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1 1. INTRODUCTION

Two�by�two matrices with real elements have three
independent parameters if their determinants are con�
strained to be one. They constitute building blocks for
many branches of physics, including beam�transfer
matrices in optics [1] and Wigner’s little groups for
internal space�time symmetry of particles [2–4].

For the two�by�two matrix, we are accustomed to
solve a quadratic equation to get the eigenvalues and
construct a rotation matrix to get the eigenvalues. This
procedure does not always lead to correct answers,
because squeeze matrices should also be considered [5].
We are quite familiar with rotations, but the concept of
squeeze started getting our attention only after squeezed
states of light appeared in the physics literature [6].

In particle physics, Lorentz boosts are squeeze
transformations, and this aspect was addressed by Paul
A.M. Dirac in his 1949 and 1963 papers [7, 8]. It is
possible to apply this concept to high�speed hadrons
which are bound state of the quarks which are thought
to be more fundamental particles [3]. Thus, high�
energy hadronic physics and modern optics share the
same mathematical base, and it is profitable to trade
physics between these two branches of physics using
the common mathematics language.

In this report, we note first that optical beam trans�
fer matrix, often called the ABCD matrix, has three
independent parameters and its determinant is one.
We study then how this matrix can be decomposed into

1 The article is published in the original. The essentials of the
paper were reported at the 13th International Conference on
Quantum Optics and Quantum Information (May 28–June 1,
2010, Kyiv, Ukraine).

one�parameter matrices. The Bargmann decomposi�
tion and Iwasawa decomposition are already familiar
to us, and are used often in the literature [9, 10].

We show that, in addition, there is a decomposition
based on the concept of conjugate classes [11]. There
are three conjugate classes. The first class consists of
those matrices with their traces smaller than two, the
second class consists of those with the traces equal to
two, and the third consisting of those matrices with
their traces greater than two. It is remarkable that this
purely mathematical theorem corresponds to Wigner’s
construction of his little groups, which dictate the
internal space�time symmetries of massive, massless,
and imaginary�mass particles respectively [2].

In Section 2, we introduce the Wigner decomposi�
tion based on the conjugate classes of the two�by�two
matrices. It is then shown that the Wigner decomposi�
tion can be translated into the Bargmann and Iwasawa
decompositions. In Section 3, we discuss how we can
formulate those three decompositions while studying
optical multilayer systems. It is shown that the Wigner
decomposition is needed for repeated application of the
ABCD matrix for periodic system. In Section 4, we study
how those three decompositions can serve useful pur�
poses in studying Wigner’s little groups and thus the
internal space�time symmetries of elementary particles.

2. DECOMPOSITIONS OF THE ABCD MATRIX

The two�by�two matrix with real elements and unit
determinant can be written as
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with AD – BC = 1 it has three independent elements.
This matrix is commonly used as the beam transfer
matrices in optics [1]. The complete set of these matri�
ces is like the group SU(1, 1) which serves as the fun�
damental language for squeezed states of light [6, 12].

All the matrices in this set can be divided into three
classes depending on their traces [11]. Without chang�
ing its trace, we can bring every matrix to an equidiag�
onal form by a rotation [15].

We shall use the notation [ABCA] for the equidiag�
onal ABCD matrix. This equidiagonal matrix now has
two independent parameters. If its trace is smaller than
two, the matrix can be written as

(2)

If the trace is greater than two, it can take the form

(3)

If the trace is equal to two, it can be brought to the
form

(4)

We choose to use the notation  collectively for the
following three matrices.

(5)

The parameter  could be , or . If we define the
matrix  as

(6)

then every equidiagonal ABCA matrix can be written as

(7)

Indeed, the matrix  constitutes a set of three
matrices which play an important role in the theory of
two�by�two matrices.

It is important to note that these three matrices
constitute the basic elements for Wigner’s little group
which dictates the internal space�time symmetries of
elementary particles [2, 3]. We thus choose to call 
the “Wigner matrix” [13] and call the expression of
Eq. (7) “Wigner decomposition.” The Wigner decom�
position leads to

(8)

convenient in dealing with repeated applications of the
ABCA matrix in periodic systems.
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It is known that the ABCA matrix can be written as
the product of three one�parameter matrices

(9)

This form is called the Bargmann decomposition [9,
14]. This expression can be compressed to

(10)

with two independent parameters. We shall call this
expression the “Bargmann matrix.”

If , the ABCA matrix takes the trian�
gular form given in Eq. (5). Then this special case of
the Bargmann decomposition is called the “Iwasawa”
decomposition. This form is also known to correspond
to gauge transformations of massless particles [3, 14].

