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Abstract

A three-dimensional space-time geometry of relativistic particles is constructed
within the framework of the little groups of the Poincaré group. Since the little group
for a massive particle is the three- dimensional rotation group, its relevant geometry
is a sphere. For massless particles and massive particles in the infinite-momentum
limit, it is shown that the geometry is that of a cylinder and a two-dimensional plane.
The geometry of a massive particle continuously becomes that of a massless particle
as the momentum/mass becomes large. The geometry of relativistic extended parti-
cles is also considered. It is shown that the cylindrical geometry leads to the concept
of gauge transformations, while the two-dimensional Euclidean geometry leads to a
deeper understanding of the Lorentz condition. PACS: 03.30.+p, 11.17.+y, 11.30.Cp,
12.40.Aa
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1 Introduction

The internal space-time symmetries of relativistic particles are governed by the little groups of
the Poincaré group [1, 2]. The internal space-time symmetry group for massive and massless
particles are isomorphic to the three-dimensional rotation group and the two-dimensional
Euclidean group respectively. We have shown in our previous paper [3] that the internal
space-time symmetry of massless particles is dictated by the cylindrical group which is iso-
morphic to the Euclidean group. The cylindrical axis is parallel to the momentum. For
the case of electromagnetic fields satisfying the Lorentz condition, the rotation around the
axis corresponds to helicity, while the translation on the surface of the cylinder along the
direction of the axis corresponds to a gauge transformation [4].

The purpose of the present paper is to present a more complete geometrical picture of
relativistic particles. Since the little groups for massive and massless particles are three-
parameter groups [1], it is possible to construct a three-dimensional geometry of internal
space-time symmetries for all relativistic particles starting from a sphere for a massive par-
ticle at rest. It was observed in Ref. [3] that the three-dimensional rotation group can be
contracted either to the two-dimensional Euclidean group or to the cylindrical group [3, 5].
In the present paper, we point out first that both the cylindrical and Euclidean geometries
are needed for the little group for massless particles [3, 6].

We shall then show that the Euclidean geometry leads to a deeper understanding of the
Lorentz condition applicable to massless particles and to massive particles in the infinite-
momentum limit. It is then shown that the cylindrical symmetry is shared by all those
particles, even without the requirement of the Lorentz condition. This means that the
concept of gauge transformation can be extended to all massless particles or massive particles
with infinite momentum.

Also in this paper, we shall discuss relativistic extended particles which are often called
hadrons. It is not difficult to visualize the symmetry of an extended particle as the three-
dimensional rotation group [7]. However, it is not trivial to construct the geometry of a
relativistic extended particle or hadron if it moves with a speed close to that of light. We
attack this problem by constructing the generators of the little groups in differential form
and the wave functions to which these operators are applicable.

In Sec. 2, we discuss the three-dimensional rotation group and its contractions to the
cylindrical and the two-dimensional Euclidean group. It is shown that both of these con-
tractions can be combined into a single representation. In Sec. 3, the generators of the little
group are discussed in the light-cone coordinate system. It is shown that these generators
are identical with the combined geometry of the cylindrical group and the Euclidean group
discussed in Sec. 2.

In Sec. 4, we show that the Lorentz condition is not a prerequisite for the cylindrical
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symmetry and that the Euclidean symmetry replaces the role of the Lorentz condition. In
Sec. 5, the formalism developed in Secs. 2, 3, and 4 is applied to the the space-time geometry
of relativistic extended hadrons. It is shown that the relativistic hadron can be described in
terms of the parameters of the cylindrical group. Feynman’s parton picture is discussed as
an illustrative example.

