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Preface

When Newton formulated his law of gravity, he wrote down his formula applicable to two
point particles. It took him 20 years to prove that his formula works also for extended
objects such as the sun and earth.

When Einstein formulated his special relativity in 1905, he worked out the transfor-
mation law for point particles. The question is what happens when those particles have
space-time extensions. The hydrogen atom is a case in point. The hydrogen atom is small
enough to be regarded as a particle obeying Einstein’s law of Lorentz transformations in-
cluding the energy-momentum relation E =

√
p2 +m2.

Yet, it is known to have a rich internal space-time structure, rich enough to provide the
foundation of quantum mechanics. Indeed, Niels Bohr was interested in why the energy
levels of the hydrogen atom are discrete. His interest led to the replacement of the orbit
by a standing wave.

Before and after 1927, Einstein and Bohr met occasionally to discuss physics. It
is possible that they discussed how the hydrogen atom with an electron orbit or as a
standing-wave looks to moving observers. However, there are no written records. If they
were not able to see this problem, it is because there were and still are no hydrogen atoms
with relativistic speed.
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Figure 1: Evolution of the hydrogen atom. The proton and hydrogen atom share the
same quantum mechanics of bound states. Unlike the hydrogen atom, the proton can be
accelerated, and its speed can become extremely close to that of light.

However, an evolution has taken place in the way we look at the hydrogen atom. These
days, there are moving protons. Fortunately, the proton is also a bound state of more
fundamental particles called quarks. Since the proton and the hydrogen atom share the
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same quantum mechanics, it is possible to study the original Bohr-Einstein problem of
moving hydrogen atoms while looking at accelerated protons. This transition is shown in
Fig. 1.

In 1971 in an attempt to construct a Lorentz-covariant picture of the quark model,
Feynman and his students wrote down a Lorentz-invariant differential equation for the
harmonic oscillator potential. This partial differential equation has many different solu-
tions depending on the choice of coordinate systems and boundary conditions.

Earlier, in 1927, 1945, and 1949, Paul A. M. Dirac noted the problem of constructing
wave functions which can be Lorentz-boosted. He had to approach this problem mathati-
cally because there were no moving bound states. In 1949, he concluded that the solution
to this problem is to construct a suitable reprsentation of the Poincaré group.

Indeed, the purpose of this book is to develop mathematical tools to approach this
problem. In 1939, Eugene Wigner published a paper dealing with subgroups of the Lorentz
group whose transformations leave the four-momentum of a given particle invariant. If the
momentum is invariant, these subgroups deal with the internal space-time symmetries.
For instance, for a massive particle at rest, the subgroup is O(3) or the three-dimensional
rotation group. Spherical harmonics constitute a representation of the three-dimensional
rotation group. Likewise, it is possible to construct a representation of Wigner’s little
group for massive particles using harmonic oscillator wave functions.

Wigner however did not deal with the problem of what happens when the O(3) sym-
metry is Lorentz-boosted. Of particular interest is what happens when the system is
boosted to the infinite-momentum frame. On the other hand, Wigner’s 1939 paper pro-
vides a framework to carry out this Lorentz completion of his little group, and we shall
do so in this book. In so doing it is possible to provide the solutions of the problems left
unsolved in the papers of Dirac and Feynman.

This Lorentz completion allows us to deal with the Bohr-Einstein question of how the
hydrogen atom appears to a moving observer. We can study the same problem using
harmonic oscillator wave functions, and study what we observe in high-energy particle
physics. If the proton is at rest, it is a bound state just like the hydrogen atom. If the
proton moves with a velocity close to that of light, it appears like a collection of Feynman’s
partons. The Lorentz completion therefore shows that the quark and parton models are
two limiting cases of one covariant entity just as the case of E = p2/2m and E = cp are
two limiting cases of E =

√
p2 +m2.

While the group of transformations applicable to the four-dimensional Minkowskian
space is represented by four-by-four matrices, it is possible to represent the same group
with two-by-two matrices. This allows the study of the property of the group with more
transparent matrices. In addition, this group allows the study of mathematical languages
for the branch of physics based on two-by-two matrices.

Modern optics is a case in point. Two-by-two matrices serve as the basic mathematical
languages for the squeezed state of light, polarization optics, lens optics, and beam transfer
matrices commonly called the ABCD matrices. It is known that those matrices are not
rotation matrices because they are the matrices of the Lorentz group. Since Lorentz
transformations and modern optics share the same mathematics, it is possible to learn
lessons for one subject from the other, as illustrated in Fig. 2.

As for mathematical techniques, what lessons can we learn? We are quite familiar
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Figure 2: One mathematical language serving two branches of physics. A second-order
differential equation can serve as the underlying mathematical language for both the
damped harmonic oscillator and the resonance circuit. Likewise, the Lorentz group serves
as the underlying language for both special relativity and modern optics.

with the two-by-two matrix

R(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
,

which performs rotations in the two-dimensional space of x and y. Its transpose becomes
its inverse. This matrix is Hermitian.

We can consider another matrix which takes the form

B(η) =
(
eη/2 0
0 e−η/2

)
.

This matrix squeezes the coordinate axes. It expands one axis while contracting the other,
in such a way that the area is preserved. This matrix transforms a circle into an ellipse,
and its geometry is very familiar to us, but its role in modern physics is not well known
largely because it is not a Hermitian matrix. Judicious combinations of the rotation and
squeeze matrices lead to a very effective mathematics capable of addressing many different
aspects of modern physics.
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Chapter 1

Lorentz group and its
representations

The Lorentz group starts with a group of four-by-four matrices performing Lorentz trans-
formations on the four-dimensional Minkowski space of (t, z, x, y). The transformation
leaves invariant the quantity (t2 − z2 − x2 − y2). There are three generators of rotations
and three boost generators. Thus, the Lorentz group is a six-parameter group.

It was Einstein who observed that this Lorentz group is applicable also to the four-
dimensional energy and momentum space of (E, pz, px, py) . In this way, he was able to
derive his Lorentz-covariant energy-momentum relation commonly known as E = mc2.
This transformation leaves

(
E2 − p2z − p2x − p2y

)
invariant. In other words, the particle

mass is a Lorentz invariant quantity.

1.1 Generators of the Lorentz Group

Let us start with rotations applicable to the (z, x, y) coordinates. The four-by-four matrix
for this operation is

Z(ϕ) =


1 0 0 0
0 1 0 0
0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ

 , (1.1)

which can be written as

Z(ϕ) = exp (−iϕJ3), (1.2)

with

J3 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 . (1.3)

The matrix J3 is known as the generator of the rotation around the z axis. It is not
difficult to write the generators of rotations around the x and y axes, and they can be

1



2 CHAPTER 1. LORENTZ GROUP AND ITS REPRESENTATIONS

written as J1 and J2 respectively, with

J1 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , J2 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (1.4)

These three rotation generators satisfy the commutation relations

[Ji, Jj] = iϵijkJk. (1.5)

The matrix which performs the Lorentz boost along the z direction is

B(η) =


cosh η sinh η 0 0
sinh η cosh η 0 0
0 0 1 0
0 0 0 1

 , (1.6)

with
B(η) = exp (−iηK3), (1.7)

with the generator

K3 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 . (1.8)

It is then possible to write the matrices for the generators K1 and K2, as

K1 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , K2 =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 . (1.9)

Then
[Ji, Kj] = iϵijkKk, and [Ki, Kj] = −iϵijkJk. (1.10)

There are six generators of the Lorentz group, and they satisfy the three sets of commu-
tation relations given in Eq. (1.5) and Eq. (1.10). It is said that the Lie algebra of the
Lorentz group consists of these sets of commutation relations.

