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Standing Waves in the Lorentz-Covariant World
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When Einstein formulated his special relativity, he developed his dynamics for
point particles. Of course, many valiant efforts have been made to extend his
relativity to rigid bodies, but this subject is forgotten in history. This is largely
because of the emergence of quantum mechanics with wave-particle duality.
Instead of Lorentz-boosting rigid bodies, we now boost waves and have to deal
with Lorentz transformations of waves. We now have some understanding of
plane waves or running waves in the covariant picture, but we do not yet have
a clear picture of standing waves. In this report, we show that there is one
set of standing waves which can be Lorentz-transformed while being consistent
with all physical principle of quantum mechanics and relativity. It is possible to
construct a representation of the Poincaré group using harmonic oscillator wave
functions satisfying space-time boundary conditions. This set of wave functions
is capable of explaining the quantum bound state for both slow and fast ha-
drons. In particular it can explain the quark model for hadrons at rest, and
Feynman’s parton model hadrons moving with a speed close to that of light.

KEY WORDS: Lorentz covariance; standing waves; bound states; relativistic
quantum mechanics.

1. INTRODUCTION

Einstein formulated his special relativity 100 years ago while making
Newtonian mechanics consistent with the Lorentz-covariant world. In so
doing, he derived his energy-momentum relation valid for both massive
and massless particles. Einstein of course formulated his theory for point
particles. Since then, there have been efforts to understand special relativ-
ity for rigid particles with non-zero size, without any tangible results. On
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the other hand, the emergence of quantum mechanics made the rigid-body
problem largely irrelevant.

Because of the wave-particle duality, quantum mechanics is sometimes
called wave mechanics. Instead of rigid bodies, we talk about wave packets
and standing waves. The issue becomes whether those waves can be made
Lorentz-covariant.

Of course, here, the starting point is the plane wave, which can be
written as

eip·x = ei( �p·�x−Et). (1)

Since it takes the same form for all Lorentz frames, we do not need any
extra effort to make it covariant.

Indeed, the S-matrix derivable from the present form of quantum
field theory calls for calculation of all S-matrix quantities in terms of
plane waves. Thus, the S-matrix is associated with perturbation theory or
Feynman diagrams. Indeed, Feynman propagators are written in terms of
plane waves on the mass shell.

We should realize however that the S-matrix formalism is strictly for
running waves, starting from a plane wave from one end of the universe
and ending with another plane wave at another end. How about standing
waves? This question is illustrated in Fig. 1. Of course, standing waves can
be regraded as superpositions of running waves moving in opposite direc-
tions. However, in order to guarantee localization of the standing waves,
we need a spectral function or boundary conditions. The covariance of
standing waves necessarily involve the covariance of boundary conditions
or spectral functions. How much do we know about this problem?

Running Waves

Standing
Waves

Running Waves

Fig. 1. Running waves and waves in quantum
theory. If a particle is allowed to travel from
infinity to infinity, it corresponds to a running
wave according to the wave picture of quantum
mechanics. If, on the other hand, it is trapped in
a localized region, we have to use standing waves
to interpret its location in terms of probability
distribution.
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The purpose of this paper is to examine this problem systematically.
When we talk about standing waves in quantum mechanics, we start with
two standard examples, namely harmonic oscillators and particles bound
by hard walls separated by a space-like distance. For the hard walls, we
do not know how to deal with the covariance of the boundary conditions,
and we are not able to report anything in this paper.

For harmonic oscillators, boundary conditions are smooth, it might
be possible to impose a localization condition in a Lorentz-covariant man-
ner. This possibility was considered by a number of great physicists in the
past, including Dirac,(1) Yukawa,(2) and Feynman et al.(3) The paper of
Feynman et al was written after Gell-Mann’s formulation of the quark
model,(4) and is much closer to the real world.

Therefore, in this report, we start with the Lorentz-invariant differ-
ential equation given by Feynman et al.(3) Our first step is to make
up mathematical deficiencies of this paper, and to construct a set of
covariant harmonic oscillator wave functions. We then attach physical
interpretations to these wave functions. We point out that the covari-
ant oscillator formalim satisfies all the known rules of quantum mechan-
ics and special relativity, as the present form of quantum field theory
does.

In addition, we point out that the covariant oscillator formalism can
explain the quark model for hadrons when they are at rest or slow, and
that the same formalism leads to Feynman’s parton model when they
move with speed close to that of light. Indeed, the quark model and the
parton model are two limiting cases of one covariant entity.

