Photons, neutrinos, and gauge transformations
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A unified description is presented for internal space-time symmetries of photons and neutrinos.
Lorentz-boosted Dirac equation for a massive spin-1/2 particle is discussed in the Weyl
representation. In the large-momentum/small-mass limit, the resulting large component of the
Dirac spinor becomes invariant under transformations of the E(2)-like little group, and the small
component is not invariant under the E(2)-like transformation. The gauge dependence of the
photon four-potential can thus be derived from a direct product of the gauge-independent large
component and the gauge-dependent small component.

1. INTRODUCTION

On massless particles, there are a number of important
questions for which answers are not readily available.
When we discuss blackbody radiation, we assume that the
photon spin can be either parallel or antiparallel to the
momentum. Why can photons, while being spin-1 parti-
cles, not have three different polarizations? While photons
can have two different directions of polarization, why do
massless neutrinos have only one direction of polarization?

There is yet another question which bothers us constant-
ly. For a stationary particle with nonzero mass with spin 1,
the /=1 spherical harmonics describes its spin orienta-
tions. For this nonrelativistic case, we know how to con-
struct the spin-1 states from two Pauli spinors. Why is it
not possible to construct a photon state as a direct product
of two neutrino states?

The answers to these questions can ultimately be found
in Wigner’s 1939 paper' on the Poincaré group. Wigner’s
representation theory is based on his little groups. The little
group is the maximal subgroup of the Lorentz group which
leaves the four-momentum of a given particle invariant.'?
The little groups for massive and massless particles are like
the three-dimensional rotation group [or O(3)] and the
two-dimensional Euclidean group [or E(2)]. We use the
word “like” to indicate that two different groups have the
same algebraic property even though they may have differ-
ent matrix representations.

For photons, it is possible to explain the spin orientation
and the gauge dependence in terms of the E(2)-like little
group for massless particles.>~> However, for massless par-
ticles with spin 1/2, we never talk about gauge degrees of
freedom. Do such degrees of freedom exist for spin-1/2
particles?

We studied this problem in Ref. 3 using the SL(2,c)
spinors and showed that neutrino polarization is due to the
requirement of gauge invariance. The purpose of the pres-
ent paper is to translate the result of Ref. 3 into the lan-
guage of the Dirac equation. In particular, we are interest-
ed in the following questions.

(1) The polarization of neutrinos is usually stated as
¥s = + 1, and the nature seems to favor the s = — 1 neu-
trinos. Does this mean that the s = + 1 neutrinos are
gauge dependent?
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(2) Isit possible to form a gauge-dependent four-poten-
tial as a direct product of two spinors? If so, where is the
source of the gauge dependence in the spinors?

The answers to questions (1) and (2) are “no” and
“yes,” respectively. The gauge dependence comes from the
component of the Dirac spinor which becomes vanishingly
small when we take the infinite-momentum/zero-mass
limit of the Dirac wave function for a massive particle.

In Sec. II we formulate the problem of internal space-
time symmetries of massless particles in terms of the E(2)-
like little group applicable to photons.'~ As for neutrinos,
the Dirac equation in the Weyl representation is presented
in Sec. II1. It is shown that the two-component solutions of
the Dirac equation are gauge invariant. However, if we
allow a small nonzero mass, there are two additional com-
ponents which are noninvariant under transformations of
the E(2)-like little group. In Sec. IV, we construct a gauge-
dependent four-potential from a direct product of two spin-
ors. It is shown that the above-mentioned E(2)-dependent
spinors are responsible for the gauge dependence of the
four-potential.

I1, E(2)-LIKE LITTLE GROUP FOR MASSLESS
PARTICLES

Let us begin with the group of Lorentz transformations.
This group is generated by three rotation generators J; and
three boost generators K;. They satisfy the commutation
relations:

[Jid; ] = tegedies [JiK; ]
=i€iijk’ [KI,KJ] = —lé',ijk . (l)
For a massive particle in its rest frame, the little group is
generated by J,, J,, and J,.""* For a massless particle mov-
ing along the z direction, the little group is generated by~
N, =K,—J,, N,=K,+J,, and J;, (2)
satisfying commutation relations:
[/,N,] =iN,, [J5N,]= —iN, [N,N,1=0,(3)

which are identical to those for the two-dimensional Eu-
clidean group,’™ consisting of rotations around the origin
generated by J, and translations generated by ¥, and &V, in
a two-dimensional Euclidean space.
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As for the above-mentioned massless particle, Jj is the
helicity operator. In order to understand the physical im-
plications of the NV operators, let us study in detail the case
of photons. For a single free photon moving along the z
direction, we can write the photon wave function as