These commutation relations are invariant under Hermitian conjugation. While the
rotation generator is Hermitian, the boost generators are anti-Hermitian

J†
i = Ji, while K†

i = −Ki. (1.11)

Thus, it is possible to construct two four-by-four representations of the Lorentz group, one
with Ki and the other with −Ki. For this purpose we shall use the notation (Berestetskii
1982, Kim and Noz 1986)

K̇i = −Ki. (1.12)

Since there are two representations, transformations with Ki are called the covariant
transformations, while those with K̇i are called contravariant transformations.
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1.2 Two-by-two representation of the Lorentz group

It is possible to construct the Lie algebra of the Lorentz group from the three Pauli
matrices (Dirac 1945b, Naimark 1954, Kim and Noz 1986, Başkal et al. 2014). Let us
define

Ji =
1

2
σi, and Ki =

i

2
σi, (1.13)

These two-by-two matrices satisfy the Lie algebra of the Lorentz group given in Eq. (1.5)
and Eq. (1.10).

These generators will lead to a two-by-two matrix of the form

G =
(
α β
γ δ

)
, (1.14)

with four complex matrix elements, thus eight real parameters. Since its determinant is
fixed and is equal to one, there are six independent parameters. This six-parameter group
is commonly called SL(2, c). Since the Lorentz group has six generators, this two-by-two
matrix can serve as a representation of the Lorentz group. It is said in the literature that
SL(2, c) serves as the covering group for the Lorentz group.

For each G matrix of SL(2, c), there exists one four-by-four Lorentz transformation
matrix. We can start with the Minkowskian four-vector (t, z, x, y) written as

X =
(
t+ z x− iy
x+ iy t− z

)
, (1.15)

whose determinant is
t2 − z2 − x2 − y2. (1.16)

The correspondence between the two-by-two and four-by-four representations of the
Lorentz group along with the generators are given in Table 1.1. These representations can
be used for coordinate or momentum transformations, as well as other four-vector quan-
tities such as electromagnetic four-potentials. We can now consider the transformation

X ′ = G X G†, (1.17)

The transformation of Eq. (1.17) can be explicitly written as(
t′ + z′ x′ − iy′

x′ + iy′ t′ − z′

)
=
(
α β
γ δ

)(
t+ z x− iy
x+ iy t− z

)(
α∗ γ∗

β∗ δ∗

)
. (1.18)

We can now translate this formula into
t′ + z′

t′ − z′

x′ − iy′

x′ + iy′

 =


α∗α γ∗β γ∗α α∗β
β∗γ δ∗δ δ∗γ β∗δ
β∗α δ∗α β∗β δ∗β
α∗γ γ∗γ α∗δ γ∗δ



t+ z
t− z
x− iy
x+ iy

 . (1.19)

This then leads to 
t′

z′

x′

y′

 =
1

2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 i −i



t′ + z′

t′ − z′

x′ − iy′

x′ + iy′

 . (1.20)
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Table 1.1: Two-by-two and four-by-four representations of the Lorentz group.

Generators Two-by-two Four-by-four

J3 =
1
2

(
1 0
0 −1

) (
exp (iϕ/2) 0

0 exp (−iϕ/2)

) 
1 0 0 0
0 1 0 0
0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ



K3 =
1
2

(
i 0
0 −i

) (
exp (η/2) 0

0 exp (−η/2)

) 
cosh η sinh η 0 0
sinh η cosh η 0 0
0 0 1 0
0 0 0 1



J1 =
1
2

(
0 1
1 0

) (
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

) 
1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ



K1 =
1
2

(
0 i
i 0

) (
cosh(λ/2) sinh(λ/2)
sinh(λ/2) cosh(λ/2)

) 
coshλ 0 sinhλ 0

0 1 0
sinhλ 0 coshλ 0
0 0 0 1



J2 =
1
2

(
0 −i
i 0

) (
cos(θ/2 − sin(θ/2)
sin(θ/2) cos(θ/2)

) 
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



K2 =
1
2

(
0 1
−1 0

) (
cosh(λ/2) −i sinh(λ/2)
i sinh(λ/2) cosh(λ/2)

) 
coshλ 0 0 sinhλ

0 1 0 0
0 0 1 0

sinhλ 0 0 coshλ



It is important to note that the transformation of Eq. (1.17) is not a similarity transfor-
mation. In the SL(2, c) regime, not all the matrices are Hermitian (Başkal et al. 2014)

Likewise, the two-by-two matrix for the four-momentum of the particle takes the form

P =
(
p0 + pz px − ipy
px + ipy p0 − pz

)
(1.21)

with p0 =
√
m2 + p2z + p2x + p22. The transformation of this matrix takes the same form

as that for space-time given in Eqs. (1.17) and (1.18). The determinant of this matrix
is m2 and remains invariant under Lorentz transformations. The explicit form of the
transformation is
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P ′ = G P G† =
(
p′0 + p′z p′x − ip′y
p′x + ip′y p′0 − p′z

)

=
(
α β
γ δ

)(
p0 + pz px − ipy
px + ipy p0 − pz

)(
α∗ γ∗

β∗ δ∗

)
. (1.22)

1.3 Representations based on harmonic oscillators

The matrix representations in the previous section are primarily for coordinate trans-
formations. The question then is how can we transform functions. This problem has a
stormy history. For plane waves, the form

exp (ip · x) (1.23)

is widely used in the literature. Since

p · x = Et− pxx− pyy − pzz

is a Lorentz-invariant quantity, there are no problems from the mathematical point of
view.

However, for standing waves, we have to consider boundary conditions. The issue is
then how to transform these conditions. One way to circumvent this difficulty is to study
harmonic oscillators with built-in boundary conditions.

Indeed, Dirac (Dirac 1945a, 1963), Yukawa (Yukawa 1953) and Feynman (Feynman et
al. 1971) struggled with this problem using harmonic oscillator wave functions. Later, it
was shown possible to construct the representation of the Poincaré group for relativistic
extended particles based on harmonic oscillators (Kim et al. 1979, Kim and Noz 1986).
This representation serves useful purposes in understaning high-speed hadrons. We shall
discuss these problems systematically in Chapters 5 and 6.
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Başkal, S.; Kim, Y. S.; Noz, M. E. 2014. Wigner’s Space-Time Symmetries based on the
Two-by-Two Matrices of the Damped Harmonic Oscillators and the Poincaré Sphere.
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Chapter 2

Wigner’s little groups for internal
space-time symmetries

When Einstein formulated his special relativity, he was interested in point particles, with-
out internal space-time structures. For instance, particles can have intrinsic spins. Mass-
less photons have helicities. The hydrogen atom is a bound state of the electron and
proton with a nonzero size. The question is how these particles look to moving observers.

In order to address this question, let us study Wigner’s little groups. In 1939,
Wigner (Wigner 1939) considered the subgroup of the Lorentz group whose transfor-
mations leave the particle momentum invariant. On the other hand, they can transform
the internal space-time structure of the particles. Since the particle momentum is fixed
and remains invariant, we can assume that the particle momentum is along the z direction.