In Sec. 2, it is noted that there are running waves and standing
waves in quantum mechanics. While it is easy to Lorentz-boost running
waves, it requires covariance of boundary conditions to understand fully
standing waves. In Sec. 3, we discuss the space-time symmetry applica-
ble to standing waves in the Lorentz-covariant regime. It is pointed out
that this symmetry is dictated by Wigner’s little group(5,6) for massive
particles.

In Sec. 4, it is shown possible to construct a set of harmonic oscilla-
tor wave functions, which can be Lorentz-boosted. It is shown that these
wave functions are compatible with all known rules of quantum mechan-
ics and special relativity. As a physical application of this covariant har-
monic oscillator formalism, it is shown in Sec. 5 that the quark and
parton models are two different manifestation of the same covariant entity.
In Sec. 6, we present a future roadmap for quantum mechanics in the
Lorentz-covariant world.
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2. SCATTERING STATES AND BOUND STATES

We are now facing the problem of whether the basic concept of quan-
tum mechanics survives in Einstein’s Lorentzian world. By now, it is safe
to assume that Feynman diagrams serve our purpose well for scattering
states. Feynman diagrams are possible because the covariant form for
plane waves is quite trivial.

How about bound states? In order to understand the bound-state
problem, we have to understand standing waves in the covariant world as
indicated in Fig. 1. In his talk presented at the 1970 April meeting of the
American physical society held in Washington, DC, Feynman stunned the
audience by saying that Feynman diagrams are not applicable to bound
state problems.(7,8) He suggested harmonic oscillators for a possible solu-
tion.

We can summarize what Feynman said in Fig. 2. Feynman’s point
was that, while plane-wave approximations in terms of Feynman diagrams
work well for relativistic scattering problems, they are not applicable to
bound-state problems. For bound-state problems, we should perhaps try
harmonic oscillator wave functions. Feynman’s 1970 talk was later pub-
lished in the paper of Feynman et al. in the Physical Review.(3)

Although this paper contained the above mentioned original idea of
Feynman, it contains serious mathematical flaws. Feynman et al. start with
a Lorentz-invariant differential equation for the harmonic oscillator for
the quarks bound together inside a hadron. For the two-quark system,
they write the wave function of the form

exp
{
−1

2

(
z2 − t2

)}
, (2)

Harmonic

Feynman Diagrams

Oscillators

Feynman Diagrams

Fig. 2. Feynman’s roadmap for combining quan-
tum mechanics with special relativity. Feynman
diagrams work for running waves, and they pro-
vide a satisfactory resolution for scattering states
in Einstein’s world. For standing waves trapped
inside an extended hadron, Feynman suggested
harmonic oscillators as the first step.
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where z and t are the longitudinal and time-like separations between the
quarks. This form is invariant under the boost, but is not normalizable in
the t variable.

On the other hand, the Gaussian form

exp
{
−1

2

(
z2 + t2

)}
(3)

also satisfies Feynman’s Lorentz-invariant differential equation. This
Gaussian function is normalizable, but is not invariant under the boost.
However, the word “invariant” is quite different from the word “covari-
ant.” The above form can be covariant under Lorentz transformations. We
shall get back to this problem in Sec. 4.

Feynman et al. studied in detail the degeneracy of the three-dimen-
sional harmonic oscillators, and compared with the observed experimental
data. Their work is complete and thorough, and is consistent with the O(3)-
like symmetry dictated by Wigner’s little group for massive particles.(5,6) Yet,
Feynman et al. make an apology that the symmetry is not O(3, 1). This
unnecessary apology causes a confusion not only to the readers but also to
the authors themselves, and makes the paper difficult to read.

3. SPACE–TIME SYMMETRY OF STANDING WAVES

As was noted in Sec. 2, it is trivial to Lorentz-transform plane waves.
How about superposition of plane waves? We have to deal with the
Lorentz covariance of their spectral functions. This is not an easy problem
for standing waves consisting of waves moving in opposite directions. We
shall come back to this problem in Sec. 4. In this section, we shall study
the space-time symmetry of standing waves.

In the Lorentz-covariant world, the word standing wave means that
there is at least one Lorentz frame in which the amplitude is non-zero in
a localized spacial region, and this localization region stays at the same
place independent of time. We shall call this Lorentz frame “the rest
frame” for the standing wave. How would this standing wave look to an
observer moving with a constant velocity? We can safely say the whole
system will move with a constant velocity in the opposite direction. How
about the shape of the standing wave? Is the concept of localization pre-
served under Lorentz boosts?