Al-‘(x) =Al-lel'w(z—t)’ (4)
with the four-vector convention:

Al = (A4, A543,4,) . (3)
The momentum four-vector is clearly

7=(0,0,0,0). (6)

Then, as we discussed in our earlier papers,>® the little
group applicable to the photon four-potential is generated

by

0 —i 0 0

i 0 0 0
J3_0000’

0 0 0 O

0 0 —i i 00 0 O

00 0 O 0 0 —i i
N'—iO 0 o’N’-“Oi 0 O

i 0 0 0O 0 i 0 O

These matrices satrisfy the commutation relations of Eq.
(3).J, in this case is the helicity operator, and its physics is
well known. The N operators generate the translationlike
transformations:

D(u,w) =D(u,0)D(0,v), (8)
where

D(u,0) = D\(u) = exp[iuN,],

D(0,0) = D,(v) =exp[ — ivN,] .
We can expand the above formulas in power series,

D,(u) =1 —iuN, — (uN,)%/2, 9
D,(v) =1 — N, — (vN,)%/2,
with

(N1)? = (N;)> = N{(N,)* = N,(N,)?*=0.
Therefore, the four-by-four matrices for D,(v) are qua-
dratic in # and v, respectively. These expression is rather
cumbersome.*-> However, if we use the Lorentz condi-
tion:

S 44x)] =pd, () =0, (10)

ax*
resulting in 45 = A, all the elements in the third and fourth
columns of the N matrices of Eq. (7) vanish. The D matrix
of Eq. (8) then takes a relatively simple form?:

1 0 0 O
01 0 O

D(up) = s 1 0 (1)
u v 0 1

If this D matrix is applied to the photon four-potential
given in Eq. (4), it generates a gauge transformation.>”
Specifically, if it is applied to the polarization vectors:

e:t =(1: :tl9 os 0), (12)
which are eigenstates of J,, the effect is

D(uv)e, =(1, +i, usiv, u+iv), (13)
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which is indeed a gauge transformation.>*

The purpose of the present paper is to see whether we can
carry out the same procedure for massless particles with
spin 1/2, and exploit its consequences within the frame-
work of the Dirac equation.

IIL. E(2)-LIKE SYMMETRY OF THE DIRAC
EQUATION IN THE WEYL REPRESENTATION

We are familiar with the Dirac equation and its free-
particle solutions in the standard representation of the
Dirac matrices. On the other hand, the Dirac equation in
the Weyl representation is frequently mentioned in the li-
terature. What is the advantage of using the Weyl represen-
tation?

The Dirac matrices in the Weyl representation take the

form®:
01 _[ 1 o]
=11 0]’ "=lo —1l
(14)

_ [ 0 o
T=l_¢ ol
The basic advantage of the Weyl representation is that both
the generators of rotations and boosts take the block diag-
onal form.

o, O o, 0
Si=[0 50,]’ Ki:[o —fa,]'

The upper and lower components of the four-component
Dirac spinors can be separated by the sign of the y5 matrix,
and therefore by the sign of the boost generators. Indeed,
the multiplication of the four-component spinor by
(1 £ ¥5) /2 is the projection of the upper and lower compo-
nents, respectively. The resulting two-component spinors
are called the chiral or Weyl spinors. We shall call them the
Weyl spinors in this paper.

We have no difficulty in recognizing S; of Eq. (15) as the
generators of rotations. In order to check whether K; are
the boost generators, let us start with a massive Dirac parti-
cle at rest:

(15)

@ i.ﬁ], (16)

+ d] > V(O [ B

where the + and — signs specify positive and negative
energy states, respectively. These spinors are in the eigen-
states of .S,. For the upper component, whose boosts are
generated by K; = (i/2)o0;, we use the usual Pauli notation
a and B for positive and negative spins along the z direc-
tion, respectively. For the lower component whose boosts
are generated by K; = — (#/2)0,, we use the dotted spin-
ors & and f3. If we boost the spinors of Eq. (16) along the z
axis by applying the boost operator exp( — i£K;),

U(0) =[

_ | [exp(+£/2)]a
v = { + [exp( —§/2)1a] ’

_[ £ lexp(—§/2)18
V("’"{ [exp(+£/2)18 | (17
where

§= tanh_l(pz/po) .

