
J . :vloscow Phys . Soc. 6 {1996 ) 45- 58 . 

Lorentz boosts as squeeze transformations 
and the part on picture t 

Y S Kimt 
Department of Physics, University of Maryland, College Park, 

Maryland 20742, U.S.A . 

Received 3 January 1996 

Abstract. It was shown by Gribov, Ioffe , Pomeranchuk in 1966 and by Ioffe in 

1969 that a space-time picture is needed for the Lorentz deformation of hadronic 

interaction region. It is shown that this deformation is a squeeze transformation . It 

is shown also that Feynman 's parton picture emerges as a consequence of Lorentz­

squeezed hadrons in the quark model. 

1. Introduction 

According to special relativity, the longitudinal length of a moving object becomes 
contracted while the transverse components remain invariant . There is t herefore a 
tendency to assume that hadrons from an accelerator look like "pancakes" wi th a 
contracted longitudinal dimension (1] . Yes , an extended hadron should have the three­
dimensional rotational symmetry when it is on the table (2]. If it moves with a speed 
close to that of light, it should look different. For static or slow hadrons , we use the 
quark model to understand what we observe in laboratories . For fast-moving hadrons , 
we use the parton picture to interpret the experimental data. In both the quark and 
parton models , quarks or partons interact directly with the external signal. In the 
quark model , we add those interaction amplitudes before calculating the cross section . 
On the other hand, in the parton model , we calculate the cross section for each parton 
before summing up the cross sections for all the partons . Does this mean that the 
Lorentz boost destroys the superposition principle? 
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In order to answer this question, let us examine t he ·'pancake effect" more care­
fully. This effort was started by Gribov , Ioffe , and Pomeranchuk in 1966 (3] . According 
to the old-fashioned picture of Lorentz pancakes, only the longitudinal component 
becomes contracted. In their 1966 paper (3], Gribov et a/ showed that combinations 
of space and time variables are needed in measuring the dimension of the interaction 
region as well as the interaction time. They showed further that the interaction time is 
proportional to the contracted component of the space-time variables which are known 
today as the light-cone variables . In his 1969 paper (4], Ioffe essentially completed t he 
Lorentz-squeeze picture of the interaction region . This squeeze pic ture was show n to 
be convenient in explaining the high-energy data by Drell and Yan [5]. This picture is 
illustrated in one of the figures in the Dreli-Yan paper . Figure 1 of the present paper 
reproduces the Lorentz squeeze property formulated by these authors. 

t 

v u 

A =4uv 
= 2(t2

- z2
) 

Figure 1. Space-time picture of the Lorentz boost . The invariant quantiy (z 2 - t 2
) can 

be written as (z +t )(z -t ). This is proportional to the product of the light-cone variables 

u:(z +t )/V2 and (z -t )/V2 . The most appropriate name for this area-preserving defor­

mation is SQUEEZE. 

For a hadron with its space-time extension , the interaction region is essentially 
the region in which the quarks are distributed. Thus, the problem is reduced to the 
study of space-time distribution of the quarks inside the hadron. This means that we 
have to learn how to boost wave functions in quantum mechanics . This problem is 
then reduced to that of constructing Lorentz-covariant wave functions. While this is 
not a trivial problem, it is possible to construct a model based within the framework of 
Wigner's little groups which dictate the internal space-time symmetries of relativistic 
particles (2] . 

If we are to construct covariant wave functions, they should possess the symmetry 
of the little ,groups. After constructing such a set of wave functions , we should be able 
to take both the low-speed and high-speed limits of the wave functions to generate the 
quark and parton models respectively. Indeed , there is in the literature a formalism 
of covariant bound-state wave functions which can be Lorentz-boosted. It is called 
the covariant harmon~c oscillator formalism ( 6, 7]. The formalism meets the following 
three basic requirements. 

(1) The formalism is consistent with the established physical principles including the 
uncertainty principle in quantum mechanics and the transformation laws of special 
relativity [6] . 
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(2) The formalism is consistent with the basic hadronic features observed in high­
energy laboratories, including hadronic mass spectra, the proton form factor , and 
the parton phenomena (6] , 

(3) The formalism constitutes a representation of the Poincare group for relativistic 
extended hadrons (8], and a representation of Wigner 's little group. 

In addition , this oscillator system provides the mathematical basis for a certain set of 
coherent photon states commonly known as the squeezed state of light (9]. Through 
this formalism , we are able to see clearly that Lorentz boosts are squeeze transforma­
tions. 

