It is reasonable to expect that the F(2)-like little group
be obtained as a limiting case for of the O(3)-like little group for massless
particles [11]. It is shown that, under the boost along the z direction, the
rotation generator around the z axis remains invariant, but the transverse
rotation generators .JJ; and .J; become generators of gauge transformations
in the large-boost limit [12]. It was later shown that the little group for
massless particles has the geometry of the cylindrical group [13].

In the following sections, we shall discuss how the concept of little
groups are applicable to space-time symmetries of relativistic extended
hadrous.

3. Covariant Harmonic Oscillators

Let us consider a hadron consisting of two quarks. If the space-time
position of two quarks are specified by z, and ) respectively, the system
can be described by the variables

(za +2p) (za — ay) :

Bakdp) 0, Baz ) (2)
2 2V2

The four-vector X specifies where the hadron is located in space and time,

while the variable 2 measures the space-time separation between the quarks.

The portion of the wave function which is subject to the O(3)-like little
group takes the form

‘ 1\ 1, 5,
P (z,t) = (—) H,(z)exp {_E (= + t‘)} . (3)

wnl2n

X =

The subscript 0 means that the wave function is for the hadron at rest. The
above expression is not Lorentz-invariant, and its localization undergoes a
Lorentz squeeze as the hadron moves along the z direction [3].

[t is convenient to use the light-cone variables to describe Lorentz
boosts. The light-cone coordinate variables are

(z\j—it)’ b (:\;;) (4)
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In terms of these variables, the Lorentz boost takes the simple form
' =eu, v =e M, (5)

where 7 is the boost parameter and is tanh™!(v/c). This is a “squeeze”
transformation.

In Eq. (3), the localization property of the wave function is determined
by the Gaussian factor, and we shall therefore study the ground state and
its wave function

1/2
Yo(z,1) = (%) exp{—%(f—}—vz)} . (6)

If the system is boosted, the wave function becomes

1/2
Py (z,t) = <l) / exp{—l (6_2"u2 + 62’7172)} . (7)
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The wave function of Eq. (6) is distributed within a circular region in the
wv plane, and thus in the zt plane. On the other hand, the wave function of
Eq. (7) is distributed in an elliptic region whose major and minor axes are
along the light-cone axes. The wave function becomes Lorentz-squeezed!

4. Feynman’s Parton Picture

In order to explain the scaling behavior in inelastic scattering, Feynman
in 1969 observed that a fast-moving hadron can be regarded as a collection
of many “partons” whose properties do not appear to be identical to those
of quarks [9]. For example, the number of quarks inside a static proton is
three, while the number of partons in a rapidly moving proton appears to
be infinite. The question then is how the proton looking like a bound state
of quarks to one observer can appear different to an observer in a different
Lorentz frame? Feynman made the following systematic observations.

a The picture is valid only for hadrons moving with velocity close to that
of light.

b The interaction time between the quarks becomes dilated, and partons
behave as free independent particles.

¢ The momentum distribution of partons becomes widespread as the
hadron moves fast.

d The number of partons seems to be infinite or much larger than that of
quarks.