In order to tackle this problem, we have to understand the space-time
symmetry of this localized system. The Lorentz group applicable to a free
particle has six parameters corresponding to three rotations around and
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Einstein

Einstein

Wigner

Fig. 3. Wigner in Einstein’s world. Ein-
stein formulates special relativity whose
energy-momentum relation is valid for point
particles as well as particles with internal space-
time structure. It was Wigner who formulated the
framework for internal space-time symmetries by
introducing his little groups whose transforma-
tions leave the four-momentum of a given particle
invariant.

three boosts along the three orthogonal spatial directions. Once the sys-
tem is given in a specific Lorentz frame, the system has only three degrees
of freedom, as is seen in Wigner’s 1939 paper on his little groups.(5) The
system regains all of the six degrees of freedom when we add the three
degrees of freedom to boost in three independent directions.(9) Indeed,
the bound state or the standing wave has only three rotational space-time
degrees of freedom in the Lorentz frame in which it is at rest. This picture
of space-time symmetry is illustrated in Fig. 3.

This aspect of Wigner’s little group has already been studied in the
past. Let us see where the present problem stands in the development of
this subject.

Since Einstein introduced the Lorentz covariant space-time symmetry,
his energy momentum relation E=

√
p2 +m2 has been proven to be valid

for not only point particles, but also particles with internal space-time
structure defined by quantum mechanics. Particles can have quantized
spins if they are at rest or they are slowly moving. If, on the other hand,
the particle is massless and moves with speed of light, it has its helicity
which is the spin parallel to its momentum and gauge degree of freedom.

Table I summarizes the covariant picture of the present particle world.
The second row of this table indicates that the spin symmetry of slow par-
ticles and the helicity-gauge symmetry of massless particles are two limit-
ing cases of one covariant entity called Wigner’s little group. This issue has
been extensively discussed in the literature.(10)

Let us then concentrate on the third row of Table I. After Einstein
formulated his special relativity, a pressing problem was to see whether
his relativistic dynamics can be extended to rigid bodies as in the case of
Newton’s sun and earth and their rotations. Their rotations are translated
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Table I. Massive and massless particles in one package

Massive, Slow Covariance Massless, Fast

Energy–Momentum E = p2/2m Einstein’s E = [p2 +m2]1/2 E = p

Internal Space–time
Symmetry S3 S3

S1, S2 Wigner’s Little Group Gauge Trans
Relativistic Extended
Particles Quark Model One Covariant Theory Parton Model

Wigner’s little group unifies the internal space-time symmetries for massive and massless
particles. It is a great challenge for us to find another unification: the unification of the
quark and parton pictures in high-energy physics.

into particle spins in quantum mechanics. Their sizes can be translated
into the width of the standing waves. Is special relativity going to prevail
for these standing waves?

As we pointed out in this section, Wigner’s formulation of the O(3)-
like little group was a very important step. We are extending this concept
to standing waves. The development of the quark model for hadrons was
another important step toward understanding Einstein’s covariance.(4) The
proton is a quantum bound state of quarks. Since the proton these days
can achieve a velocity very close to that of light, it is a relativistic bound-
state in the real world. While the proton is like a bound state when it is
at rest, it appears as a collection of partons when it moves with velocity
close to that of light. As we shall discuss in Sec. 5, partons have properties
which appear to be quite different from those of quarks. Can we produce
a standing wave solution for the proton which can explain both the quark
model and the parton model? This is the problem defined in the third row
of Table I.

4. CAN HARMONIC OSCILLATORS BE MADE COVARIANT?

As we emphasized in Sec. 2, quantum field theory has been quite
successful in terms of perturbation techniques in quantum electrody-
namics. However, this formalism is based on the S-matrix for scattering
problems and useful only for physical processes where a set of free parti-
cles becomes another set of free particles after interaction. Quantum field
theory does not address the question of localized probability distributions
and their covariance under Lorentz transformations. The Schrödinger
quantum mechanics of the hydrogen atom deals with localized probability
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distribution. Indeed, the localization condition leads to the discrete energy
spectrum. Here, the uncertainty relation is stated in terms of the spatial
separation between the proton and the electron. If we believe in Lorentz
covariance, there must also be a time-separation between the two constit-
uent particles.