In this paper , we use this covariant oscillator formalism to see that the quark 
model and the parton models are two different manifestations of one covariant for­
malism. We shall see how the parton picture emerges from the Lorentz-squeezed 
hadronic wave function . This squeeze effect will also explain why the partons appear 
as incoherent particles , within the present framework of quantum mechanics based on 
the superposition principle. 

Since we are going to use the language of little groups in this paper , we give 
in Section (2] a historical review of Wigner 's little groups . In Section (3], we use the 
light-cone coordinate system to show that Lorentz boosts are squeeze transformations. 
Section (4] contains an outline of the covariant oscillator formalism which will exhibit 
the squeeze property of Lorentz boosts in quantum mechanics. Finally, in Section (5], 
it is shown that the covariant oscillator wave function gives a static wave function for 
the hadron at rest and the parton distribution function for the hadron moving with a 
speed very close to the speed of light . It is shown also that the time interval for the 
quark to interact with the external signal becomes contracted while the interval for 
the quark-quark interaction becomes dilated. 

2. Wigner's little groups 

From the principles of special relativity, Einstein derived the relation E = mc2 in 
1905. This formula unifies the momentum-energy relations for both massive and 
massless particles, which are E = p2 /2m and E = cp respectively. In addition to 
the energy-momentum variables, relativistic particles have internal space-time degrees 
of freedom. A massive particle at rest has three rotational degrees of freedom, and 
they appear in the real world as the spin of the particle. Massless particles have only 
one rotational degree of freedom which appears as the helicity in the real world . In 
addition, they have gauge degrees of freedom which are not shared by massive particles . 
Why are these two symmetries different from each other? Is it possible to unify the 
symmetries for both cases as Einstein did for the energy-momentum relation? This 
problem is summarized in Figure 2. 

In his 1939 paper (2], Wigner took the first step toward the resolution of this 
problem. He observed that the internal space-time symmetries of relativistic particles 
are dictated by "their respective little groups. The little group is the maximal sub­
group of the Lorentz group which leaves the four-momentum of the particle invariant. 
He showed that the little groups for massive and massless particles are isomorphic 
to 0(3) (three-dimensional rotation group) and E(2) (two-dimensional Euclidean 
group) respectively. Wigner's 1939 paper indeed gives a covariant picture massive 

., 
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Figure 2. Further implications of Einstein's E=mc 2
• Massive and massless particles 

have different energy-momentum relations. Einstein's special relativity gives one relation 

for both. Winger's little group unifies the internal space-time symmetries for massive and 

massless particles which are locally isomorphic to 0 (3) and E (2) respectively. It is a great 

challenge for us to find another unification. In this note, we present a unified picture of the 

quark and parton models which are applicable to slow and ultra-fast hadrons respectively. 

particles with spins, and connects the helicity of massless particle with the rotational 
degree of freedom in the group E(2) . This paper also gives many homework problems , 
including the following four pressing problems in particle physics. 

(1) Like the three-dimensional rotation group , E(2) is a three-parameter group . It 
contains two translational degrees of freedom in addition to the rotation . What 
physics is associated with the translational-like degrees of freedom for the case of 
the £(2)-like little group? 

(2) As is shown by Inonu and Wigner (10], the rotation group 0(3) can be contracted 
to £(2) . Does this mean that the 0(3)-like little group can bec·ome the E (2)-like 
little group in a certain limit? 

(3) It is possible to interpret the Dirac equation in terms of Wigner 's representation 
theory (11] . Then , why is it not possible to find a place for Maxwell's equations 
in the same theory? 

( 4) The proton was found to have a finite space-time extension in 1955 (12], and 
the quark model has been established in 1964 (13] . The concept of relativistic 
extended particles has now been firmly established. Is it then possible to construct 
a representation of the Poincare group for particles with space-time extensions? 

Indeed, there are many papers written in the literature on the above-mentioned 
problems (6, 14], and the present situation is summarized in Figure 2. In this report , 

<1 
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we are interested only in the fourth question. It is about whether Wigner 's little groups 
are applicable to high-energy hadrons fresh from particle accelerators . The question 
is whether it is possible to construct a representation of the little group for hadrons 
which are believed to be quantum-bound states of quarks [6 , 15] . This representation 
should describe Lorentz-boosted hadrons. The next question is whether those boosted 
wave functions generate Feynman 's parton picture [16] in the large-momentum limit. 