We shall see in this report that both Wigner and
Bargmann decompositions play essential roles in
optics and space�time symmetries. The question then
is whether one transformation can be translated into
the other. If  is smaller than one, the off�
diagonal elements have opposite signs. The Bargmann
matrix of Eq. (10) will be translated into Eq. (2) with

(11)

If the diagonal element is greater than one, the matrix
will be translated into Eq. (3) with

(12)

These variable transformations are simple enough,
but the real issue is what happens when the diagonal
element makes a transition from less�than�one to
greater�than�one. If it becomes one, the lower left ele�
ment of the Bargmann matrix becomes zero, and the
matrix becomes triangular.

In order to study this transition, we introduce a
small number

(13)

and see what happens when it changes its sign. When
 is positive, the Bargmann matrix can be written as

(14)

If we let

, (15)
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the matrix becomes

 (16)

which can be decomposed into

 (17)

If  is negative, we should define  and  as

 (18)

and the matrix becomes

 (19)

which can be decomposed into

 (20)

It is clear now that the transition from the rotation�
like Wigner (with  as the diagonal element) to the
squeeze�like matrix (with  as the diagonal ele�
ment) is like the transitions from  to , and
from  to , as shown in Fig. 1. This is a
continuous transition, but not analytic. The second
derivative is not continuous.

3. PERIODIC SYSTEM IN OPTICS

Let us consider an optical beam going through
multiple layers consisting of two different refractive
indexes. This problem has been extensively discussed
in the literature. The two�by�two matrix formulation
of this problem is given in the Appendix.

When the beam goes through the first medium, we
can use the matrix

 (21)

For the second medium, we use  instead of .
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If the beam in the first medium hits the second
medium, it is partially transmitted and partially
reflected. According to the Appendix, the boundary
matrix takes the form

 (22)

This form is also given in Eq. (6) in connection with
the Wigner decomposition. When the beam hits the
first medium from the second medium, the boundary
matrix is .

Let us consider the cycle which starts from the half�
way in the second medium and ends at the second
medium as illustrated in Fig. 2. Then the beam transfer
matrix becomes

 (23)
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Fig. 1. Transitions from sin to sinh, and from cos to cosh. They are continuous transitions. Their first derivatives are also contin�
uous, but the second derivatives are not. Thus, they are not analytic continuations.
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Fig. 2. Optical layers. There are phase�shift matrices for
their respective layers. There is a boundary matrix for the
transition from the first to second medium, and its inverse
applies to the transition from the second to first medium.
The cycle starts from the middle of the second layer.
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The quantity inside the square bracket takes a form the
Wigner decomposition, but it is sandwiched between
two rotation matrix. Our problem is to write the entire
matrix chain as a Wigner decomposition, convenient
for the periodic system. For this purpose, we write the
Wigner decomposition in the middle as a Bargmann
decomposition

 (24)

where  and  are determined by

 (25)

We can now write [ABCA] as

 (26)

Since , the [ABCA] matrix
becomes a Bargmann decomposition of the form

 (27)

with

 (28)

After matrix multiplications, the [ABCA] matrix
can be written as

(29)

For the multilayer system, we need a repeated
application of this from. For this purpose, we have to
convert this into the Wigner decomposition:

 (30)

When  smaller than one,
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If the diagonal element is greater than one, the 
matrix is of the form
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The situation is similar if the diagonal element is one,
and the matrix is triangular. We can use this Wigner
decomposition to calculate

 (35)

It is seen that this periodic system contains the
Wigner, Bargmann, and Iwasawa decompositions in its
natural language, and it forces us to bring the [ABCA]
matrix into its Wigner decomposition for its repeated
applications in the periodic system. In Section 4 we
shall study what this Wigner decomposition means in
symmetries in particle physics.

4. SPACE�TIME SYMMETRIES

In 1939 [2], Eugene Wigner considered subgroups
of the Lorentz group whose transformations leave the
given momentum of a particle invariant. These sub�
groups are called Wigner’s little groups. While leaving
the momentum invariant, the little group transforms
internal space�time variables. For instance, if the par�
ticle is at rest, rotations do not change its momentum,
but they can change the orientations of the particle
spin. In this section, we formulate Wigner’s little group
using the technique of decompositions discussed in
Sections 2 and 3.

In Section 2, we studied the decompositions of the
[ABCD] into single�parameter matrices, using the two�
by�two matrices , , and . It is known that
these two�by�two matrices correspond to the four�by�
four Lorentz�transformation matrices applicable to
the Minkowski space�time coordinate variables (z, y,
z, t) [3]. The two�by�two matrix  can also be writ�
ten as the four�by�four matrix for the Lorentz boost
along the z direction:
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which performs a rotation around the y axis. The 
corresponds to

 (38)

which performs a Lorentz boost along the x direction.