This momentum is invariant under rotations around this axis. In addition, these
rotations commute with the Lorentz boost along the z axis. According to the Lie algebra
of Eq. (1.10),

[J3, K3] = 0. (2.1)

With these preparations, we can simplify the problem using the Euler coordinate
system (Goldstein 1980). Euler formulated his coordinate system in order to understand
spinning tops in classical mechanics. In quantum mechanics, we study this problem by
constructing representations of the rotation group, such as the spherical harmonics and
Pauli matrices. Now the pressing issue is what happens if the system is Lorentz-boosted.

2.1 Euler decomposition of Wigner’s little group

The Euler angles constitute a convenient parameterization of the three-dimensional rota-
tions (Goldstein 1980). The Euler kinematics consists of two rotations around the z axis
with one rotation around the y axis between them. These three operations cover also the
rotation around the x axis, thanks to the commutation relation

[J2, J3] = iJ1. (2.2)

In this way, it is possible to study the essential features of three-dimensional rotations
using the two dimensional space of z and x. This aspect is well known.

7
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The first question is what happens if we add a Lorentz boost along the z direction to
this traditional procedure (Han et al. 1986). Since the rotation around the z axis is not
affected by the boost along the same axis, we are asking what happens to the rotation
around the y axis if it is boosted along the z direction.

2.2 O(3)-like little group for massive particles

If the particle has a positive mass, there is a Lorentz frame in which the particle is at
rest, with its four-momentum proportional to

P = (1, 0, 0, 0). (2.3)

This momentum remains invariant under rotations. Thus, the little group of the massive
particle at rest is the three-dimensional rotation group.

The three generators of this little group are J1, J2, and J3, satisfying the Lie algebra of
Eq. (1.5). The dynamical variables associated with these Hermitian operators are known
to be particle spins.

The system can be boosted along the z axis, with the boost matrix B(η) given in
Eq. (1.6). If this matrix is applied to the four-momentum of Eq. (2.3), it becomes

P ′ = (cosh η, sinh η, 0, 0). (2.4)

The generators become
J ′
i = B(η)JiB

−1(η). (2.5)

Under this boost operation, J3 remains invariant, but J ′
2 becomes

J ′
2 = (cosh η)J2 − (sinh η)K1. (2.6)

As for J1, the boost results in

J ′
1 = (cosh η)J1 + (sinh η)K2. (2.7)

However, we can obtain the same result by rotating J ′
2 by −90o around the z axis, thanks

to the Euler effect discussed in Sec. 2.1.
Although the generators J ′

i satisfy the same Lie algebra as that for Ji, they are not
the same. Thus, we shall call the operators J ′

i generators of the O(3)-like little group for
the massive particle with a non-zero momentum.

An interesting issue is what happens when η becomes infinite, and sinh η = cosh η.
We shall discuss this problem in Chapter 4.

2.3 E(2)-like little group for massless particles

If the particle is massless, its four-momentum is proportional to

P = (1, 1, 0, 0). (2.8)

This expression is of course invariant under rotations around the z axis.



2.3. E(2)-LIKE LITTLE GROUP FOR MASSLESS PARTICLES 9

In addition, Wigner (Wigner 1939) observed that it is also invariant under the trans-
formation

D(γ, ϕ) = exp [−iγ (N1 sinϕ+N2 cosϕ)] (2.9)

with

N1 = J1 +K2 =


0 0 0 i
0 0 0 i
0 0 0 0
i −i 0 0

 , N2 = K1 − J2 =


0 0 i 0
0 0 i 0
i −i 0 0
0 0 0 0

 . (2.10)

As a consequence,

D(γ, ϕ) =


1 + γ2/2 −γ2/2 γ cosϕ γ sinϕ
γ2/2 1− γ2/2 γ cosϕ γ sinϕ
γ cosϕ −γ cosϕ 1 0
γ sinϕ −γ sinϕ 0 1

 . (2.11)

Thus the generators of the little group are N1, N2, and J3. They satisfy the following
set of commutation relations.

[N1, N2] = 0, [N1, J3] = iN2, [N2, J3] = −iN1. (2.12)

As Wigner notes, this Lie algebra is the same as that for the two-dimensional Euclidean
group, with

[P1, P2] = 0, [P1, J3] = iP2, [P2, J3] = −iP1, (2.13)

where P1 and P2 generate translations along the x and y directions respectively. They
can be written as

P1 = −i ∂
∂x
, P2 = −i ∂

∂y
, (2.14)

while the rotation generator J3 takes the form

J3 = −i
(
x
∂

∂y
− y

∂

∂x

)
. (2.15)

In addition, Kim and Wigner (Kim and Wigner 1987) considered the following oper-
ators,

Q1 = −ix ∂
∂z
, Q2 = iy

∂

∂z
, (2.16)

with x2+y2 = constant. They generate translations along the z direction on the surface of
a circular cylinder as described in Fig. 2.1. Then they satisfy the following commutation
relations:

[Q1, Q2] = 0, [Q1, J3] = iQ2, [Q2, J3] = −iQ1. (2.17)

We can say that this is the Lie algebra for the “cylindrical group.”
Let us consider a photon whose momentum is along the z direction. It has the four-

potential
(A0, Az, Ax, Ay) . (2.18)
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Side ViewTop View

x

y

      Gauge

Transform

z
Helicity

Figure 2.1: Cylindrical picture of the internal space-time structure of photons. The top
view of this cylinder is a circle whose rotational degree of freedom corresponds to the
helicity of the photon, while the top-down translation corresponds to a gauge transfor-
mation (Kim and Wigner 1990).

According to the Lorentz condition, A0 = Az. Thus the four-potential is

(A0, A0, Ax, Ay) . (2.19)

If we apply the D(γ, ϕ) of Eq. (2.11):


1 + γ2/2 −γ2/2 γ cosϕ γ sinϕ
γ2/2 1− γ2/2 γ cosϕ γ sinϕ
γ cosϕ −γ cosϕ 1 0
γ sinϕ −γ sinϕ 0 1



A0

A0

Ax

Ay

 , (2.20)

the result is 
A0 + γ (Ax cosϕ+ Ay sinϕ)
A0 + γ (Ax cosϕ+ Ay sinϕ)

Ax

Ay

 . (2.21)

If we boost the four-momentum of Eq. (2.8) along the z direction, the four-momentum
becomes

P ′ = eη(1, 1, 0, 0), (2.22)

and N1 and N2 become eηN1 and eηN2 respectively. J3 remains invariant.

The little group transformation D(γ, ϕ) leaves the transverse components Ax and Ay

invariant, but provides an addition to A0. This is a cylindrical transformation. In the
language of physics, it is a gauge transformation. This is summarized in Table 2.1.
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Table 2.1: Covariance of the energy-momentum relation, and covariance of the internal
space-time symmetry. Under the Lorentz boost along the z direction, J3 remains invari-
ant, and this invariant component of the angular momentum is called the helicity. The
transverse component J1 and J2 collapse into a gauge transformation. The γ parame-
ter for the massless case has been studied in earlier papers in the four-by-four matrix
formulation (Han et al. 1982, Kim and Wigner 1990). This table is from (Han et al.
1986).

Massive, Slow COVARIANCE Massless, Fast

E = p2/2m Einstein’s E = mc2 E = cp

J3 Helicity
Wigner’s Little Group

J1, J2 Gauge Transformation

2.4 O(2,1)-like little group for imaginary-mass parti-

cles

We are now interested in transformations which leave the four-vector of the form

P = (0, 1, 0, 0) (2.23)

invariant. Then P 2 = −1, and it is a negative number. We are accustomed to positive
values of P 2 = (mass)2. This means that the particle mass is imaginary, and it moves
faster than light. We are thus talking about a particle we cannot observe in the real world.
On the other hand, these particles play a major theoretical role in Feynman diagrams.