Within the framework of Wigner 's little groups , the ultimate question is whether 
the quark model and the parton model can be framed into the 0(3)-like little group 
for massive particles and the E(2)-like little group for massless particles [17] . This 
mathematical question is beyond the scope of the present paper . 

3. Lorentz boosts as squeeze transformations 

The boost matrix for the longitudinal and time-like variables takes the form 

(

cosh 1J 
B(1J) = 

sinh TJ 

sinh 1) ). 

cosh TJ 
( 1) 

applicable to the column matrix of ( z, t) , with tanh 1) = {3 where /3 is the velocity 
parameter of the hadron. In 1949, Dirac chose the coordinate variables [18] 

(2) 

in order to simplify the formula for Lorentz boosts. The boost matrix applicable to 
the column vector ( u , v) now becomes diagonal and takes the form 

( 

exop TJ 
B(TJ) = (3) 

The u and v variables are called the light-cone variables. Under this transformation , 
the u and v variables become expanded and contracted by the factors exp TJ and 
exp( -TJ) respectively. The product uv remains invariant . From Figure 1, it is quite 
clear that the Lorentz boost is an area-preserving "squeeze" transformation. 

The transformation matrix of equation (1) is applicable also to the momentum­
energy column matrix (P, E), where P and E are the longitudinal momentum and 
the total energy respectively. As for the light-cone variables 

P-E 
p = v'2 

the transformation matrix is equation (3). This is also a squeeze transformation. 

(4) 

The word "squeeze" is commonly used these days in quantum optics for a certain 
class of two-photon coherent states [9], but the .concept is squeeze transformations 
is applicable to many different branches of physics, including the Lorentz boost so 
fundamental in high-energy physics. 
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4. Covariant harmonic oscillators 

If we construct a representation of the Lorentz group using normalizable harmonic 
oscillator wave functions , the result is the covariant harmonic oscillator formalism 
(6, 7]. The formalism constitutes a representation of Wigner 's 0(3)-like little group 
for a massive particle with internal space-time structure . This oscillator formalism 
has been shown to be effective in explaining the basic phenomenological features of 
relativistic extended hadrons observed in high-energy laboratories . In particular , the 
formalism shows that the quark model and Feynman 's parton picture are two different 
manifestations of one covariant entity (6 , 17] . 

The covariant harmonic oscillator formalism has been discussed exhaustively in 
the literature , and it is not necessary to give another full-fledged treatment in the 
present paper . We shall discuss here only the squeeze property of the oscillator 
wave functions . Let us consider a bound state of two particles . For convenience , 
we shall call the bound state the hadron, and call its constituents quarks . Then 
there is a Bohr-like radius measuring the space-like separation between the quarks. 
There is also a time-like separation between the quarks , and this variable becomes 
mixed with the longitudinal spatial separation as the hadron moves with a relativistic 
speed. There are no quantum excitations along the time-like direction . On the other 
hand , there is the time-energy uncertainty relation which allows quantum transitions . 
It is possible to accommodate these aspect within the framework of the present 
form of quantum mechanics. The uncertainty relation between the time and energy 
variables is the e-n umber relation (20] , which does not allow excitations along the 
time-like coordinate . We shall see that the covariant harmonic oscillator formalism 
accommodates this narrow window in the present form of quantum mechanics . 

Let us consider now a hadron consisting of two quarks . If the space-time position 
of two quarks are specified by Xa and Xb respectively, the system can be described 
by the variables 

X= Xa + Xb 

2 
x= (5) 

The four-vector X specifies where the hadron is located in space and time, while the 
variable x measures the space-time separation between the quarks. In the convention 
of Feynman et a/ (15], the internal motion of the quarks bound by a harmonic oscillator 
potential of unit strength can be described by the Lorentz-invariant equation 

1 ( ()2 ) 2 .r!- ox~ 1/J(x) = AT/J(.r). (6) 

We use here the space-favored metric: .rJJ = (x,y,z,t). 
It is possible to construct a representation of the Poincare group from the solutions 

of the above differential equation (6]. If the hadron is at rest, the solution should take 
the form 

( 1) 1/
4 

( t2) 1/;(.r, y, z, t) = 1/;(x, y, z) ; e.xp - 2 (7) 
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where lj; ( x . y , z) is the wave function for the three-dimensional oscillator with ap­
propriate angular momentum quantum numbers . Indeed , the above wave function 
constitutes a representation of Wigner 's 0(3)-like little group for a massive particle [6]. 
In the above expression , there are no time-like excitations, and this is consistent with 
what we see in the real world . It was Dirac who first noted this space-time asymmetry 
in quantum mechanics [20] . However , this asymmetry is quite consistent with the 
0(3 ) symmetry of the little group for hadrons . Figure 3 illustrates the uncertainty 
relations along the space-like and time-like directions . 