2 Three-dimensional Geometry of the Little Groups

The little groups for massive and massless particles are isomorphic to O(3) and E(2) re-
spectively. It is not difficult to construct the O(3)-like geometry of the little group for a
massive particle at rest [1]. The generators Li of the rotation group satisfy the commutation
relations:

[Li, Lj] = iϵijkLk. (1)

Transformations applicable to the coordinate variables x, y, and z are generated by

L1 =

 0 0 0
0 0 −i
0 i 0

 , L2 =

 0 0 i
0 0 0
−i 0 0

 , L3 =

 0 −i 0
i 0 0
0 0 0

 . (2)

This rotation group is well known.
The Euclidean group E(2) is generated by L3, P1 and P2, with

P1 =

 0 0 i
0 0 0
0 0 0

 , P2 =

 0 0 0
0 0 i
0 0 0

 , (3)

and they satisfy the commutation relations:

[P1, P2] = 0, [L3, P1] = iP2, [L3, P2] = −iP1. (4)

The generator L3 is given in Eq.(2). When applied to the vector space (x, y, 1), P1 and P2

generate translations on in the xy plane. The geometry of E(2) is also quite familiar to us.
Let us transpose the above algebra. Then P1 and P2 become Q1 and Q2, where

Q1 =

 0 0 0
0 0 0
i 0 0

 , Q2 =

 0 0 0
0 0 0
0 i 0

 , (5)

respectively. Together with L3, these generators satisfy the same set of commutation relations
as that for L3, P1, and P2 given in Eq.(4)

[Q1, Q2] = 0, [L3, Q1] = iQ2, [L3, Q2] = −iQ1. (6)

3



These matrices generate transformations of a point on a circular cylinder. Rotations around
the cylindrical axis are generated by L3. The matrices Q1 and Q2 generate translations
along the direction of axis [3]. We shall call the group generated by these three matrices the
cylindrical group.

We can achieve the contractions to the Euclidean and cylindrical groups by taking the
large-radius limits of

P1 =
1

R
B−1L2B, P2 = − 1

R
B−1L1B, (7)

and

Q1 = − 1

R
BL2B

−1, Q2 =
1

R
BL1B

−1, (8)

where

B(R) =

 1 0 0
0 1 0
0 0 R

 .
The vector spaces to which the above generators are applicable are (x, y, z/R) and (x, y, Rz)
for the Euclidean and cylindrical groups respectively. They can be regarded as the north-pole
and equatorial-belt approximations of the spherical surface respectively.

Since P1(P2) commutes with Q2(Q1), we can consider the following combination of gen-
erators.

F1 = P1 +Q1, F2 = P2 +Q2. (9)

Then these operators also satisfy the commutation relations:

[F1, F2] = 0, [L3, F1] = iF2, [L3, F2] = −iF1. (10)

However, we cannot make this addition using the three-by-three matrices for Pi and Qi

to construct three-by-three matrices for F1 and F2, because the vector spaces are different
for the Pi and Qi representations. We can accommodate this difference by creating two
different z coordinates, one with a contracted z and the other with an expanded z, namely
(x, y, Rz, z/R). Then the generators become

P1 =


0 0 0 i
0 0 0 0
0 0 0 0
0 0 0 0

 , P2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 0 0 0

 . (11)

Q1 =


0 0 0 0
0 0 0 0
i 0 0 0
0 0 0 0

 , Q2 =


0 0 0 0
0 0 0 0
0 i 0 0
0 0 0 0

 . (12)
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Then F1 and F2 will take the form:

F1 =


0 0 0 i
0 0 0 0
i 0 0 0
0 0 0 0

 , F2 =


0 0 0 0
0 0 0 i
0 i 0 0
0 0 0 0

 . (13)

The rotation generator L3 takes the form

L3 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 . (14)

These four-by-four matrices satisfy the E(2)-like commutation relations of Eq.(10).
Next, let us consider the transformation matrix generated by the above matrices. It is

easy to visualize the transformations generated by Pi and Qi. It would be easy to visualize
the transformation generated by F1 and F2, if Pi commuted with Qi. However, Pi and Qi do
not commute with each other, and the transformation matrix takes a somewhat complicated
form:

exp {−i(ξF1 + ηF2)} =


1 0 0 ξ
0 1 0 η
ξ η 1 (ξ2 + η2)/2
0 0 0 1

 . (15)

