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Abstract

It is shown that both covariant harmonic oscillator formalism and
quantum field theory are based on common physical principles which
include Poincare covariance, Heisenberg’s space-momentum uncertainty
relation, and Dirac’s “Cnumber” time-energy uncertainty relation. It
is shown in particular that the oscillator wave functions are derivable
from the physical principles which are used in the derivation of the
Klein-Nishina formula.

Published in Foundations of Physics, 11, 895 (1981).

1Systems and Applied Sciences Corporation, Riverdale, Maryland
2Center for Theoretical Physics, Department of Physics and Astronomy, University of

Maryland, College Park, Maryland
3Department of Radiology, New York University, New York, New York

1



1 Introduction

Ever since the development of quantum mechanics, its reconciliation with
the principle of relativity has been the most important problem in theoret-
ical physics. The earliest attempt to combine these two theories was made
by Schrodinger even before the present form of quantum mechanics was for-
mulated [1]. Since then there has been progress, but this goal has not yet
been achieved. The purpose of this paper is to point out that present-day re-
search in high-energy experimental and theoretical physics is moving toward
this goal. There are now enough experimental data and enough theoretical
models to enable us to think deeply about the possible underlying physical
principles which are consistent with both quantum mechanics and relativity.

The most important step taken in this direction is of course the covariant
form of quantum field theory. However, it has its well-known limitations.
Field theory can explain some scattering processes where all initial and final-
state particles are free particles. However, it is not yet clear whether field
theory can provide answers to bound-state problems where the concept of
localized probability plays the central role [2, 3]. Opinion is divided at the
present time. While some physicists believe that we will eventually find the
answers purely within the framework of field theory algorithms, there are
also others who believe that this goal will never be realized.

The present authors approached this problem by first constructing rela-
tivistic bound-state wave functions even though they appeared, mathemat-
ically, quite different from those expected in quantum field theory. Our
criterion was simply to construct at least one set of bound-state wave func-
tions consistent with the established principles of quantum mechanics and
relativity, which could at the same time explain basic high-energy hadronic
phenomena [4]. The second step in our approach should then be to see
whether the physical principles employed in constructing such wave func-
tions are identical to those for quantum field theory. The purpose of the
present paper is to show that the answer to this question is “Yes.”

Figure 1 summarizes what we have done in the past and what we intend
to do in the future. In the past, we restricted our attention to the physics of
confined particles using the harmonic oscillator model. This work belongs to
“Step 1” in Fig. 1. In the present paper, we are making an attempt to find
the set of physical principles which are applicable to both field theory and
oscillator formalism. We propose to start doing “Step 2.”

In Section 2, we examine the present status of quantum field theory and
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Figure 1: History of dynamical and kinematical developments. It is impor-
tant to note that mankind’s unified understanding of scattering and bound
states has been very brief. It is, therefore, not unusual to expect that sepa-
rate theoretical models be developed for scattering and for bound states. The
successes and limitations of the Feynman diagram approach are well known.
The covariant harmonic oscillator formalism belongs to Step I. In order that
both field theory and the oscillator formalism be useful for constructing a
theoretical model belonging to Step 2, they should be based on the same set
of physical principles.
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that of the oscillator formalism, and then spell out our line of attack. In Sec-
tion 3, we examine the physical principles in quantum field theory, using the
so-called “old-fashioned” field theory. Section 4 contains a discussion of the
physical principles upon which the covariant oscillator formalism is based. It
is shown that field theory and oscillator formalism, although they take quite
different mathematical forms, are based on the same set of physical princi-
ples. In Section 5, it is pointed out that both field theory and oscillator model
are needed to describe consistently covariantly relativistic extended hadrons
at the present time, in the absence of a single mathematical formalism which
can describe both the scattering and bound/confined states. In Section 6,
we discuss deeper physical implications of the comparative study presented
in this paper.

2 Formulation of the Problem

As is specified in Fig. 1, quantum field theory primarily deals with particles
whose asymptotic states are those of free particles. The field theory algorithm
allows us to describe creation and annihilation of particles which we observe
in the real world. On the other hand, field theory is not effective in describing
bound-state problems as is manifested in the present wellknown difficulty
associated with atempts to describe confined quarks within the field theory
framework [5], as well as in the well-established calculations in quantum
electrodynamics.