Dirac: Uncertainty 
without Exitation 

z 

Heisenberg: Uncertainty 
with Exitation 

Figure 3. Quantum mechanics with the c-number time-energy uncertainty relation. 

The present form of quantum mechanics allows quantum excitations along the space-like 

directions, but does not allow excitations along the time-like direction even though there 

is an uncertainty relation between the time and energy variables. 

Since the three-dimensional oscillator differential equation i separable in both 
spherical and Cartesian coordinate systems, lj;( x, y, z) consists of Hermite polynomials 
of x, y, and z. If the Lorentz boost is made along the z direction, the x and y 
coordinates are not affected , and can be dropped from the wave function . The wave 
function of interest can be written as 

(
1)1/4 ( t2) 

lj;n(z , t) = ; exp -2 lj;n(z) (8) 

with 

( 
1 )1/2 ( 2) 

lj;n(z) = 71'n!2n . Hn(z)exp - z2 (9) 

where y:o n ( z) is for the nth excited oscillator state. The full wave function lj; n ( z, t) is 

(10) 

The subscript 0 means that the wave function is for the hadron at rest. The above 
expression is not Lorentz-invariant, and its localization undergoes a Lorentz squeeze 
as the hadron moves along the z direction [6]. This is a Lorentz-covariant expression! 

Let us write the above wave functions in terms of the light-cone variables defined 
in equation (2). The wave function of equation (10) can be written as 
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( 11 ) 

If the system is boosted, the wave function becomes 

(12) 

Indeed, in the light-cone coordinate system, the Lorentz-boosted wave function takes 
a very simple form . 

In both equations (11) and (12), the localization property of the wave function 
in the uv plane is determined by the Gaussian factor , and it is sufficient to study 
the ground state only for the essential feature of the boundary condition . The wave 
functions in equation (11) and equation (12) then respectively become 

(1) 1
/

2 
[ 1 ] 1/;o(z,t) = ; exp -2 (u2 + v2

) . ( 13) 

If the system is boosted, the wave function becomes 

(14) 

The transition from equation (13) to equation (14) is a squeeze transformation. The 
wave function of equation ( 13) is distributed within a circular region in the uv plane , 
and thus in the zt plane. On the other hand , the wave function of equation (14) is 
distributed in an elliptic region. This ellipse is a "squeezed" circle with the same area 
as the circle, as is illustrated in Figure 4. The Lorentz boost squeezes the oscillator 
wave function . 

Figure 4. Relativistic quantum mechanics. If quantum mechanics described in Figure 3 

is combined with special relativity in Figure 1, the result will be the circle being squeezed 

into an ellipse. 
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5. Feynman's parton picture 

It is safe to believe that hadrons are quantum-bound states of quarks having localized 
probability distribution. As in all bound-state cases, this localization condition is 
responsible for the existence of discrete mass spectra. The most convincing evidence 
for this bound-state picture is the hadronic mass spectra which are observed in high­
energy laboratories [6, 15]. However , this picture of bound states is applicable only to 
observers in the Lorentz frame in which the hadron is at rest . How would the hadrons 
appear to observers in other Lorentz frames? More specifically, can we use the picture 
of Lorentz-squeezed hadrons discussed in Section (4] ? 

It was Hofstadter 's experiment which showed that the proton charge is spread 
out. In this experiment , an electron emits a virtual photon , which then interacts 
with the proton. If the proton consists of quarks distributed within a finite space-time 
region, the virtual photon will interact with quarks which carry fractional charges. The 
scattering amplitude will depend on the way in which quarks are distributed within 
the proton. The portion of the scattering amplitude which describes the interaction 
between the virtual photon and the proton is called the form factor. 