If we make a similarity transformation on the above form using the matrix
1 0 0 0
0 1 0 0
0 0 1/

√
2 −1/

√
2

0 0 1/
√
2 1/

√
2

 , (16)

which performs a 45-degree rotation of the third and fourth coordinates, then exp {−i (ξF1 + ηF2)}
of Eq.(15) becomes

1 0 −ξ/
√
2 ξ/

√
2

0 1 −η/
√
2 η/

√
2

ξ/
√
2 η/

√
2 1− (ξ2 + η2)/4 (ξ2 + η2)/4

ξ/
√
2 η/

√
2 −(ξ2 + η2)/4 1 + (ξ2 + η2)/4

 . (17)

This form is readily available in the literature [1, 4] as the translation-like transformation
matrix for the little group for massless particles. In this section, we have given a geometrical
interpretation to this matrix.
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3 Little Groups in the Light-cone Coordinate System

Let us now study the group of Lorentz transformations using the light-cone coordinate sys-
tem. If the space-time coordinate is specified by (x, y, z, t), then the light-cone coordinate
variables are (x, y, u, v) for a particle moving along the z direction, where

u = (z + t)/
√
2, v = (z − t)/

√
2. (18)

The transformation from the conventional space-time coordinate to the above system is
achieved through a similarity transformation of Eq.(16).

In the light-cone coordinate system, the generators of Lorentz transformations are

J1 =
1√
2


0 0 0 0
0 0 −i i
0 i 0 0
0 −i 0 0

 , K1 =
1√
2


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 ,

J2 =
1√
2


0 0 i −i
0 0 0 0
−i 0 0 0
i 0 0 0

 , K2 =
1√
2


0 0 0 0
0 0 0 i
0 0 0 0
0 i 0 0

 ,

J3 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , K3 =


0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

 . (19)

where J1, J2, and J3 are the rotation generators, and K1, K2, and K3 are the generators of
boosts along the three orthogonal directions.

If a massive particle is at rest, its little group is generated by J1, J2 and J3. For a massless
particle moving along the z direction, the little group is generated by N1, N2 and J3, where

N1 = K1 − J2, N2 = K2 + J1, (20)

which can be written in the matrix form as

N1 =
1√
2


0 0 0 i
0 0 0 0
i 0 0 0
0 0 0 0

 , N2 =
1√
2


0 0 0 0
0 0 0 i
0 i 0 0
0 0 0 0

 . (21)
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These matrices satisfy the commutation relations:

[J3, N1] = iN2, [J3, N2] = −iN1, [N1, N2] = 0. (22)

Let us go back to F1 and F2 of Eq.(13). Indeed, they are proportional to N1 and N2

respectively:

N1 =
1√
2
F1, N2 =

1√
2
F2. (23)

Since F1 and F2 are somewhat simpler than N1 and N2, and since the commutation relations
of Eq.(22) are invariant under multiplication of N1 and N2 by constant factors, we shall
hereafter use F1 and F2 for N1 and N2.

In the light-cone coordinate system, the boost matrix takes the form

B(R) = exp (−iρK3 ) =


1 0 0 0
0 1 0 0
0 0 R 0
0 0 0 1/R

 , (24)

with ρ = ln(R), and R =
√
(1 + β)/(1− β), where β is the velocity parameter of the

particle. The boost is along the z direction. Under this transformation, x and y coordinates
are invariant, and the light-cone variables u and v are transformed as

u′ = Ru, v′ = v/R. (25)

If we boost J2 and J1 and multiply them by
√
2/R, as

W1(R) = −
√
2

R
BJ2B

−1 =


0 0 −i/R2 i
0 0 0 0
i 0 0 0

i/R2 0 0 0

 ,

W2(R) =

√
2

R
BJ1B

−1 =


0 0 0 0
0 0 −i/R2 i
0 i 0 0
0 i/R2 0 0

 , (26)

then W1(R) and W2(R) become F1 and F2 of Eq.(13) respectively in the large-R limit.
The algebra given in this section is identical with that of Sec. 2 based on the three-

dimensional geometry of a sphere going through a contraction/expansion of the z axis.
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Therefore, it is possible to give a concrete geometrical picture to the little groups of the
Poincaré group governing the internal space-time symmetries of relativistic particles.