The wave functions in the covariant oscillator model, while being consis-
tent with the known rules of quantum mechanics and relativity, can explain
all the basic features of relativistic hadrons [4]. However, the model can only
describe the quarks which are permanently confined. From this fact alone,
it is not at all clear whether the spacetime behavior of the wave functions
describable in the oscillator model has anything to do with that of point
particles whose asymptotic states are free-particle states. In view of both
the advantages and disadvantages mentioned above, it would be ideal if we
could construct a relativistic theory which contains the advantage of field
theory applicable to scattering states and the advantage of the oscillator for-
malism applicable to bound or confined particles. Because the mathematical
algorithm of field theory is so different from that of the oscillator formal-
ism, it does not seem to be realistic at this time to attempt to construct a
single mathematical apparatus which will produce both of the advantages
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mentioned above. However, we can still ask the following two questions.

1. Can we construct a field theory of extended hadrons where the standard
Feynman rules are applicable to hadrons with free-particle asymptotic
states, while the oscillator-like formalism is used to describe the internal
motion of confined quarks? There are already several approaches based
on this idea [6, 7].

2. Although quantum field theory and the covariant oscillator formalism
take different mathematical forms, it is possible that they are based
on the same physical principles. If so, what are the physical princi-
ples underneath these two different-looking theories? The purpose of
the present paper is to discuss the second question. For this purpose,
we note first that both formalisms are covariant under Poincaré trans-
formation. While the Feynman propagator and the wave function are
the primary mathematical devices in field theory and the oscillator for-
malism, respectively, both quantities contain time-energy uncertainty
in addition to Heisenberg’s space-momentum uncertainty relation. We
note further that both formalisms start with relativistic wave equations
with negative energy spectra, and that both have their own respective
ways of taking care of them. We shall discuss these points more sys-
tematically in the following sections.

3 Physical Principles in Quantum Field The-

ory

Field theory starts with the physical principles applicable to nonrelativistic
quantum mechanics including of course Heisenberg’s space-momentum un-
certainty relation. The question is then what additional physical principles
are used in quantum field theory.

First of all, field theory equations are relativistic. Thus, the Lorentz
covariance is one of the basic additional ingredients, as is well known.

Next, let us look into the question of causality. The present form of field
theory starts with the causal commutator

[φ(x1), φ(x2)] = i∆(x1 − x2), (1)

where φ(x) is the field operator satisfying the Klein-Gordon equation. This
commutation relation corresponds to Heisenberg’s uncertainty relation when
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x10 = x20. The causal Green’s function ∆ (x1 − x2) vanishes outside the light
cone:

∆ (x1 − x2) = 0, for (x1 − x2)
2 < 0, (2)

This means that the signal connecting two space-time points cannot propa-
gate faster than light. In carrying out field theory calculations, however, we
use more often the Feynman propagation function whose mathematical form
is

∆ (x−x2) =
(

1

2π

)4 ∫
d4k

exp (−ik · x)]

k2 −m2 + iε
. (3)

This function does not vanish outside the light cone. The reason for this is
that the particle is no longer on the mass shell, and this unobservable particle
does not respect causality. We are then naturally led to ask what additional
physical laws are needed to explain this causality violation.

The derivation of the Feynman propagation function requires time and
normal orderings which require “trading” ground-state energies with vacuum.
In order to see the basic physics involved in this procedure more clearly, we
now resort to the so-called “old-fashioned” field theory. Since all the basic
physical concepts in the present covariant form of quantum field theory are
contained in the “old-fashioned” field theory, it is not uncommon to refer
to this earlier formalism in order to find explanations for what we do in the
modern version of field theory [8].

For the purpose of finding the physical principles which led to the mi-
croscropic violation of causality and to the concept of “virtual” off-massshell
particles, let us look at Chapter IV, Section 14 of Heitler’s book [8]. The “old-
fashioned” derivation of the Klein-Nishina formula is based on secondorder
time-dependent pertubation theory involving two integrations over the time
variable. The second time integration is done “correctly” from the interval
0 to t. However, the first time integration contains a causality violation for
the period allowed by the “C-number” time–energy uncertainty relation. 4

This introduction of time–energy uncertainty leads to the concept of virtual
particles.

In the modern version of quantum field theory, the time-energy uncer-
tainty manifests itself in the off-mass-shell particles contained in Feynman

4The concept of the “C-number” time-energy uncertainty relation was introduced first
by Dirac [10]. The word “C-number” means that there are no excitations (no motions in
the classical sense) along the time-like direction [4, 11].
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propagators. Although there is no precise definition of bound-state con-
ditions in field theory [2, 3, 4], it is by now a widely accepted view that
particles in bound states, which are affected by interactions, are not on their
mass shells. In the following section, we shall see how this appears in the
covariant oscillator model which deals only with quarks permanently bound
inside a relativistic hadron.