Although there have been many attempts to explain the behavior of form factors 
within the framework of quantum field theory, it is quite natural to expect that the 
wave function in the quark model will determine the charge distribution. In high­
energy experiments, we are dealing with the situation in which the momentum transfer 
in the scattering process is large. Indeed, the Lorentz-squeezed wave functions lead 
to the correct behavior of the hadronic form factor for large values of the momentum 
transfer (21]. 

While the form factor is the quantity which can be extracted from the elastic 
scattering, it is important to realize that in high-energy processes , many particles are 
produced in the final state. They are called inelastic processes . While the elastic 
process is described by the total energy and momentum transfer in the center-of-mass 
coordinate system, there is, in addition , the energy transfer in inelastic scattering. 
Therefore, we would expect that the scattering cross section would depend on the 
energy, momentum transfer, and energy transfer . However, one prominent feature 
in inelastic scattering is that the cross section remains nearly constant for a fixed 
value of the momentum-transfer/ energy-transfer ratio. This phenomenon is called 
"scaling" (1]. 

In order to explain the scaling behavior in inelastic scattering, Feynman in 1969 
observed that a fast-moving hadron can be regarded as a collection of many "partons" 
whose properties do not appear to be identical with those of the quarks (16]. For 
example, the number of quarks inside a static proton is three, while the number of 
partons in a rapidly moving proton appears to be infinite. The question then is how 
the proton looking like a bound state of quarks to one observer can appear different 
to an observer in a different Lorentz frame? Feynman formulated his parton picture 
based on the following observations: 

(1) The picture is valid only for hadrons moving with velocity close to that of light. 
(2) The interaction time between the quarks becomes dilated, and partons behave as 

free independent particles. 
(3) The momentum distribution of partons becomes widespread as the hadron moves 

fast. 
(4) The number of partons seems to be infinite or much larger than that of quarks. 

~ 
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Because the hadron is believed to be a bound state of two or three quarks . each of t he 
above phenomena appears as a paradox, particularly (2) and (3) together . We would 
like to resolve this paradox using the covariant harmonic oscillator formalism . 

For this purpose , we need a momentum-energy wave function . If the quarks have 
the four-momenta Pa and Pb , we can construct two independent four-momentum 
variables [15] 

P = Pa + Pb (15) 

The four-momentum P is the total four-momentum and is t hus the hadronic four­
momentum. q measures the four-momentum separation between the quarks . 

We expect to get the momentum-energy wave function by taking the Fourier 
transformation of equation ( 14): 

1/;ry(q, , qo)= C~) J 1/!17 (z , t )exp[-i (q,z -q0 t )] dxdt . ( 16) 

Let us now define the momentum-energy variables in the light-cone coordinate sys­
tem as 

Qo- q, 
Qu = y'2 

Qo + q, 
Qv = y'2 . ( 17) 

In terms of these variables , the Fourier transformation of equation ( 16) can be writ­
ten as 

¢J17 (q.,qo)= ( 2~) J 1/!17 (z , t)exp[-i (quu-qv v)] dudv. ( 18) 

The resulting momentum-energy wave function is 

(19) 

Because we are using here the harmonic oscillator , the mathematical form of the 
above momentum-energy wave function is identical to that of the space-time wave 
function . The Lorentz squeeze properties of these wave functions are also the same. 
as is indicated in Figure 5. 

When the hadron is at rest with TJ = 0 , both wave functions behave like those 
for the static bound state of quarks . As TJ increases, the wave functions become 
continuously squeezed until they become concentrated along their respective positive 
light-cone axes . Let us look at the z-axis projection of the space-time wave function . 
Indeed, the width of the quark distribution increases as the hadronic speed approaches 
that of the speed of light. The position of each quark appears widespread to the 
observer in the laboratory frame, and the quarks appear like free particles. 

Furthermore, interaction time of the quarks among themselves become dilated . 
Because the wave function becomes widespread , the distance between one end of the 
harmonic oscillator well and the other end increases as is indicated in Figure 4. This 
effect , first noted by Feynman (16], is universally observed in high-energy hadronic 
experiments. Let us look at the time ratio more carefully. The period of oscillation 
increases like e'7 as was predicted by Feynman (16] . 

On the other hand, the quark's interaction time with the external signal decreases 
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parton picture. 
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as e-'1 as was predicted by Gribov et al [3]. In the picture of the Lorentz squeezed 
hadron given in Figure 4, the hadron moves along the u (positive light-cone) axis , 
while the external signal moves in the direction opposite to the hadronic momentum, 
which corresponds to the v (negative light-cone) axis. This time interval is propor­
tional to the minor axis of the ellipse given in Figure 4. 