Before 1964,(4) the hydrogen atom was used for illustrating bound
states. These days, we use hadrons which are bound states of quarks. Let
us use the simplest hadron consisting of two quarks bound together with
an attractive force, and consider their space-time positions xa and xb, and
use the variables

X = (xa + xb)/2 x = (xa − xb)/2
√

2. (4)

The four-vector X specifies where the hadron is located in space and
time, while the variable x measures the space-time separation between
the quarks. According to Einstein, this space-time separation contains a
time-like component which actively participates as can be seen from

(
z′
t ′

)
=

(
cosh η sinh η
sinh η cosh η

) (
z

t

)
, (5)

when the hadron is boosted along the z direction. In terms of the
light-cone variables defined as,(11)

u = (z+ t)/
√

2 v = (z− t)/
√

2, (6)

the boost transformation of Eq. (5) takes the form

u′ = eηu v′ = e−ηv. (7)

The u variable becomes expanded while the v variable becomes contracted,
as is illustrated in Fig. 4.

Does this time-separation variable exist when the hadron is at rest?
Yes, according to Einstein. In the present form of quantum mechanics,
we pretend not to know anything about this variable. Indeed, this variable
belongs to Feynman’s rest of the universe.

Also in the present form of quantum mechanics, there is an uncer-
tainty relation between the time and energy variables. However, there are
no known time-like excitations. Unlike Heisenberg’s uncertainty relation
applicable to position and momentum, the time and energy separation
variables are c-numbers, and we are not allowed to write down the com-
mutation relation between them. Indeed, the time-energy uncertainty rela-
tion is a c-number uncertainty relation,(12) as is illustrated in Fig. 5.
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A=4u v

t

z

u

v

A=4uv

=2(t2–z2)

Fig. 4. Lorentz boost in the light-cone
coordinate system.

How does this space-time asymmetry fit into the world of covari-
ance.(13) This question was studied in depth by the present authors in
the past. The answer is that Wigner’s O(3)-like little group is not a
Lorentz-invariant symmetry, but is a covariant symmetry.(5) It has been
shown that the time–energy uncertainty applicable to the time–separation
variable fits perfectly into the O(3)-like symmetry of massive relativistic par-
ticles.(6)

Dirac:  Uncertainty
without  Excitations 

Heisenberg:  Uncertainty
with  Excitations 

t

z

Fig. 5. Space-time picture of quantum mechan-
ics. There are quantum excitations along the
space-like longitudinal direction, but there are
no excitations along the time-like direction. The
time-energy relation is a c-number uncertainty
relation.



1298 Kim and Noz

The c-number time-energy uncertainty relation allows us to write
down a time distribution function without excitations.(6) If we use Gauss-
ian forms for both space and time distributions, we can start with the
expression

(
1
π

)1/2

exp
{
−1

2

(
z2 + t2

)}
(8)

for the ground-state wave function. What do Feynman et al. say about this
oscillator wave function?

In their classic 1971 paper,(3) Feynman et al. start with the following
Lorentz-invariant differential equation.

1
2

{
x2
µ − ∂2

∂x2
µ

}
ψ(x) = λψ(x). (9)

This partial differential equation has many different solutions depending
on the choice of separable variables and boundary conditions. Feynman
et al. insist on Lorentz-invariant solutions which are not normalizable. On
the other hand, if we insist on normalization, the ground-state wave func-
tion takes the form of Eq. (8). It is then possible to construct a represen-
tation of the Poincaré group from the solutions of the above differential
equation.(6) If the system is boosted, the wave function becomes

ψη(z, t) =
(

1
π

)1/2

exp
{
−1

2

(
e−2ηu2 + e2ηv2

)}
. (10)

This wave function becomes Eq. (8) if η becomes zero. The transition from
Eqs. (8) to (10) is a squeeze transformation. The wave function of Eq. (8)
is distributed within a circular region in the uv plane, and thus in the zt
plane. On the other hand, the wave function of Eq. (10) is distributed in
an elliptic region with the light-cone axes as the major and minor axes,
respectively. If η becomes very large, the wave function becomes concen-
trated along one of the light-cone axes. Indeed, the form given in Eq. (10)
is a Lorentz-squeezed wave function. This squeeze mechanism is illustrated
in Fig. 6.