The most general form of the transformation matrix is

D(ξ, η, α) = D(ξ, η, 0)D(0, 0, α), (27)

with
D(ξ, η, 0) = exp {−i(ξF1 + ηF2)}, D(0, 0, α) = exp (−iαJ3). (28)

The matrix D(0, 0, α) represents a rotation around the z axis. In the light-cone coordinate
system, D(ξ, η, 0) takes the form of Eq.(15). It is then possible to decompose it into

D(ξ, η, 0) = C(ξ, η)E(ξ, η)S(ξ, η), (29)

where

C(ξ, η) = exp (−iξQ1 − iηQ2 ) =


1 0 0 0
0 1 0 0
ξ η 1 0
0 0 0 1

 ,

E(ξ, η) = exp (−iξP1 − iηP2 ) =


1 0 0 ξ
0 1 0 η
0 0 1 0
0 0 0 1

 ,

S(ξ, η) = I +
1

2
[C(ξ, η), E(ξ, η)] =


1 0 0 0
0 1 0 0
0 0 1 (ξ2 + η2)/2
0 0 0 1

 . (30)

The matrix C(ξ, η) performs a cylindrical transformation on the first, second and third
components, while E(ξ, η) is for a Euclidean transformation on the first, second and fourth
components. The matrix S(ξ, η) performs a translation along the third axis and commutes
with both C(ξ, η) and E(ξ, η). Both E(ξ, η) and S(ξ, η) become identity matrices when ap-
plied to four-vectors with vanishing fourth component. We shall study physical implications
of these properties in the following section.

4 Cylindrical Group and Gauge Transformations

Let us consider a particle represented by a four-vector:

Aµ(x) = Aµei(kz−ωt), (31)
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where Aµ = (A1, A2, A3, A0). This is not a massless particle. In the light-cone coordinate
system,

Aµ = (A1, A2, Au, Av) , (32)

where Au = (A3 + A0)/
√
2, and Av = (A3 − A0)/

√
2 . If it is boosted by the matrix of

Eq.(24), then
A′µ = (A1, A2, RAu, Av/R) . (33)

Thus the fourth component will vanish in the large-R limit, while the third component
becomes large.

The momentum-energy four-vector in the light-cone coordinate system is

P µ =
(
0, 0, (k + ω)/

√
2, (k − ω)/

√
2
)
, (34)

which in the rest frame becomes

P µ =
(
0, 0,m/

√
2,−m/

√
2
)
, (35)

where m is the mass. If we boost this four-momentum using the matrix of Eq.(24), then

P ′µ =
(
0, 0, Rm/

√
2,−m/

√
2R
)
. (36)

Here again, the fourth component vanishes for large values of R, while the third component
becomes large.

Let us go back to W1(R) and W2(R) of Eq.(26). If W1(R) is applied to the four-vector
A′µ, the result is

i
(
(Au − Av)/R, 0, A1,−A1/R

2
)
, (37)

which becomes (0, 0,−iA1, 0) for large values of R. When W2(R) is applied, the result is
(0, 0,−iA2, 0). Thus, the i/R2 factors in W1(R) and W2(R) can be dropped in the large-R
limit. We can thus safely apply the transformation matrix generated by F1 and F2 of Eq.(13).

Since the fourth component of the vector vanishes or becomes vanishingly small, the ap-
plication of S(ξ, η) of Eq.(30) on A′µ and P ′µ will be produce no effects in the large−R limit.
The same is true for E(ξ, η) of Eq.(30). Thus, among the three factors of the transformation
matrix, only the matrix C(ξ, η) given in Eq.(30) will produce a nontrivial effect. This is the
cylindrical transformation [3].