We are now interested in transformations which leave the four-vector of Eq. (2.23)
invariant. Let us consider the Lorentz boost along the y direction, with

S(λ) =


coshλ 0 0 sinhλ

0 1 0 0
0 0 1 0

sinhλ 0 0 coshλ

 , (2.24)

which is generated by K2. Likewise, it is invariant under the boost along the x direction.
Thus, we can consider the set of commutation relations

[J3, K1] = iK2, [J3, K2] = −iK1, [K1, K2] = −iJ3. (2.25)

This is a Lie algebra of the Lorentz group applicable to two space and one time dimensions.
This group is known in the literature as O(2, 1).
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If we boost the four-momentum of Eq. (2.23) along the z direction, it becomes

(sinh η, cosh η, 0, 0), (2.26)

while J3 remains invariant. K1 and K2 become

K ′
1 = (cosh η)K1 − (sinh η)J2, K ′

2 = (cosh η)K2 + (sinh η)J1, (2.27)

respectively. The generators K ′
1, K

′
2, and J3 satisfy the same Lie algebra as that of

Eq. (2.25).
If we interchange sinh η and cosh η, these generators become those of Eq. (2.6). If η

becomes very large, the four-momentum takes the same form for the massive, massless,
and imaginary mass cases. The generators of the little groups also become the same. We
shall discuss this issue in Chapter 4.

Even though we are talking about imaginary-mass particles in this section, the math-
ematics of this little group is applicable to many branches of physics.

Table 2.2: Wigner four-vectors and Wigner matrices applicable to two space-like and one
time-like dimensions. Each Wigner four-vector remains invariant under the application
of its Wigner matrix.

Mass Wigner Four-vector Wigner Matrix

Massive (1, 0, 0, 0)


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



Massless (1, 1, 0, 0)


1 + γ2/2 −γ2/2 γ 0
γ2/2 1− γ2/2 γ 0
γ −γ 1 0
0 0 0 1



Imaginary mass (0, 1, 0, 0)


coshλ 0 sinhλ 0

0 1 0 0
sinhλ 0 coshλ 0
0 0 0 1



2.5 Summary

In this Chapter, we discussed the Lorentz group applicable to one time and two space
dimensions, namely to the (z, x, t) coordinates. The rotation around the z axis will leave
the four-momenta listed in this Chapter invariant. It will also extend the representation
to the the full (z, x, y, t) space. With this point in mind, we can list the four-vectors and
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matrices which leave their respective four-vectors invariant in Table 2.2. Since Wigner
(1939) constructed these four-vectors and four-by-four matrices, we can call them Wigner
four-vectors and Wigner matrices. The Lorentz frames where they take these forms can
be called Wigner frame.

According to Table 2.1, we are encouraged to look for one covariant expression for all
three cases of Table 2.2. We shall discuss this problem in Chapter 4.

The E(2)-like little group for massless particles was formulated by 1939 (Wigner 1939),
but its physical interpretation was not completely settled until 1990 (Kim and Wigner
1990). This problem had a stormy history of forty one years, and a comprehensive list
of earlier papers on this subject was given by Kim and Wigner in their 1987 paper (Kim
and Wigner 1987). The debate is still continuing, and there are recent papers on this
subject (Scaria and Chakraborty 2002, Lindner et al. 2003, Caban and Rembielinski
2003).

As for the Lorentz group applicable to the (2 + 1)-dimensional space, physical appli-
cations seldom go beyond transformations applicable in the z and x coordinates. This
smaller group is called O(2, 1). Calculations in high-energy physics involving Lorentz
transformations are mostly based on O(2, 1) (Kim and Noz 1986). In addition, this group
serves as one of the basic languages in classical and modern optics (Kim and Noz 1991,
Başkal and Kim 2013). We shall discuss these physical applications in later chapters of
this book.
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Chapter 3

Two-by-two representations of
Wigner’s little groups

It was noted in Sec. 1.2 that the Lorentz transformation of the four-momentum can be
represented by two-by-two matrices. An explicit form for the Lorentz transformation was
given in Eq. (1.22) as (Kim and Noz 1986, Başkal et al. 2014)

P ′ = G P G†, (3.1)

where the two-by-two form of the G matrix is given in Eq. (1.14). If the particle moves
along the z direction, the four-momentum matrix becomes

P =
(
E + p 0
0 E − p

)
, (3.2)

where E and p are the energy and the magnitude of momentum respectively.
Let us use W as a subset of matrices which leaves the four-momentum invariant, then

we can write
P = W P W †. (3.3)

These matrices of course constitute Wigner’s little group dictating the internal the space-
time symmetry of the particle.

If the particle is massive, it can be brought to the system where it is at rest with
p = 0. The four-momentum matrix is proportional to

P =
(
1 0
0 1

)
. (3.4)

For the massless particle, E = p. Thus the four-momentum matrix is proportional to

P =
(
1 0
0 0

)
. (3.5)

If the particle mass is imaginary, there is a Lorentz frame where the energy component
vanishes. Thus, the Wigner four-vector becomes

P =
(
1 0
0 −1

)
. (3.6)

15
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For all three cases, the matrix of the form

Z(ϕ) =
(
eiϕ/2 0
0 e−iϕ/2

)
(3.7)

will satisfy the Wigner condition of Eq. (3.3). This matrix corresponds to rotations around
the z axis.

3.1 Representations of Wigner’s little groups

For a massive particle, since the momentum matrix is proportional to the unit matrix, the
W matrix should be Hermitian, and the little group is the SU(2) subgroup of the Lorentz
group, namely the rotation subgroup. According to Euler, it is sufficient to consider
rotations around the y axis, using this rotation matrix

R(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (3.8)

together with the rotation matrix Z(ϕ).
If rotated around by z axis, it becomes

Z(ϕ)R(θ)Z†(ϕ) =
(

cos(θ/2) −eiϕ sin(θ/2)
e−iϕ sin(θ/2) cos(θ/2)

)
. (3.9)

However, according the Euler decomposition, it is sufficient to consider only the R(θ) with
ϕ = 0 as the representation of Wigner’s O(3)-like little group for massive particles.

If the particle is massless, the Wigner matrix is necessarily triangular and should take
the form

T (γ) =
(
1 −γ
0 1

)
. (3.10)

This matrix has properties that are not too familiar to us. First of all, it cannot be
diagonalized. Its inverse and Hermitian conjugate are

T−(γ) =
(
1 γ
0 1

)
, and T † =

(
1 0
−γ 1

)
, (3.11)

respectively. Since they are not the same, T is not a Hermitian matrix.
If we rotate the T matrix around the z axis, it becomes

Z(ϕ)T (γ)Z†(ϕ) =
(
1 −eiϕγ
0 1

)
, (3.12)

Thus, we shall use the triangular matrix of Eq. (3.10) as the representation of the group.
For a particle with an imaginary mass, we can choose the W matrix as

exp (−iλK1) =
(
cosh(λ/2) sinh(λ/2)
sinh(λ/2) cosh(λ/2)

)
. (3.13)
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Table 3.1: The Wigner momentum vectors in the two-by-two matrix representation to-
gether with the corresponding transformation matrix. These four-momentum matrices
have determinants which are positive, zero, and negative for massive, massless, and
imaginary-mass particles, respectively

Particle mass Four-momentum Transform matrix

Massive
(
1 0
0 1

) (
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

Massless
(
1 0
0 0

) (
1 −γ
0 1

)

Imaginary mass
(
1 0
0 −1

) (
cosh(λ/2) sinh(λ/2)
sinh(λ/2) cosh(λ/2)

)

This transformation leaves the four-momentum of Eq. (3.6) invariant. If rotated around
the z axis, it becomes (

cosh(λ/2) eiϕ sinh(λ/2)
e−iϕ sinh(λ/2) cosh(λ/2)

)
. (3.14)

However, it is sufficient to choose the real matrix of Eq. (3.13) as the O(2, 1)-like little
group for imaginary particles.