There are many different solutions of the Lorentz invariant differen-
tial equation of Eq. (9). The solution given in Eq. (10) is not Lorentz
invariant but is covariant. It is normalizable in the t variable, as well as
in the space-separation variable z. How can we extract probability inter-
pretation from this covariant wave function?
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β=0
z

t

β=0.8

Fig. 6. Effect of the Lorentz boost
on the space-time wave function. The
circular space-time distribution in the
rest frame becomes Lorentz-squeezed to
become an elliptic distribution.

5. FEYNMAN’S PARTON PICTURE

It is a widely accepted view that hadrons are quantum bound states
of quarks having localized probability distribution. As in all bound-state
cases, this localization condition is responsible for the existence of dis-
crete mass spectra. The most convincing evidence for this bound-state
picture is the hadronic mass spectra which are observed in high-energy
laboratories.(3,6)

In 1969, Feynman observed that a fast-moving hadron can be regarded
as a collection of many “partons” whose properties appear to be quite differ-
ent from those of the quarks.(14) For example, the number of quarks inside
a static proton is three, while the number of partons in a rapidly moving
proton appears to be infinite. The question then is how the proton look-
ing like a bound state of quarks to one observer can appear different to an
observer in a different Lorentz frame? Feynman made the following system-
atic observations.

(a) The picture is valid only for hadrons moving with velocity close
to that of light.

(b) The interaction time between the quarks becomes dilated, and
partons behave as free independent particles.

(c) The momentum distribution of partons becomes widespread as
the hadron moves fast.
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(d) The number of partons seems to be infinite or much larger than
that of quarks.

Because the hadron is believed to be a bound state of two or three quarks,
each of the above phenomena appears as a paradox, particularly (b) and
(c) together.

In order to resolve this paradox, let us write down the momentum-
energy wave function corresponding to Eq. (10). If we let the quarks have
the four-momenta pa and pb, it is possible to construct two independent
four-momentum variables(3)

P = pa + pb q =
√

2(pa − pb), (11)

where P is the total four-momentum. It is thus the hadronic
four-momentum.

The variable q measures the four-momentum separation between the
quarks. Their light-cone variables are

qu = (q0 − qz)/
√

2 qv = (q0 + qz)/
√

2. (12)

The resulting momentum-energy wave function is

φη(qz, q0) =
(

1
π

)1/2

exp
{
−1

2

(
e−2ηq2

u + e2ηq2
v

)}
. (13)

Because we are using here the harmonic oscillator, the mathematical form
of the above momentum-energy wave function is identical to that of the
space-time wave function. The Lorentz squeeze properties of these wave
functions are also the same. This aspect of the squeeze has been exhaus-
tively discussed in the literature.(6,16)

When the hadron is at rest with η = 0, both wave functions behave
like those for the static bound state of quarks. As η increases, the wave
functions become continuously squeezed until they become concentrated
along their respective positive light-cone axes. Let us look at the z-axis
projection of the space-time wave function. Indeed, the width of the quark
distribution increases as the hadronic speed approaches that of the speed
of light. The position of each quark appears widespread to the observer
in the laboratory frame, and the quarks appear like free particles.

The momentum-energy wave function is just like the space-time wave
function, as is shown in Fig. 7. The longitudinal momentum distribution
becomes wide-spread as the hadronic speed approaches the velocity of light.
This is in contradiction with our expectation from non-relativistic quantum
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Fig. 7. Lorentz-squeezed space-time and momentum-energy wave func-
tions. As the hadron’s speed approaches that of light, both wave functions
become concentrated along their respective positive light-cone axes. These
light-cone concentrations lead to Feynman’s parton picture.

mechanics that the width of the momentum distribution is inversely pro-
portional to that of the position wave function. Our expectation is that if
the quarks are free, they must have their sharply defined momenta, not a
wide-spread distribution.

However, according to our Lorentz-squeezed space-time and momen-
tum-energy wave functions, the space-time width and the
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Experimental

0
0
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0.2 0.4 0.6 0.8 1.0

Harmonic
Oscillator

Fig. 8. Parton distribution function. Theory and
experiment.

momentum-energy width increase in the same direction as the hadron is
boosted. This is of course an effect of Lorentz covariance. This indeed is
the key to the resolution of the quark-parton paradox.(6,15)

After these qualitative arguments, we are interested in whether
Lorentz-boosted bound-state wave functions in the hadronic rest frame
could lead to parton distribution functions. If we start with the ground-
state Gaussian wave function for the three-quark wave function for the pro-
ton, the parton distribution function appears as Gaussian as is indicated in
Fig. 8. This Gaussian form is compared with experimental distribution also
in Fig. 8.