During the limiting process, the three-dimensional geometry consisting of the x, y, and
v coordinates describes a pancake-like compression of the sphere in which the v coordinate
shrinks to zero. Because of this contraction of the v coordinate, the Euclidean component
of the little group disappears. This is the content of the Lorentz condition for massive
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Figure 1: Cylindrical and Euclidean deformations of the sphere. It is possible to contract
the z axis by dividing it by R. This contraction of the z axis leads to the contraction of O(3)
to the two-dimensional Euclidean group. If the z axis is multiplied by R, then it becomes
expanded. This expansion of the z axis leads to the contraction of O(3) to the cylindrical
group. The expanding and contracting z axis are treated as different coordinates, and are
called the u and v coordinates respectively in Secs. 3, 4, and 5.
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particles in the infinite-momentum limit. The three-dimensional geometry of the x, y and u
coordinates corresponds to the expanding z coordinate, resulting in the cylindrical symmetry.
See Fig. 1.

Let us see the effect of C(ξ, η) on the four-vector of Eq.(33). If we apply C(ξ, η) to the
four-vector, then 

1 0 0 0
0 1 0 0
ξ η 1 0
0 0 0 1




A1

A2

RAu

Av/R

 =


A1

A2

RAu + ξA1 + ηA2

Av/R

 . (38)

This transformation produces only additions to the third component, which are gauge trans-
formations in the case of electromagnetic four-potential.

The above transformation is not unlike the D(ξ, η) transformation applied to the four-
vector satisfying the Lorentz condition Av = 0:

1 0 0 ξ
0 1 0 η
ξ η 1 (ξ2 + η2)/2
0 0 0 1

 =


1 0 0 0
0 1 0 0
ξ η 1 0
0 0 0 1




A1

A2

RAu

0

 , (39)

which is equal to 
A1

A2

RAu + ξA1 + ηA2

0

 . (40)

As we noted at the end of Sec. 3, the Lorentz condition eliminates the Euclidean component
in the D(ξ, η, 0) matrix. It is remarkable that Eq.(39) is strikingly similar to Eq.(38). The
cylindrical transformation is quite independent of the fourth component in both cases, and
it produces the same result for the first three components. Thus the elimination of the
Euclidean component which led to Eq.(38) can thus be regarded as an extension of the
Lorentz condition to all four-vectors.

5 Little Groups for Relativistic Extended Particles

We are now ready to discuss the symmetry property discussed in Sec. 3 for relativistic
extended particles or hadrons. Let us consider a hadron consisting of two quarks bound
together by an attractive force such as the harmonic oscillator force. We use four-vectors xa
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and xb to specify space-time positions of the two quarks. Then it is more convenient to use
the following variables [8].

X = (xa + xb)/2, x = (xa − xb)/2
√
2. (41)

The four-vector X specifies where the hadron is located in space- time, while the variable x
measures the space-time separation between the quarks.

In the light-cone coordinate system, the generators of rotations applicable to functions
localized in the four-dimensional space-time of x are

J1 = − i√
2

{
y

(
∂

∂u
+

∂

∂v

)
− (u+ v)

∂

∂y

}
,

J2 = − i√
2

{
x

(
∂

∂u
+

∂

∂v

)
− (u+ v)

∂

∂x

}
,

J3 = −i
(
x
∂

∂y
− y

∂

∂z

)
. (42)

The boost generators are

K1 = − i√
2

{
x

(
∂

∂u
− ∂

∂v

)
+ (u− v)

∂

∂y

}
,

K2 = − i√
2

{
y

(
∂

∂u
− ∂

∂v

)
+ (u− v)

∂

∂x

}
,

K3 = −i
(
u
∂

∂u
− v

∂

∂v

)
. (43)

These generators do not contain the hadronic coordinate variable X, as transformations of
the little group do not change the hadronic momentum. The boost operator along the z
direction is

B(R) = exp

{
−ρ

(
u
∂

∂u
− v

∂

∂v

)}
. (44)