4 Physical Principles in the Covariant Oscil-

lator Formalism

The purpose of this section is to demonstrate that the covariant oscillator
formalism employs the same physical principles as in quantum field theory,
namely the Poincare covariance and the C-number time–energy uncertainty,
in addition to Heisenberg’s space-momentum uncertainty relation.

First, as we pointed out repeatedly in earlier papers, the concept of “C-
number” time-energy uncertainty relation is one of the basic additional in-
gredients in the covariant oscillator formalism. For a hadron at rest consist-
ing of two quarks bound together by a harmonic oscillator potential of unit
strength, the wave function takes the form

ψ(z, t) = Hn(z) exp

[
−

(
z2 + +t2

2

)]
, (4)

where z and t represent the longitudinal and time-like coordinate separations
between the quarks. As was done frequently in earlier papers, we ignore here
the transverse coordinates. The existence of the ground-state wave function
in the time separation vatiable t (without excitations) represents Dirac’s
“Cnumber” time-energy uncertainty relation.

Second, the oscillator formalism, as in the case of quantum field theory,
violates microscopic causality. The wave function given in Eq.(4) does not
vanish for the space-like separation:

t2 < z2. (5)

This causality violation is not unlike that needed in the “old-fashioned”
derivation of the Klein-Nishina formula in second-order time-dependent per-
turbation theory [9].

7



Finally, as in the case of off-mass-shell particles in field theory, the bound-
state quarks have unobservable masses. In order to see this point, let us go
back to the covariant formalism of the oscillator model. Let x, and X2 de-
note the space-time coordinates for the first and second bound-state quarks,
respectively. The usual procedure in handling this problem is to define the
hadronic coordinate X:

X =
x1 + x2

2
, (6)

and the relative quark separation coordinate x:

x =
x1 − x2

2
√

2
. (7)

Then the Poincaré transformation is generated by the following generators:

Pµ = i
∂

∂Xµ
, Mµν = L∗µν + L∗µν , (8)

where

L∗µν = i

(
Xµ

∂

∂Xν
−Xν

∂

∂Xµ

)
,

Lµν = i

(
xµ

∂

∂xν
− xν

∂

∂xµ

)
.

The invariant Casimir operators in this case are

P 2 = P µPµ, and W 2 = WmuWmu, (9)

with

Wµ =
(

1

2

)
εµναβP νW αβ.

It has been shown that the essence of the oscillator formalism is to
construct representations of the Poincare group which are diagonal in the
Casimir operator. We noted further that such representations can be con-
structed from the wave functions of the form

φ(X, x) = ψ(x, P ) exp (±P ·X), (10)

where the “internal” wave function If/(x, P) satisfies the harmonic oscillator
differential equation

H(x)ψ(x, P ) = λψ(x, P ), (11)
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with

H(x) =
1

2




(
∂

∂xµ

)2

− x2
µ




subject to the subsidiary condition

P µ

(
xµ +

∂

∂xµ

)
ψ(x, P ) = 0. (12)

Pµ is the four-momentum of the hadron. The (mass)2 of the hadron P 2 is
determined by the eigenvalues of the above oscillator differential equation:

P 2 = H(x) + m2
0. (13)

In order that any quantity be a Poincaré-invariant eigenvalue, it has to
commute with the Casimir operators p2 and W2 It, therefore, has to commute
with the above form of P’, In order to see whether the mass of the bound-state
quark is a Poincaré-invariant constant, let us write down the expressions for
the quark four-momenta:

P1µ =
i

2

[
∂

∂Xµ
+

(
1√
2

)
∂

∂xµ

]
,

P2µ =
i

2

[
∂

∂Xµ
−

(
1√
2

)
∂

∂xµ

]
, (14)

We can now calculate the p/ and p/, and take the commutators

[P 2
1 , H(x)] = − 1√

2

[
xµ

∂

∂xµ

+
1√
2

(
∂

∂xµ

− 1

)]
,

[P 2
2 , H(x)] =

1√
2

[
xµ

∂

∂xµ

+
1√
2

(
∂

∂xµ

− 1

)]
. (15)