The above spinors constitute the solutions of the Dirac
equation for a particle with momentum p, along the z di-
rection in the Weyl representation. Indeed, K; of Eq. (15)
are the generators of boosts.

With this preparation, we construct the generators of the
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E(2)-like little group ¥, and N, for the Dirac spinors using
the formulas given in Eq. (2). For the upper component,
K, = (i/2)0;, and

(+) — (+)
wioslg o] vo=lp ol om

The generators N {~’ and N{~’ applicable to the lower
component are the Hermitian conjugates of the above ex-
pressions. The D transformation matrix applicable the
Dirac spinor is

(+)
D(u,u)=[g D(‘u_,’v()u,v())] (19)
where
D (up) =exp[ —i(uN{*’ +uvN§™)]
1 u—iv
z[ 0 1 ]
(20)

D (up) =exp[ —i(uN{’ +uN{"")]

_[1o]
N —u—n 1)

Since the D matrix in the case of photons performs a gauge
transformation, it is appropriate to call the above matrices
gauge transformation matrices applicable to Dirac parti-
cles.

It is important to note that the gauge transformation
property of the upper component is different from that of
the lower component. Let us now separate them using the
projection operators (1 + ¥5)/2. The resulting Weyl spin-
ors are gauge invariant in the sense that

DP(upv)a=a, DTN up)B=24. (21)

On the other hand, the Weyl spinors are gauge dependent
in the sense that

DFPup)B=B+ (u—iv)a,
D Nup)a=c — (u+v)B. (22)

This result is summarized Table I. The gauge-invariant
spinors of Eq. (16) appear as polarized neutrinos in the
real world.®> However, where do the above gauge-depen-
dent spinors stand in the physics of spin-1/2 particles?
Why do we not talk about the gauge-dependent spinors?

In order to address these questions, let us go back to the
Dirac spinors in Eq. (17). As the momentum/mass be-
comes large, exp (£ /2) becomes largeand exp( — § /2) be-
comes small. From Egs. (21) and (22), we can see that the
large components are gauge invariant while the small com-
ponents are gauge dependent. Therefore, in general, spin-
1/2 particles with nonzero mass are not invariant under
gauge transformations.

In the large-momentum/zero-mass limit, it is possible to

Table L. The effect of the D transformation on the Weyl spinors. D+ and
D7 are applicable to undotted and dotted spinors, respectively. a and B
are invariant under the D transformation, while & and S are not.

a B

D (up)B =B+ (u—iv)a
Dl )ﬂ B

D(+i D(+)(u,v)a=a v
DY DTN upya=é — (u+iv)B
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let’

exp(-‘g)z [(pO_pz)/(pO_'_pz)]l/z_)O’ (23)

and the Dirac equation becomes a pair of the Weyl equa-
tions with 5 = 4 1 whose solutions are

U(p)[O] » V(p)= [/3] . (24)

These Dirac spinors become invariant under the D trans-
formation, representing polarized neutrinos.? Indeed, the
gauge-dependent components disappear in the large-mo-
mentum/zero-mass limit. This is precisely why we do not
talk about gauge transformations on massless neutrinos.

On the other hand, neutrinos with small mass are of cur-
rent interest.® Even if they are not found experimentally in
the near future, the concept of small-mass neutrinos will
play an important role for many years to come.’ The small
components in the Dirac spinor can no longer be ignored.
In Sec. IV, we shall use them to construct gauge-dependent
four-potentials.

IV. FOUR-VECTORS AND SL (2,c) SPINORS

As is discussed in the literature,>!° it is possible to con-

struct four-vectors from SL (2,¢) spinors for massive parti-
cles. We use the same procedure to secure gauge depen-
dence of four-potentials from the Weyl spinors discussed in
Sec. IT1. Let us consider the following spinor combinations:

aa, (af +Ba)N2, BB. (25)
Then, since the rotation operator is the same for both dot-
ted and undotted spinors as is given in Eq. (15), the above
spinor combinations should behave like Y{"(6,4), Y¢
(6,4), and Y [ '(6,4), respectively, under rotation. The
spinor combination

(aB—Ba)/\2, (26)
remains invariant, and therefore behaves like ¢ under rota-
tion. This takes care of rotations.