For large x region, the agreement is excellent, but the agreement is
not satisfactory for small values of x. In this region, there is a complica-
tion called the “sea quarks.” However, good sea-quark physics starts from
good valence-quark physics. Figure 8 indicates that the boosted ground-
state wave function provides a good valence-quark physics.

Feynman’s parton picture is one of the most controversial models
proposed in the 20th century. The original model is valid only in Lorentz
frames where the initial proton moves with infinite momentum. It is grat-
ifying to note that this model can be produced as a limiting case of one
covariant model which produces the quark model in the frame where the
proton is at rest. We need Feynman’s parton model to complete the third
row of Table I.

6. HISTORY, FUTURE, AND STRINGS

In this paper, we are dealing with two different histories. One is how
to deal with relativistic extended particles starting from Einstein’s special
relativity for point particles, as illustrated in Table I. In so doing, we
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Table II. History of scattering states and bound states

Scattering Unified Bound States

Before Newton Comets Unknown Planets
Newton Hyperbola Newton Ellipse
Quantum Mechanics Running Waves Particle Waves Standing Waves
Feynman Diagrams Unknown Oscillators
Future Theory Running Waves One Standing Waves

∗Fields Physics ∗Strings

The history starts with open and closed orbits of astronomical objects. Newton unified
the elliptic and hyperbolic orbits with his Newtonian mechanics. In quantum mechanics
with wave-particle duality, running waves and standing waves tell the difference between
bound states and scattering states. The remaining problem is whether this quantum pic-
ture remains valid in Einstein’s covariant world.

had to face another historical problem, namely the problem of whether
scattering problem and bound-state problem can be treated by the same
dynamics, as shown in Table II. This history starts from the ancient mys-
tery that comets and planets have different orbits.

Historically, the unified picture of scattering and bound states was
accomplished by an invention of new dynamics. As we can see from
Table II, the completion of Newtonian mechanics was accompanied by a
unified view of elliptical and hyperbolic orbits.

At the beginning of the 20th century, discrete energy levels emerged
as one of the most pressing puzzling problems in physics. Why do bound
states have discrete energy levels while scattering states do not. This ques-
tion was solved by the wave-particle duality of quantum mechanics, where
bound states satisfy localization boundary condition.

In the world of Einstein, the scattering problem is now well under-
stood in terms of quantum field theory and Feynman diagrams. In this
paper, we studied whether the covariant harmonic oscillator formalism
could serve as a model for relativistic bound states. We strengthened our
earlier assertion that it satisfies every known physical principle as quantum
field theory does.(17) In this report, we discussed the same problem with
the space-time symmetry of standing waves in the framework of Wigner’s
little group for massive particles.

We are of course aiming at a unified covariant theory which will
take care of both scattering and bound-state problems. In the case of the
Schrödinger quantum mechanics, we start with one differential equation,
and the difference comes from the boundary condition dictated by locali-
zation of probability distribution.
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In the covariant world of quantum mechanics, the story is the same.
For free particles, the Lorentz-invariant Klein-Gordon equation is the
starting point. The covariant oscillator formalism starts also with a Lo-
rentz-invariant differential equation. The main difference between running
and standing waves is in the boundary conditions, as in the case of the
Schrödinger quantum mechanics. In field theory, we talk about asymptotic
conditions where particles are free particles in the remote past and remote
future in the Lorentz-covariant world, where causality is preserved. In the
oscillator formalism, we talk about localization boundary conditions in the
Lorentz-covariant world.

Finally, let us make a comment on current activities in string the-
ory. The ultimate purpose of string theories is to understand space-time
symmetry of particles with internal structures. As we pointed out in Sec. 3,
this symmetry was worked out by Wigner in his fundamental paper of
1939. His work is totally consistent with Einstein’s covariant world.

In addition, in string theories, there are internal vibrations within par-
ticles. For vibrational problems, we are not aware of any simpler model
than harmonic oscillators. Let us keep in mind that, in both engineering
and science, it is customary to reduce all complicated vibrational prob-
lems into simple harmonic oscillators before making contacts with the real
world. Therefore, the most urgent problem in string theories is to reduce
the problem to a soluble model, namely the covariant harmonic oscillator
formalism presented in this report.

This paper indeed provides a place for string theory in the roadmap
of relativity and quantum mechanics, as illustrated in Table II.
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