If this boost is applied to J2 and J1, as in the case of Eq.(26),

W1(R) = −i
{
x
∂

∂u
− v

∂

∂x
−
(
1

R

)2
(
u
∂

∂x
− x

∂

∂v

)}
,

W2(R) = −i
{
y
∂

∂u
− v

∂

∂y
−
(
1

R

)2
(
u
∂

∂y
− y

∂

∂v

)}
. (45)
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In the limit of large R,W1 and W2 become F1 and F2 respectively [9]:

F1 = −i
(
x
∂

∂u
− v

∂

∂x

)
, F2 = −i

(
y
∂

∂u
− v

∂

∂y

)
. (46)

The transformation operator is now

D(ξ, η, 0) = exp

{
−i(ξx+ ηy)

∂

∂u
− iv

(
ξ
∂

∂x
+ η

∂

∂y

)}
, (47)

which can be decomposed into

= D(ξ, η, 0) = exp

{
−i(ξx+ ηy)

∂

∂u

}
exp

{
−iv

(
ξ
∂

∂x
+ η

∂

∂y

)}

× exp

{
−iv

2

(
ξ2 + η2

) ∂

∂u

}
, (48)

as in the case of Eq.(29).
We are applying this operator on functions localized in the four-dimensional space-time.

As an illustration, let us consider Dirac’s Gaussian form [10]:

ψ(x) =
1

π
exp

{
−
(
x2 + y2 + z2 + t2

2

)}
. (49)

This form is not invariant under Lorentz boosts, but undergoes a Lorentz deformation when
the system is boosted [9, 11]. If it is boosted along the z direction, the x and y coordinates
are not affected. We can therefore delete these transverse variables, and concentrate on the
Lorentz deformation property of

ψ(z, t) =
1√
π
exp

{
−
(
u2 + v2

2

)}
. (50)

in the uv plane. The light-cone variables u and v are defined in Eq.(18), and their Lorentz-
transformation property is given in Eq.(25). If this function is Lorentz boosted along the z
axis,

ψβ(z, t) =
1√
π
exp

{
−
(
(u/R)2 + (Rv)2

2

)}
. (51)

The width of this function along the u axis increases as R becomes large, while the distri-
bution along the v axis becomes narrow, as is described in Fig. 2.
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Figure 2: Lorentz deformation in the uv plane. As the velocity parameter increases, the
distribution along the u axis becomes expanded while the v axis becomes contracted, in such
a way that the area remains constant. In the infinite-momentum limit, the v distribution
becomes like that of δ(v), while the distribution along the u axis becomes wide-spread. The
translation along the u axis becomes a gauge transformation.

This function illustrates the Lorentz-deformation property of functions localized in the
uv plane. The width of the v distribution decreases as 1/R. When the v distribution is very
narrow, we can consider the transformation in the subspace where v = 0. Then the factors

exp

{
−iv

(
ξ
∂

∂x
+ η

∂

∂y

)}
(52)

and

exp

{
−iv

2

(
ξ2 + η2

) ∂

∂u

}
, (53)
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in Eq.(??) for D(ξ, η, 0) can be dropped. As a consequence,

D(ξ, η, 0) = exp

{
−i(ξx+ ηy)

∂

∂u

}
. (54)

This means that the terms v ∂
∂x

and v ∂
∂y

in Eq.(46) can be dropped, and F1 and F2 can be
written

F1 = −ix ∂
∂u
, F2 = −iy ∂

∂u
. (55)

These operators generate translations along the u axis. These operators, together with the
rotation generator J3 of Eq.(42), are the generators of the cylindrical group. The differential
operators F1 and F2 are now the generators of gauge transformations applicable to functions
with a narrow distribution in v [9].

Here again, a complete description of the little group for massive particles in the infinite-
momentum limit require both the cylindrical and Euclidean components. The Euclidean
component can be deleted in the infinite-momentum limit or in the v = 0 subspace. As we
observed at the end of Sec. 4, this is the Lorentz condition applicable to massive particles in
the infinite-momentum limit.
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