As for boosts, we can rewrite the above combinations as

—aa = (1,i,0,0), ﬂﬂ = (1’ - i’o’o) ’

aﬂ=(0:091,1)y Ba=(0’091’_1)’ (27)
where, as in Eq. (5), we are using the four-vector conven-
tion:

x,u = (x,y,ZJ) (28)
We drop for simplicity the 2 factor for normalization in
Eq. (27). Under the boost along the z direction, a¢ and BB
remain invariant, and }(af8 + Ba) behave like z and ¢, re-
spectively. As for the x direction, the boost operator is

B.(m)=B{" (B (), (29)

where B *’ (%) and B{~’ (%) are the boost operators
applicable to the undotted and dotted spinors, respectively.
They take the form

cosh(n/2) +sinh(n/2)
+ sinh(%/2) cosh(#%/2)
respectively. The effect of this boost on ac is

B{®) () = (30)

B, (5)( —ad@) = — ad cosh?(1/2) + BB sinh?(7/2)
+4 (aB—Ba)sinh
= (cosh 5,4, 0, sinh7). (31
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This result is identical to that of boosting (x + iy). We can
carry out similar calculations for B, (7 )B3,and B, (7 YaB,
and B, (n)Ba. As for the boost along the y direction, we
know how to rotate this system of spinors around the z axis
by 90°.

We have shown above how to construct four-vectors
from the Weyl spinors. We are then led to the question of
whether the D(u,v) transformation applicable to the spin-
ors leads to a gauge transformation on the four-potential.
For D(u,v) to be consistent with Eq. (27), we should
choose

D(u) =D (uw)D P (up), (32)

where D) and D~ are applicable to the first and second
spinors of Eq. (27), respectively. Then

D(up)( —ad) = —aa + (u +iv)af,
D(u,)BB = BB + (u — iv)ap,
D(u,v)aB=a[3.

The spinor combination Sa given in Eq. (27) does not
satisfy the Lorentz condition, and should therefore be ex-
cluded. The first two equations of the above expression
correspond to the gauge transformations on the photon
polarization vectors given in Eq. (13). The third equation
corresponds to the effect of the D transformation on the
four-momentum, confirming the fact that D(u,v) is an ele-
ment of the little group.! Indeed, the D matrices given Eq.
(20) are the smallest gauge transformation matrices from
which the gauge transformation on the four-potential is
derivable.

(33)

V. CONCLUDING REMARKS

The Dirac equation in the Weyl representation is men-
tioned frequently in textbooks. The difference between the
standard Dirac representation and the Weyl representation
is that ¢, and ¥, are interchanged. These two representa-
tions are unitarily equivalent. We have shown in this paper
that the Weyl representation is very convenient when we
discuss Lorentz-transformation properties of spinors, be-
cause the transformation matrices are of the block diagonal
form.

Using the Dirac equation in the Weyl representation, we
studied the E(2)-like little group for massless particles

with spin 1/2. It was noted that the translationlike trans-
formations of the E(2) group correspond to gauge trans-
formations. It was noted also that there are gauge-depen-
dent spinors in addition to those which are gauge invariant.
It was shown that the massless two-component Dirac spin-
ors contain only gauge-invariant spinors.

It was shown also that, if neutrinos have a small mass,
the Dirac spinor should contain four components includ-
ing those which are not invariant under gauge transforma-
tions. Since a four-vector can be constructed as a direct
product of two spinors, it is possible to express the usual
gauge transformation on the four-potential in terms of the
gauge transformation applicable to the gauge-dependent
spinors.
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A modulation transfer function analyzer based on a microcomputer

and dynamic ram chip camera
Donald C. O’Shea and Alan C. Rakes®

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
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The modulation transfer function of a lens is measured by adapting a commercially available
microcomputer-based detector for use in an optics laboratory. The technique and
instrumentation for such measurements are described.

As the field of optics grows and its techniques become
more sophisticated, optics education must keep pace with
this growth. One of the most important places for training a
student to be an effective member in the optics community
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is the undergraduate optics laboratory. Any current tech-
nique that can be introduced into the laboratory that ap-
proximates current practice will benefit students and make
their studies more relevant. One standard means of specify-
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