Table 3.1 summarizes the transformation matrices for Wigner’s little groups for mas-
sive, massless, and imaginary-mass particles.

3.2 Lorentz completion of the little groups

We are now interested in boosting the Wigner four-vectors and the representation matrices
along the z direction. The boosted four-momentum is

P ′ = B(η) P B†(η), (3.15)

with

B(η) =
(
eη/2 0
0 e−η/2

)
, (3.16)

The boosted four-momentum should then take the form(
eη 0
0 e−η

)
, (3.17)
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Table 3.2: Lorentz-boosted Wigner vectors and the Wigner matrices in the two-by-two
representation. They take the same form for infinite values of η, if the parameters θ, λ,
and γ are made to decrease by e−η.

Particle mass Four-momentum W ′ matrix

Massive
(
eη 0
0 e−η

) (
cos(θ/2) −eη sin(θ/2)

e−η sin(θ/2) cos(θ/2)

)

Massless
(
eη 0
0 0

) (
1 −eηγ
0 1

)

Imaginary mass
(
eη 0
0 −e−η

) (
cosh(λ/2) eη sinh(λ/2)

e−η sinh(λ/2) cosh(λ/2)

)

for the massive particle, and (
eη 0
0 0

)
,

(
eη 0
0 −e−η

)
. (3.18)

respectively for massless and imaginary-mass particles.
However, the boosted Wigner matrix becomes

W ′ = B(η) W B−1(η). (3.19)

It should be noted that B†(η) is not the same as B−1(η). This is a similarity transforma-
tion, unlike the transformation of the four-momentum given in Eq. (3.15).

The boosted W matrix becomes

W ′ =
(

cos(θ/2) −eη sin(θ/2)
e−η sin(θ/2) cos(θ/2)

)
, (3.20)

for the massive particle. For massless and imaginary particles, they become(
1 eηγ
0 1

)
, and

(
cosh(λ/2) eη sinh(λ/2)

e−η sinh(λ/2) cosh(λ/2)

)
, (3.21)

respectively.
These results are tabulated in Table 3.2. In the limit of large η, all three momentum

matrices take the same form. If they are multiplied by e−η, they all become the four-
momentum of the massless particle. The boosted Wigner matrices become sin(θ/2), γ,
and sinh(λ/2). This leads us to look for three little groups as three different branches of
one little group. We shall discuss this problem more systematically in Chapter 4.
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3.3 Bargmann and Wigner decompositions

Let us restate the contents of Sec. 3.2. In the case of a massive particle moving with the
four-momentum P ′ of Eq. (3.17), the representation of the little group isW ′ of Eq. (3.20).
This is also a Lorentz-boosted form of the W matrix. Indeed, it can be written as

B(η)WB(−η) = B(η) {B(−η) [B(η)WB(−η)] B(η)} B(−η), (3.22)

meaning that the system is brought back to the frame in which the particle is at rest, a
rotation is made without changing the momentum, and then the system is boosted back
to a frame where it gains regains its original momentum. This three-step operation is
illustrated on the left side in Fig. 3.1. Since this operation consists of three matrices, we
shall call it the Wigner decomposition.

However, this is not the only momentum-preserving transformation. We can start
with a momentum along the z direction, as illustrated in right hand side of Fig. 3.1. We
can rotate this momentum around the y axis, boost along the negative x direction, and
then rotate back to the original momentum along the z direction. Then this operation
can be written as

R(α)S(−2χ)R(α) (3.23)

This is a product of one boost matrix sandwiched between two rotation matrices. This
form is called the Bargmann decomposition (Bargmann 1947).

x

x

x

z

z

z

Momentum

Momentum

B

B

-1

Boost

Boost

Rotate without

changing momentum

x

z

αχ

χ

momentum

-

-

Figure 3.1: Wigner decomposition (left) and Bargmann decomposition (right). These
figures illustrate momentum preserving transformations. In the Wigner transformation,
a massive particle is brought to its rest frame. It can be rotated while the momentum
remains the same. This particle is then boosted back to the frame with its original
momentum. In the Bargmann decomposition, the momentum is rotated, boosted, and
rotated to its original position (Başkal et al. 2014).

The multiplication of these three matrices leads to

D(α, χ) =
(

(cosα) coshχ − sinhχ− (sinα) coshχ
− sinhχ+ (sinα) coshχ (cosα) coshχ

)
(3.24)

We can now compare this formula with the momentum preserving W ′ matrices given
in Table 3.2.



20
CHAPTER 3. TWO-BY-TWO REPRESENTATIONS OF WIGNER’S

LITTLE GROUPS

1. If the particle is massive, the off-diagonal elements should have opposite signs,

cos(θ/2) = (cosα) coshχ, e2η =
(sinα) coshχ− sinhχ

sinhχ+ (sinα) coshχ
, (3.25)

with (sinα) coshχ > sinhχ.

2. If the particle is massless, one of the off-diagonal elements should vanish, and

sinhχ− (sinα) coshχ = 0. (3.26)

Thus, the diagonal elements become (cosα) coshχ = 1, and the non-vanishing off-
diagonal element becomes 2 sinhχ = γ.

3. If the particle mass is imaginary, the off-diagonal elements have the same sign,

cosh(λ/2) = (coshχ) cosα, and e−2η =
sinhχ− (coshχ) sinα

(coshχ) sinα+ sinhχ
. (3.27)

It is now clear that the transformation matrices become the same triangular form in the
limit of large η.

In the Wigner decomposition, the off-diagonal elements do not change their signs. We
are assuming all the angles are positive and smaller than 90o. Thus, if we are interested
in making a transition from the massive case to the zero-mass, and then to the imaginary
cases, we have to make an excursion to the infinite value of η, and then come back through
the appropriate route. This is a singular operation in mathematics.

In the Bargmann decomposition, one of the off-diagonal elements can change its sign
depending on the parameters α and χ. Thus, the transition from the massive to the mass-
less and imaginary-mass cases is analytic. These mathematical properties are summarized
in Table 3.3.

3.4 Conjugate transformations

The most general form of the SL(2, c) matrix is given in Eq. (1.14), with six independent
parameters. In terms of the six generators, this matrix can be written as

D = exp

{
−i

3∑
i=1

(θiJi + ηiKi)

}
, (3.28)

where the Ji are the generators of rotations and the Ki are the generators of proper
Lorentz boosts. They satisfy the Lie algebra given in Eq. (1.10). This set of commutation
relations is invariant under the sign change of the boost generators Ki. Thus, we can
consider the “dot conjugation” defined as

Ḋ = exp

{
−i

3∑
i=1

(θiJi − ηiKi)

}
, (3.29)

Since Ki are anti-Hermitian while Ji are Hermitian, the Hermitian conjugate of D is

D† = exp

{
−i

3∑
i=1

(−θiJi + ηiKi)

}
, (3.30)
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Table 3.3: Bargmann and Wigner decompositions. Their mathematical properties are
compared. In the Bargmann decomposition, one analytic expression covers the massive,
massless, and imaginary cases. As was noted in Sec. 3.2, the Wigner decomposition is
in the form of a similarity transformation which can serve many useful mathematical
purposes.