Since the above commutators do not vanish, the constituent masses cannot
be regarded as Poincaré-invariant eigenvalues. In the language of quantum
field theory, bound-state quarks are not on their mass shells, and this is a
consequence of the time-energy uncertainty relation covariantly added to the
existing rules of nonrelativistic quantum mechanics. If we use the language of
the covariant oscillator formalism, the quark mass cannot be simultaneously
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diagonalized with the hadronic mass which is one of the Poincaré-invariant
eigenvalues. This unobservable quark mass is indeed due to Dirac’s “C-
number” time-energy uncertainty relation which, together with the existing
principles of nonrelativistic quantum mechanics, forms the physical basis for
covariant harmonic oscillator formalism [4].

5 Further Field Theoretic Concepts in the

Covariant Oscillator Model

Unlike the mass of the confined quark, the hadronic (mass)2 corresponds to
the eigenvalue of one of the Casimir operators of the Poincaré group [12].
The purpose of this section is to discuss the role of this Poincaré-invariant
quantity in giving a field theoretic interpretation to the hadronic coordinate.

The covariant oscillator wave function of Eq.(10) is a solution of the
following Poincaré-invariant differential equation [3].



2




(
1

∂x1µ

)2

+

(
1

∂x2µ

)2

− 1

16
(x1 − x2)

2 + m2
0



 φ (x1, x2) = 0. (16)

If we use the variables X and x given in Eqs.(6) and (7), then the above equa-
tion is separable, and the solution takes the form given in Eq.(10). ψ(x, P )
satisfies the harmonic oscillator differential equation of Eq.(11), and the ex-
ponential factor exp(iP ·X) satisfies the Klein-Gordon equation

[
(1/∂Xµ)2 + m2

0 + λ
]
exp (±iP ·X) = 0. (17)

It is important to note that the above free-hadron equation is also an
integral part of the oscillator formalism. Both Eqs.(11) and (17) are rela-
tivistic equations, and give negative (mass)2 and negative energy spectra,
respectively. In the oscillator case, we have eliminated negative eigenvalues
by imposing the subsidiary condition given in Eq.(12). As for negative energy
spectra coming from the Klein-Gordon equation, we “take care” of them by
giving the usual field theoretic interpretation. This is possible because the
eigenvalue (mass)2 of the oscillator equation is positive due to the subsidiary
condition, and, therefore, the hadronic energy is always real.

We are, thus, led to the idea of giving an extended-particle interpretation
to φ(X, x) of Eq.(10) by second-quantizing only the wave function associated
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with the hadronic coordinate X, and by leaving the relative coordinate x as
a measure of the space-time distribution for the constituent quarks inside the
extended hadron. It is interesting to note that there are already a number
of papers in the literature on this subject [7].

6 Concluding Remarks

In developing new physical theories, there are, in general, two different ap-
proaches. According to Eddington, we have to understand all the physical
principles before writing down the first formula. According to Dirac, it is
more profitable to construct mathematical devices which can describe the
real world, and then add physical interpretations to this formalism [13]. Both
special relativity and quantum mechanics were developed in Dirac’s way. In
quantum field theory also, the mathematical development appears to precede
the process of giving physical interpretations.

The Klein-Nishina formula and later calculations in quantum electrody-
namics indeed represent the striking numerical successes of field theory. Field
theory has been successful also in constructing a unified picture of weak and
electromagnetic interactions [15]. It is regarded as the basic instrument for
understanding the forces between the quarks, and there are numerous calcu-
lations based on this assumption [16]. On the conceptual front, the notion
of virtual particles with unphysical masses is a product of the covariant for-
mulation of field theory 5. However, these successes do not remove all the
unresolved conceptual difficulties. As was discussed extensively in the liter-
ature [2, 3, 5], the most serious difficulty in the present form of field theory
is our inability to construct a localized space-time probability distribution
which is so essential in interpreting relativistic bound states.

The covariant harmonic oscillator formalism was also developed first as
a simple mathematical device which can explain measurable numbers in the
relativistic quark and parton models [1, 14], and the task of attaching physi-
cal interpretations came later [4, 17]. This task of interpreting the oscillator
formalism will not be complete until its relation to the present form of quan-
tum field theory is clarified. We have shown in this paper that the covariant
oscillators, while using the same physical principles as those in quantum field
theory, make up the deficiency of field theory in explaining relativistic bound
states.

5We would like to thank A. Shimony for a very helpful discussion on this point.
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