If we use Text and Tasc for the quark's interaction time with external signal and 
the interaction time among the quarks, their ratio becomes 

Text = exp( -ry) = exp( _ 2ry) . 
Tosc exp '7 

(20) 

The ratio of the interaction time to the oscillator period becomes e- 2'1 . The energy of 
each proton coming out of the Fermilab accelerator is 900 Ge V. This leads the ratio 
to w-6 . This is indeed a small number. The external signal is not able to sense the 
interaction of the quarks among themselves inside the hadron. Thus, the quarks are 
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free particles for the external signal. This is the cause of incoherence in the parton 
interaction amplitudes . 

The momentum-energy wave function is just like the space-time wave function 
in the oscillator formalism . The longitudinal momentum distribution becomes wide­
spread as the hadronic speed approaches the velocity of light . This is in contradiction 
with our expectation from nonrelativistic quantum mechanics that the width of the 
momentum distribution is inversely proportional to that of the position wave function . 
Our expectation is that if the quarks are free, they must have their sharply defined 
momenta, not a widespread distribution . This apparent contradiction presents to us 
the following two fundamental questions: 

(1) If both the spatial and momentum distributions become widespread as the hadron 
moves , and if we insist on Heisenberg 's uncertainty relation , is Planck 's constant 
dependent on the hadronic velocity? 

(2) Is this apparent contradiction related to another apparent contradiction that the 
number of partons is infinite while there are only two or three quarks inside the 
hadron? 

The answer to the first question is "No" , and that for the second question is 
"Yes" . Let us answer the first question which is related to the Lorentz invariance of 
Planck's constant . If we take the product of the width of the longitudinal momentum 
distribution and that of the spatial distributi.on, we end up with the relation 

(21) 

The right-hand side increases as the velocity parameter increases. This could lead us to 
an erroneous conclusion that Planck 's constant becomes dependent on velocity. This 
is not correct , because the longitudinal momentum variable qz is no longer conjugate 
to the longitudinal position variable when the hadron moves. 

In order to maintain the Lorentz-invariance of the uncertainty product. we have 
to work with a conjugate pair of variables whose product does not depend on t he 
velocity parameter. Let us go back to equation (17) and equation (18). It is quite 
clear that the light-cone variable u and v are conjugate to q .. and q" respectively. It 
is also clear that the distribution along the q.. axis shrinks as the u-axis distribution 
expands . The exact calculation leads to 

(22) 

Planck's constant is indeed Lorentz-invariant. 
Let us next resolve the puzzle of why the number of partons appears to be infinite 

while there are only a finite number of quarks inside the hadron. As the hadronic speed 
approaches the speed of light, both the x and q distributions become concentrated 
along the positive light-cone axis. This means that the quarks also move with velocity 
very close to that of light . Quarks in this case behave like massless particles . 

We then know from statistical mechanics that the number of massless particles is 
not a conserved quantit;y. For instance, in black-body radiation, free light-like particles 
have a widespread momentum distribution. However, this does not contradict the 
known principles of quantum mechanics, because the massless photons can be divided 
into infinitely many massless particles with a continuous momentum distribution . 

Likewise, in the parton picture, massless free quarks have a widespread momentum 
l 
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distribution. They can appear as a distribution of an infinite number of free particles . 
These free massless particles are the partons. It is possible to measure this distribution 
in high-energy laboratories , and it is also possible to calculate it using the covariant 
harmonic oscillator formalism. We are thus forced to compare these two results (22]. 
Figure 6 shows the result . 

p(x) 

Experimental 
2.0 

1.5 

1.0 

0.5 

0 

0 0.2 0.4 0.6 0.8 1.0 X 

Figure 6. Calculation of the parton distribution based on the harmonic oscillator wave 

function. It is possible to construct the covariant harmonic oscillator wave functions for 

the three-quark system, and compare the parton distribution function with experiment. 

This graph shows a good agreement between the oscillator-based theory and the observed 

experimental data. 

6. Concluding remarks 

This is largely a review paper, but it contains the following new observation. Let us 
go to the time ratio given in equation (20). It is a product of two identical numbers . 
The factor given by Feynman 's time dilation effect is e-'1 . The ratio given by the 
time contraction effect of Gribov et a/ is also e-'1. Thus the combined effect is e- 2'1 . 
This combined effect makes the parton amplitudes to lose coherence even at moderate 
hadronic speed. 