Decompositions Analytic Similarity Trans.

Bargmann Yes No

Wigner No Yes

while the Hermitian conjugate of Ḋ is

Ḋ† = exp

{
−i

3∑
i=1

(−θiJi − ηiKi)

}
, (3.31)

Since we understand the rotation around the z axis, we can now restrict the kinemat-
ics to the zt plane, and work with the Sp(2) symmetry. Then the D matrices can be
considered as Bargmann decompositions. First, D and Ḋ are

D(α, χ) =
(

(cosα) coshχ − sinhχ− (sinα) coshχ
− sinhχ+ (sinα) coshχ (cosα) coshχ

)
,

Ḋ(α, χ) =
(

(cosα) coshχ sinhχ− (sinα) coshχ
sinhχ+ (sinα) coshχ (cosα) coshχ

)
. (3.32)

These matrices correspond to the “D loops” given in fig.(a) and fig.(b) of Fig. 3.2 respec-
tively. The “dot” conjugation changes the direction of boosts. The dot conjugation leads
to the inversion of the space which is called the parity operation.

We can also consider changing the direction of rotations. This results in using the
Hermitian conjugates. We can write the Hermitian conjugate matrices as

D†(α, χ) =
(

(cosα) coshχ − sinhχ+ (sinα) coshχ
− sinhχ− (sinα) coshχ (cosα) coshχ

)
,

Ḋ†(α, χ) =
(

(cosα) coshχ sinhχ+ (sinα) coshχ
sinhχ− (sinα) coshχ (cosα) coshχ

)
. (3.33)

The exponential expressions from Eq. (3.28) to Eq. (3.31), lead to

D† = Ḋ−1, and Ḋ† = D−1, (3.34)
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fig. (b) fig. (a)

 fig. (d)     fig. (c)

Figure 3.2: Four D-loops resulting from the Bargmann decomposition. Let us go back to
Fig. 3.1. If we reverse of the direction of the boost, the result is fig.(a). From fig.(a), if
we invert the space, we come back to fig.(b). If we reverse the direction of rotation from
fig.(a), the result is fig.(c). If both the rotation and space are reversed, the result is the
fig.(d) (Başkal et al. 2014).

and the Bargmann forms of Eq. (3.32) and Eq. (3.33) are consistent with these relations.

The dot conjugation changes the direction of momentum, and the Hermitian conjuga-
tion changes the direction of rotation and the angular momentum. The dot conjugation
therefore corresponds to the parity operation, and the Hermitian conjugation to charge
conjugation.

3.5 Polarization of massless neutrinos

To apply this analysis to spin-1
2
particles, we use the group generated by Eq. (1.13)

Ji =
1

2
σi, and Ki =

i

2
σi. (3.35)

These are identical to those for the proper Lorentz group and have the same algebraic
properties as the SL(2, c) group. Additionally, the Lie algebra for these generators is
invariant if the sign of the boost operators is changed. In the case of SL(2, c), or spin-1

2

particles, it is necessary to consider both signs. Also in Chapter 1, we considered that
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SL(2, c) consists of non-singular two-by-two matrices which have the form defined in
Eq. (1.14)

G =
(
α β
γ δ

)
. (3.36)

This matrix is applicable to spinors that have the form:

U =
(
1
0

)
, and V =

(
0
1

)
, (3.37)

for spin-up and spin-down states respectively.
Among the subgroups of SL(2, c), there are E(2)-like little groups which correspond

to massless particles. If we consider a massless particle moving along the z direction, then
the little group is generated by J3, N1 and N2, defined in Eq. (2.10). These N operators
are the generators of gauge transformations in the case of the photon, thus we will refer to
them as the gauge transformation in the SL(2, c) regime (Wigner 1939, Han et al. 1982).
We shall examine their role with respect to massless particles of spin-1

2
.

Since the sign of the generators of this subgroup remains invariant under a sign change
in Ki, these generators remain unambiguous when applied to the space-time coordinate
variable and the photon four-vectors. Here we choose the Ji to be the generators of
rotations, but, because of the sign change allowed for Ki we must consider both N

(+)
i and

N
(−)
i , where

N
(+)
1 =

(
0 i
0 0

)
, N

(+)
2 =

(
0 1
0 0

)
. (3.38)

The Hermitian conjugates of the above provide N
(−)
1 and N

(−)
2 . The transformation

matrices then can be written as:

D(+)(α, β) = exp(−i[αN [+]
1 + βN

[+]
2 ]) =

(
1 α− iβ
0 1

)
,

D(−)(α, β) = exp(−i[αN [−]
1 + βN

[−]
2 ]) =

(
1 0

−α− iβ 1

)
. (3.39)

Since there are two sets of spinors in SL(2, c), the spinors whose boosts are generated by
Ki = (i/2)σ will be written as u and v, following the usual Pauli notation. For the boosts
generated by Ki = (−i/2)σ we will use u̇ and v̇. These spinors are gauge-invariant in the
sense that

D(+)(α, β)u = u, D(−)(α, β)v̇ = v̇. (3.40)

However, these spinors are gauge-dependent in the sense that

D(+)(α, β)v = v + (α− iβ)u, D(−)(α, β)u̇ = u̇− (α + iβ)v̇ (3.41)

The gauge-invariant spinors of Eq. (3.40) appear as polarized neutrinos (Han et al. 1982,
1986). In the massless limit,

D(+)(α, β) =
(
1 γ
0 1

)
,

D(−)(α, β) =
(

1 0
−γ 1

)
. (3.42)

This is summarized in Table 3.4.
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Table 3.4: Hermitian and dot conjugations of the triangular T (γ) matrix.

Original Dot conjugate

Original
(
1 −γ
0 1

) (
1 0
γ 1

)

Hermitian conjugate
(

1 0
−γ 1

) (
1 γ
0 1

)

3.6 Scalars, four-vectors, and four-tensors

We are quite familiar with the process of constructing three spin-1 states and one spin-0
state from two spinors. Since each spinor has two states, there are four states if combined.

In the Lorentz-covariant world, there are two-more states coming from the dotted
representation (Berestetskii 1982, Kim and Noz 1986), as we noted in Sec. 1.1. If four
of those two-state spinors are combined, there are 16 states. In this section, we shall
construct all sixteen states.

For particles at rest, it is known that the addition of two one-half spins result in spin-
zero and spin-one states. Hence, we have two different spinors behaving differently under
the Lorentz boost. Around the z direction, both spinors are transformed by

Z(ϕ) = exp (−iϕJ3) =
(
e−iϕ/2 0
0 eiϕ/2

)
. (3.43)

However, they are boosted by

B(η) = exp (−iηK3) =
(
eη/2 0
0 e−η/2

)
,

Ḃ(η) = exp (iηK3),=
(
e−η/2 0
0 eη/2

)
(3.44)

applicable to the undotted and dotted spinors respectively. These two matrices commute
with each other, and also with the rotation matrix Z(ϕ) of Eq. (3.43). Since K3 and J3
commute with each other, we can work with the matrix Q(η, ϕ) defined as

Q(η, ϕ) = B(η)Z(ϕ) =
(
e(η−iϕ)/2 0

0 e−(η−iϕ)/2

)
,

Q̇(η, ϕ) = Ḃ(η)Ż(ϕ) =
(
e−(η+iϕ)/2 0

0 e(η+iϕ)/2

)
. (3.45)

When this combined matrix is applied to the spinors,

Q(η, ϕ)u = e(η−iϕ)/2u, Q(η, ϕ)v = e−(η−iϕ)/2v,

Q̇(η, ϕ)u̇ = e−(η+iϕ)/2u̇, Q̇(η, ϕ)v̇ = e(η+iϕ)/2v̇. (3.46)



3.6. SCALARS, FOUR-VECTORS, AND FOUR-TENSORS 25

Table 3.5: Sixteen combinations of the SL(2, c) spinors. In the SU(2) regime, there
are two spinors leading to four bilinear forms. In the SL(2, c) world, there are two
undotted and two dotted spinors. These four-spinors lead to sixteen independent bilinear
combinations.

