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It is pointe:! out that the covariant harmonic oscillator formalism combines covariantly 

·He;senberg's uncertainty relation and the minimal time-energy uncertainty which Wigner 

suggeste:i in 1972 in order to explain the well-known relation between the life time and the 

energy width of resonance states. It is then shown that this combined uncertainty relation 

leads to the peculiarities observed in Feynman's parton phenomenon. 

I . INTRODUCTION 

The present f·)rm of quantum mechanics 

·which was formulated fifty years ago is 

oased on Heisenberg• s uncertainty principle 

.and is most conveniently represented by 

Schrodinger' s superposable wave functions. 

While nonrelativistic quantum mechanics 

continued to serve useful purposes in atomic 

and nuclear physics, two most important 

questions were left unanswered. The first 

question was and still is whether we should 
be satisfied by the statistical interpretation 
of quantum mechanics. CIJ The second ques­
tion is whether the probabilistic interpreta­

tion which is inherent in the present form 
of quantum mechanics can accommodate 

special relativity. 

While the first quPstion is still important 

and interesting, the present author is not 
able to add anything new to the existing 

1iterature. CIJ This naturaJ]y leads us to the 

second question. If we settle with the pro­

babilistic interpretation, how can we then 

1 

make quantum mechanics covariant? 

There have been many concentrated efforts 
to answer this second question. One \·e ry 

important step made toward this direction 

was of course the covariant perturbation 

theory developed by Feynman, Schwinger, 

and Tomonaga which achieved some spec­

tacular successes in quantum electrodyna­

mics. r2l However, the present form of qu­
antum field theory is not concerned ·with 

the question of constructing local ized pro­
bability distribution which is so crucial in 

interpreting the uncertainty relation . c3J 

In constructing a covariant localized pro­
bability distribution, the unavoidable ques­

tion is whether there is a time-energy uncer­

tainty relation which will be linearly com­

bined with the longitudinal uncertainty 
when the entire system undergoes a Lorentz 
transformation. In this connection, we note 

the word "minimal time-energy uncertainty 

relation" which Wigner used to describe 

the well-known uncertainty relation between 

the life time and the energy width of reso­

nance states while being consistent with the 

' . 
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absence of time-like excitations in nature. C4J 

The purpose of the present paper is to 
show that Feynman' s parton phenomenon cs J 

is derivable from this form of time-energy 

uncertainty relation. In Sec. II, it is pointed 

out that the covariant harmonic oscillator is 

the natural language to represent the mini­

mal time-energy uncertainty relation. In Sec. 

III , we give a space-time picture of had­

ronic Lorentz deformation. In Sec. IV, we 
use a diagramatic language to show that 

Feynman's parton phenomenon is a manifes­

tation of the minimal time-energy uncerta­
inty relation. 

ll . COVARIANT HARMONIC OSCIL­

LATORS AND THE MINIMAL 

TIME-ENERGY UNCERTAINTY 

RELATION 

Because of its mathematical simplicity, 

the harmonic oscillator has been very useful 

in interpreting Heisenberg's original form 

of the uncertainity principle. It is therefore 

not unnatural to expect that a Gaussian form 

of the harmonic-oscillator ground state would 

again play an important role in implemen­

ting the concept of the minimal time-energy 
uncertainty relation. 

For this purpose, we consider a hadron 
consisting of two quarks bound together by 
a harmonic oscillator force of the unit stre­

ngth, and' consider the following Lorentz-
invariant differential equation. csJ 

1 [ () 2 J Z oX/ -X/ 1/J (X) =A.f/J (X) (1) 
.. 

where Xp denotes the space-time separation 
of the two quarks. The form of Eq. (1) has 

been extensively discussed in the literature. 
c7, s, 9• 10l It has also been noted that the 

above differential equation can be separated 

in the following coordinate variables. C7J 

x'=x, y'=y 
z' = (z-f3t ) I (1-{'2) l t 2 

t'= (t-pz ) / (1-p2) 112 

(2) 

where f' is the velocity paprameter of the­
hadron moving in the z direction. If we­

separate Eq. (1 ) in the above coordinate 

variables, we end up with four one-dimen­

sional differential equations including the· 
oscillator equation in the t' variable. Thi_s t' 

equation represents the existence of the time- ­
energy uncertainty relation in the hadronic 

rest frame. If we impose the subsidiary· 
condition 

p~' ( Xp + o~~' }v,B (X) =0 (3) 

where p~' is the four momentum of the ha­

dron, then the solution in the t' variable is 

always in the ground state. This conditi<;>n 

indeed makes the above-mentioned time­
energy uncertainty minimal. c4J 

The solutions of Eq. (1) satisfying the· 
subsidiary condition of Eq. (3) are indeed 

compatible with the existing form of quan-­

tum mechanics and with the minimal time-· 
energy uncertainty relation in the hadronic· 

rest frame. 