Another noteworthy point is that Wigner 's little group is not only an abstract 
concept, but also serves as a computational tool in high-energy physics. The covariant 
harmonic oscillator is one of the tools derivable from the concept of little groups. It is 
interesting to note that the covariant oscillator formalism gives both Feynman's time 
dilation and the time contraction of Gribov et a/. 

•, 

Acknowledgments 

The author is grateful to Prof. B L Ioffe for inviting him to the Conference on Funda­
mental Interaction of Elementary Particles held in October of 1995. This Conference 



58 Y SKim 

was one of the annual meetings of the Division of Particle and ~ uclear Physics of the 
Russian Academy of Sciences. but this 1995 meeting had a special significance. It 
was held in commemoration of the 50th anniversary of the Institute of Theoret ical 
and Experimental Physics . The author is indeed gratified to have an oppor tunity to 
discuss one of the important contributions made by the three distinguished members 
of this Institute . He is grateful also to many of his Russian colleagues , particularly 
A S Chirkin , V A Isakov , G Kotel 'nikov , M Man 'ko , and V I Man 'ko , for extending 
warm hospitality to him while in Moscow. 

References 

(1] Bjorken J D and Paschos E A 1969 Phy$ . Rev. 185 1975 

[2] Wigner E P 1939 Ann. Math . 40 149 

(3] Gribov V N, Ioffe B L, and Pomeranchuk I Ya J. N ucl. Ph y$. 2 768 (in Russian ) or 1966 S ov. 

J. N ucl. Phy$. 2 549 

[4] Ioffe B L 1969 Phy$. Lett. B 30 123 

[5] Drell S D and Yan T M 1971 Ann. Phy$ . (New York) 60 578 

[6] Kim Y Sand Noz ME 1986 Theory and Application$ of the Poincare Group (Dordrecht : Reidel) 

[7] For earlier efforts to construct covariant harmonic oscillators , see 

Dirac P A M 1945 Proc. Roy. Soc. A183 284 (London); Yukawa H 1953 Phys. R ev . 91 416 : 

Markov M 1956 Supp/. Nuovo Cimento 3 760; Ginzburgh V L and Man 'ko V I 1965 Nucl. 

Phy$. 74 577 · 

[8] Kim Y S, Noz M E , and Oh S H 1979 J. Math . Phy$ . 20 1341 

(9] Kim Y S and Noz M E 1991 Pha$e Space Picture of Quantum Mechan ic$ (Singapore: World 

Scientific) 

[10] Inonu E and Wigner E P 1953 Proc. N at/. A cad. Sci . (U .S .A.) 39 510 

[11] Bargmann V and Wigner E P 1948 Proc. Nat/. A cad. Sci. (U .S.A.) 34 211 

(12] Hofstadter Rand McAllister R W 1955 Phy$. Rev. 98 217 

(13] Gell-Mann M 1964 Phy$. Lett. 13 598 

(14] For the latest review, see 

Kim Y S Wigner 's Last Papers on Spacetime Symmetries Proc. Fourth Int . Wign er S ym p. 

eds N Atakisiev, T Seligm&ll, and K B Wolf (Singapore: World Scientific) (in press); 

See also 
Kim Y S and Wigner E P 1987 J. Math. Phy$. 28 1175; Kim Y S and Wigner E P 1990 

J. fl,[ath . Phya. 31 55 

[15] Feynma.n R P, Kislinger M, and Ravndal F 1971 Phya. Rev. D 3 2706 

[16] Feynma.n R P 1969 High Energy Co//i$iona, Proc. Third Int. Con/. (Stony Brook, New York) 

eds C N Yang et a/ (New York: Gordon and Breach) 

(17] Kim Y S 1989 Phya. Rev. Lett. 63 348 

(18] Dirac P A M 1949 Rev. Mod. Phya. 21 392 

[19] Kim Y Sand Noz M E 1973 Phya. Rev. D 8 3521; HanD and Kim Y S 1980 Prog. Theor. PhY-$. 

64 1852 

[20] Dirac P A M 1927 Prot. Roy. Soc . All4 243 and 710 (London) 

(21] Fujimura K, Kobayashi T , and Namiki M 1970 Prog. Theor. Phya. 43 73 

(22] Hussar P E 1981 Phy•. Rev. D 23 2781 