Spin 1 Spin 0

uu, 1√
2
(uv + vu), vv, 1√

2
(uv − vu)

u̇u̇, 1√
2
(u̇v̇ + v̇u̇), v̇v̇, 1√

2
(u̇v̇ − v̇u̇)

uu̇, 1√
2
(uv̇ + vu̇), vv̇, 1√

2
(uv̇ − vu̇)

u̇u, 1√
2
(u̇v + v̇u), v̇v, 1√

2
(u̇v − v̇u)

After the operation of Q(η, ϕ) and Q̇(η, ϕ)

e−iϕeηuu, 1√
2
(uv + vu), eiϕe−ηvv, 1√

2
(uv − vu)

e−iϕe−ηu̇u̇, 1√
2
(u̇v̇ + v̇u̇), eiϕeηv̇v̇, 1√

2
(u̇v̇ − v̇u̇)

e−iϕuu̇, 1√
2
(eηuv̇ + e−ηvu̇), eiϕvv̇, 1√

2
(eηuv̇ − e−ηvu̇)

e−iϕu̇u, 1√
2
(u̇v + v̇u), eiϕv̇v, 1√

2
(e−ηu̇v − eηv̇u)

If the particle is at rest, we can construct the combinations

uu,
1√
2
(uv + vu), vv, (3.47)

to obtain the spin-1 state, and
1√
2
(uv − vu), (3.48)

for the spin-zero state. There are four bilinear states. In the SL(2, c) regime, there are
two dotted spinors. If we include both dotted and undotted spinors, there are sixteen
independent bilinear combinations. They are given in Table 3.5. This table also gives the
effect of the operation of Q(η, ϕ).

Among the bilinear combinations given in Table 3.5, the following two equations are
invariant under rotations and also under boosts.

S =
1√
2
(uv − vu), and Ṡ = − 1√

2
(u̇v̇ − v̇u̇). (3.49)
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They are thus scalars in the Lorentz-covariant world. Are they the same or different? Let
us consider the following combinations

S+ =
1√
2

(
S + Ṡ

)
, and S− =

1√
2

(
S − Ṡ

)
. (3.50)

Under the dot conjugation, S+ remains invariant, but S− changes sign. The boost is
performed in the opposite direction and therefore is the operation of space inversion.
Thus S+ is a scalar while S− is called a pseudo-scalar.

3.6.1 Four-vectors

Let us consider the bilinear products of one dotted and one undotted spinor as uu̇, uv̇, u̇v, vv̇,
and construct the matrix

U =
(
uv̇ vv̇
uu̇ vu̇

)
. (3.51)

Under the rotation Z(ϕ) and the boost B(η) they become(
eηuv̇ e−iϕvv̇
eiϕuu̇ e−ηvu̇

)
. (3.52)

Indeed, this matrix is consistent with the transformation properties given in Table 3.5,
and transforms like the four-vector(

t+ z x− iy
x+ iy t− z

)
. (3.53)

This form was given in Eq. (1.15). Under space inversion, this matrix becomes(
t− z −(x− iy)

−(x+ iy) t+ z

)
. (3.54)

This space inversion is known as the parity operation.
The form of Eq. (3.51) for a particle or field with four-components, is given by

(V0, Vz, Vx, Vy). The two-by-two form of this four-vector is

U =
(
V0 + Vz Vx − iVy
Vx + iVy V0 − Vz

)
. (3.55)

If boosted along the z direction, this matrix becomes(
eη (V0 + Vz) Vx − iVy
Vx + iVy e−η (V0 − Vz)

)
. (3.56)

In the mass-zero limit, the four-vector matrix of Eq. (3.56) becomes(
2A0 Ax − iAy

Ax + iAy 0

)
, (3.57)

with the Lorentz condition A0 = Az. The gauge transformation applicable to the photon
four-vector was discussed in detail in Sec. 2.3.
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Let us go back to the matrix of Eq. (3.51); we can construct another matrix U̇ . Since
the dot conjugation leads to the space inversion,

U̇ =
(
u̇v v̇v
u̇u v̇u

)
. (3.58)

Then

u̇v ≃ (t− z), v̇u ≃ (t+ z),

v̇v ≃ −(x− iy), u̇u ≃ −(x+ iy), (3.59)

where the symbol ≃ means “transforms like.”
Thus, U of Eq. (3.51) and U̇ of Eq. (3.58) used up eight of the sixteen bilinear forms.

Since there are two bilinear forms in the scalar and pseudo-scalar as given in Eq. (3.50),
we have to give interpretations to the six remaining bilinear forms.

3.6.2 Second-rank Tensor

In this subsection, we are studying bilinear forms with both spinors dotted and undotted.
In Subsec. 3.6.1, each bilinear spinor consisted of one dotted and one undotted spinor.
There are also bilinear spinors which are both dotted or both undotted. We are interested
in two sets of three quantities satisfying the O(3) symmetry. They should therefore
transform like

(x+ iy)/
√
2, (x− iy)/

√
2, z, (3.60)

which are like
uu, vv, (uv + vu)/

√
2, (3.61)

respectively in the O(3) regime. Since the dot conjugation is the parity operation, they
are like

−u̇u̇, −v̇v̇, −(u̇v̇ + v̇u̇)/
√
2. (3.62)

In other words,
(uu)̇ = −u̇u̇, and (vv)̇ = −v̇v̇. (3.63)

We noticed a similar sign change in Eq. (3.59).
In order to construct the z component in this O(3) space, let us first consider

fz =
1

2
[(uv + vu)− (u̇v̇ + v̇u̇)] , gz =

1

2i
[(uv + vu) + (u̇v̇ + v̇u̇)] , (3.64)

where fz and gz are respectively symmetric and anti-symmetric under the dot conjugation
or the parity operation. These quantities are invariant under the boost along the z
direction. They are also invariant under rotations around this axis, but they are not
invariant under boost along or rotations around the x or y axis. They are different from
the scalars given in Eq. (3.49).

Next, in order to construct the x and y components, we start with f± and g± as

f+ =
1√
2
(uu− u̇u̇) g+ =

1√
2i

(uu+ u̇u̇)

f− =
1√
2
(vv − v̇v̇) g− =

1√
2i

(vv + v̇v̇) . (3.65)
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Then

fx =
1√
2
(f+ + f−) =

1

2
[(uu− u̇u̇) + (vv − v̇v̇)]

fy =
1√
2i

(f+ − f−) =
1

2i
[(uu− u̇u̇)− (vv − v̇v̇)] . (3.66)

and

gx =
1√
2
(g+ + g−) =

1

2i
[(uu+ u̇u̇) + (vv + v̇v̇)]

gy =
1√
2i

(g+ − g−) = −1

2
[(uu+ u̇u̇)− (vv + v̇v̇)] . (3.67)

Here fx and fy are symmetric under dot conjugation, while gx and gy are anti-symmetric.
Furthermore, fz, fx, and fy of Eqs. (3.64) and (3.66) transform like a three-dimensional

vector. The same can be said for gi of Eqs. (3.64) and (3.67). Thus, they can grouped
into the second-rank tensor

T =


0 −gz −gx −gy
gz 0 −fy fx
gx fy 0 −fz
gy −fx fz 0

 , (3.68)

whose Lorentz-transformation properties are well known. The gi components change their
signs under space inversion, while the fi components remain invariant. They are like the
electric and magnetic fields respectively.