It is possible now to translate the contents of Sec�
tions 2 and 3 into the language of four�by�four Lorentz
transformation matrices applicable to the Minkowski
space of (z, y, z, t). In this convention, the momen�

tum�energy four�vector is . If the particle
moves along the z direction, this four�vector becomes

 (39)

in the unit system where c = 1, where m is the particle
mass. We can obtain this four�vector by boosting a par�
ticle at rest with the four�momentum
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with
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Now the four�momentum of Eq. (40) is invariant
under the rotation matrix

 (42)

Thus, the matrix

 (43)

leaves the four�momentum of Eq. (39) invariant. After
making this rotation, we can bring the momentum to
its initial state by boosting it by . The net effect is
the momentum�preserving transformation. This set of
transformations is illustrated in Fig. 3, and corre�
sponds to the Wigner decomposition.

If the particle has a space�like momentum, we can
start with the four�momentum
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where E is smaller than p, which can be brought to the
Lorentz frame where the four�vector becomes

 (45)

The boost matrix takes form of Eq. (36), with
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Fig. 3. Illustrations of the Wigner decomposition (left) and the Bargmann decomposition. In both cases, the net transformation
leaves the four�momentum of the particle unchanged.
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along the x direction.
Let us finally consider a massless particle with it

four�momentum

 (48)

It is invariant under the rotation around the z axis. In
addition, it is invariant under the transformation

(49)

This four�by�four matrix has a stormy history [3, 4],
but the bottom line is that it corresponds to the trian�
gular matrix of Eq. (5), and the variable  performs
gauge transformations.

We can obtain this massless case from the massive
or imaginary case using the limiting procedure spelled
out in Section 2. This procedure is widely known as
the group contraction in the literature.

As for the Bargmann decomposition, let us go to
Fig. 3. The particle moving along the z direction can
be rotated first by . It can then be boosted along
the negative x axis, and then rotated again by  to
the original position. Indeed, this is a momentum�
preserving transformation. The net transformation
can be written as

 (50)

This Bargmann decomposition is applicable to all
three cases of the momentum [14].

In addition, Wigner’s little group allows rotations
around the momentum which does not change it. This
extra degree of freedom does not affect the description
of the symmetries given in this section [16].

Concluding Remarks

In this report, we started with a two�by�two matrix
with real elements, but we were led to consider three
classes of equidiagonal matrices, with their traces less
than two, equal to two, and greater than two. From the
mathematical point of view, this process is the con�
struction of group representations according to conju�
gate classes.

These conjugate classes correspond to Wigner’s lit�
tle groups for the internal space�time symmetries for
massive, massless, and imaginary�mass particles in the
Lorentz�covariant world. Indeed, this aspect is a very
“unreasonable agreement” between mathematics and
physics.

It was noted that these equidiagonal matrices as
products of three one�parameter matrices, resulting in
the Wigner, Bargmann, and Iwasawa decompositions.
It is noted further that the optical periodic systems,
such as multilayer optics, can perform these decompo�
sitions. Thus, the optical periodic system speaks the
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2 2

2 2

1 0 2 2

0 1 0 0
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2 0 1 2 2
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( ) ( 2 ) ( )R S Rθ − λ θ .

language of the fundamental symmetries for elemen�
tary particles in Einstein’s Lorentz�covariant world.

APPENDIX

The N�layer optics starts with the boundary matrix
of the form [10, 17]

 (51)

which, as illustrated in Fig. 2, describes the transition
from medium 2 to medium 1, taking into account both
the transmission and reflection of the beam. As the
beam goes through the medium 1, the beam undergoes
the phase shift represented by the matrix

 (52)

When the wave hits the surface of the second medium,
the corresponding matrix is
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which is the inverse of the matrix given in Eq. (51).
Within the second medium, we write the phase�shift
matrix as

 (54)

Then, when the wave goes through one cycle starting
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transfer matrix becomes
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This arrangement of the matrices is illustrated in
Fig. 2.
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bers, but we are interested in carrying out calculations
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We can then consider the conjugate transform of
the  matrix

 (58)

with

 (59)

The conjugate transformation of Eq. (58) changes the
boundary matrix  of Eq. (51) to a squeeze matrix

 (60)

and the phase�shift matrices  of Eq. (52) and
Eq. (54) to rotation matrices

 (61)

with i = 1, 2.
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