If. SPACE-TIME PICTURE OF HA­

DRONIC DEFORMATION 

Because the harmonic oscillator is separ­

able, the transverse wave-functions do not­
play any essential roles in Lorentz transform-­

ations. We shall therefore ignore these tran­

sverse wave functions in the following discu­

ssion. Since the localization property of the 

harmonic oscillator wave function is dictated 

by its Gaussian factor, we shall restrict our 

discussion to the deformation property of · 

the ground-state wave function. 
If the hadron is at rest, the ground-state­

wave function takes the form 
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, 1 } t/Jo(X) =exp --(z2+t' 2) 
l 2 

' (4) 

lf the hadron moves with velocity {3. then 

t/Jp (x ) =exp [- ~ (z'2+t' 2) j (5) 

This expression represents that quantum 

mechanics remains unchanged if the observer 

moves with the hadron. If the observer 

·chooses to stay in the original Lorentz 

irame, we have to express Eq. (5) in terms 

()f z and t variables. After a simple algebra, 

Eq. (5) becomes 

ifJp(x) =exp[- ~ [ ~ +~ ( ~+; ) 2 

+ ~~~ ( ~-; Y]J (6) 

]f {3 =0, this expression becomes Eq. (4) . 

Fig. 1 illustrates the space-time localiza­

tion properties of the above hadronic wave 
functions. If {3 =0. the wave function is 

localized within the circular region: 

(x 2 + t 2
) < 2 

H p~O. then the wave function is localized 
within the elliptic region defined by 

(x 1 2+ t ' 2) < 2. (8) 

This condition can of course be rewritten as 

(9) 

This elliptic region is also illustrated in 

Fig. l. In Fig. 1. the lightcone axes serve 

as the major and minor axes for the ellipse. 

The area of ellipse is the same as that of 
the circle and remains invariant as {3 beco­
mes large. This corresponds to the proba­

bil ity conservation which we write as 

J iifJ (x) /2d4x = ) i¢(x) /2d4x (10) 

If {3--+ 1. the wave function becomes concen­

trated along one of the light-cone axes. 

This is another way to understand the con­

<:entration of the interaction region along 
the light-cone axis which has been extensi­
vely discussed in the literature. lll, 12J 

{3= 0 

Fig. 1. Space-time picture ol: the Lorentz­
deformed hadronic wave funct ion in 
the harmonic oscillator quark mcdel. 
As the hadron moves fast, th e wave 
function becomes concentrated and 
elongated along one of th e li ght- cone 
a xes. 

n'. PARTON PICTURE AS A MAKI­

FESTATION OF THE MINIMAL 

TIME- ENERGY UNCERTAINTY 

RELATION 

If we choose to learn lessons from history, 
space- time diagrams can sometimes play 

decisive roles in understanding the phys ics . 

The Feynman diagram is of cou rse the 

prime example. In Sec. III, we used a 
pictorial language to study Lorentz-defor­

med hadrons in the harmonic-oscillator 

quark model. In this section, we add the 

hadronic deformation in the momentum 

space and solve the mystery of Feynman·s 

parton phenomenon. 

For this purpose, let us write the momen­

tum wave function by taking the Fourier 

transformation of Eq. (5) . or Eq. (6) . The 

momentum wave function then becomes 

cftp (q) =exp {-.l[ 1-{3 ( q,~qo )2 
2 1+13 v 2 

+ 1 + {3 ( q,-q. )2]} (11) 
1-{3 v 2 

where q represents the relative four mo-
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mentum between the two bound-state qu­

arks. This form of momentum wave func­

tion is sketched in Fig. 2 along with the 
space-time wave function of Eq. (6) . 

As p-> 1. both the space-time and momen­
tum wave functions become concentrated 
and elongated along their respective light­
cone axes. If we project these light-cone be­
haviors into the longitudinal axes, the mo 
mentum distribution becomes wider as the 
width of the spatial wave-function becomes 

larger. This unexpected peculiar behavior 
is called the parton phenomenon cs, 13l in 

high-energy physics. 

The above mentioned behavior suggests 

that the uncertainty becomes larger for mo­

ving hadrons : 

> >_t'l ( l __L.B) 
<t:oz <Lop, -2\ 1-,8 (12) 

This forces us to question whether Planck's 

Fig. 2. The mechanism in which the hadronic 
deformation produces the peculiarities 
of Feynman's parton picture. Both the 
spatial and momentum wave functions 
become wide spread along the longitud­
inal axis, as the hadron moves fast. 

constant is a Lorentz invariant concept. 

In order to answer this question, we 

should note first that both the space-time 

and momentum wave functions are separable 

and Gaussian in the light-cone variables. 

In Fig. 2. the major axis of the space-time 

ellipse is conjugate to the minor axis of the 

momentum-energy ellipse. For this reason, 

the uncertainties defined along the light­

cone axes remain Lorentz invariant. 0 3, 14 l 

Planck's constant is indeed a Lorentz-inva 

riant constant. 

CONCLUDING REMARKS 

In this paper, it was noted first that we· 

need a time-energy uncertainty relation in 

order to make this world covariant. It was 

noted also that this time--energy uncertainty 

has to be minimal in order to be compatible 

with nature. \Ve then used a diagramatic 

language to show that this minimal time­

energy uncertainty relation, together with 

the longitudinal uncertainty, leads to the 

peculiarities in Feynman' s parton Picture. 
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