If the system is Lorentz-booted, fi and gi can be computed from Table 3.5. We are
now interested in the symmetry of photons by taking the massless limit. According to
the procedure developed in Sec. 3.2, we can keep only the terms which become larger for
larger values of η. Thus,

fx → 1

2
(uu− v̇v̇) , fy →

1

2i
(uu+ v̇v̇) ,

gx → 1

2i
(uu+ v̇v̇) , gy → −1

2
(uu− v̇v̇) , (3.69)

in the massless limit.
Then the tensor of Eq. (3.68) becomes

F =


0 0 −Ex −Ey

0 0 −By Bx

Ex By 0 0
Ey −Bx 0 0

 , (3.70)

with

Bx ≃ 1

2
(uu− v̇v̇) , By ≃

1

2i
(uu+ v̇v̇) ,

Ex =
1

2i
(uu+ v̇v̇) , Ey = −1

2
(uu− v̇v̇) . (3.71)
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The electric and magnetic field components are perpendicular to each other. Further-
more,

Ex = By, Ey = −Bx. (3.72)

In order to address symmetry of photons, let us go back to Eq. (3.65). In the massless
limit,

B+ ≃ E+ ≃ uu, B− ≃ E− ≃ v̇v̇ (3.73)

The gauge transformations applicable to u and v̇ are the two-by-two matrices(
1 −γ
0 1

)
, and

(
1 0
γ 1

)
. (3.74)

respectively as noted in Sec. 2.3 and Sec. 3.5. Both u and v̇ are invariant under gauge
transformations, while u̇ and v are not.

The B+ and E+ are for the photon spin along the z direction, while B− and E− are
for the opposite direction. Weinberg (Weinberg 1964) constructed gauge-invariant state
vectors for massless particles starting from Wigner’s 1939 paper (Wigner 1939). The
bilinear spinors uu and and v̇v̇ correspond to Weinberg’s state vectors.
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Chapter 4

One little group with three branches

We have noted that J2 and K1 can serve as the starters of the representation of Wigner’s
little groups in their respective Wigner frames. They are for the massive and imaginary-
mass particles respectively. It was noted also that, when Lorentz boosted, they become

J ′
2 = (cosh η)J2 − (sinh η)K1, K ′

1 = −(sinh η)J2 + (cosh η)K1. (4.1)

These two equations can be combined into one formula, and we are led to consider the
transformation matrix

D(x, y) = exp [−i (yJ2 − xK1)] (4.2)

as a function of the parameters x and y. We shall study this form of the Wigner matrix
in detail.

During this study, there will be a problem of handling singularities that are not too
familiar to us. We shall use the classical damped harmonic oscillator to study this sin-
gularity problem in detail, and conclude that this is not an analytic but can be called a
“tangential” continuity.

It was noted in Sec. 2.3 that a cylinder can be used for describing internal space-time
symmetry for photons. Later in this section, we shall study how this cylindrical symmetry
arises when the system of a massive particle is boosted along the z direction.

4.1 One expression with three branches

Let us write the D matrix of Eq. (4.2) as (Başkal and Kim 2010, 2013, Başkal et al. 2014)

D(x, y) = exp
{(

0 −(x+ y)
−x+ y 0

)}
. (4.3)

1. If y > x, we write

x+ y = eη
√
y2 − x2, x− y = e−η

√
y2 − x2, (4.4)

with

eη =

√
x+ y

|y − x|
, (4.5)

31
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and D(x, y) becomes

exp
{√

y2 − x2
(

0 −eη
e−η 0

)}
=
(

cos(θ/2) −eη sin(θ/2)
e−η sin(θ/2) cos(θ/2)

)
, (4.6)

with cos(θ/2) = cos
(√

y2 − x2
)
.

2. If x = y, this expression becomes

D(x, y) = exp
{(

0 −2x
0 0

)}
=
(
1 −2x
0 1

)
. (4.7)

This form is for the little group for massless particles, as shown in T (γ) of Eq. (3.10).

3. If y < x, we can write

x− y = e−η
√
x2 − y2, x+ y = eη

√
x2 − y2. (4.8)

Then the D matrix becomes

exp
{√

x2 − y2
(

0 −eη
−e−η 0

)}
=
(

cosh(λ/2) −eη sinh(λ/2)
−e−η sinh(λ/2) cosh(λ/2)

)
, (4.9)

with

cosh(λ/2) = cosh
(√

x2 − y2
)
. (4.10)

This expression is the same as that for the Lorentz-boosted W matrix given in
Eq. (3.21) for imaginary-mass particles, and eη is given in Eq. (4.5).

Indeed, it is possible to derive three different forms of the W ′ matrix. The matrix(
0 −(x+ y)

−(x− y) 0

)
(4.11)

is analytic in the x and y variables. However, this D matrix has three distinct branches.
In order to understand the nature of this let us look at what happens when x − y is a
small number

ϵ = x− y. (4.12)

We can then write the D matrix as

D(x, ϵ) = exp
{(

0 2x
ϵ 0

)}
. (4.13)

If ϵ is positive, the Taylor expansion leads to

D =

 cosh
(√

2xϵ
)

−
[√

2x/ϵ
]
sinh

√
2xϵ

−
[√
ϵ/2x

]
sinh

(√
2xϵ

)
cosh

(√
2xϵ

)
 . (4.14)

If ϵ becomes zero, this expression becomes(
1 −2x
0 1

)
(4.15)
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If ϵ becomes negative,

√
2xϵ = i

√
−2xϵ,

√
ϵ/2x = i

√
−2x/ϵ,

√
2x/ϵ = −i

√
−2x/ϵ, (4.16)

if we take
√
−1 = i. Thus, D becomes

D =

 cos
(√

−2xϵ
)

−
[√

−2x/ϵ
]
sin

(√
−2xϵ

)
[√

−ϵ/2x
]
sin

(√
−2xϵ

)
cos

(√
−2xϵ

)
 . (4.17)

The result remains the same if we take
√
−1 = −i.

This type of singularity is not common in literature. Let us study this point further
from a physical example familiar to us.

4.2 Classical damped oscillators

Let us start with the second-order differential equation

d2y

dt2
+ 2µ

dy

dt
+ ω2y = 0, (4.18)

for a classical damped harmonic oscillator. If we introduce the function ψ(t) as

ψ(t) = e−µty(t) (4.19)

then ψ(t) satisfies the simplified differential equation

d2ψ(t)

dt2
+ (ω2 − µ2)ψ(t) = 0. (4.20)

This second-order differential equation has two independent solutions. Let us call
them ψ1 and ψ2. They satisfy the first-order differential equations

d

dt

(
ψ1

ψ2

)
=
(

0 −(ω + µ)
(ω − µ) 0

)(
ψ1

ψ2

)
. (4.21)

This coupled equation leads to the second order equation Eq(4.20) for ψ1(t) and ψ2(t).
The physical solution is an appropriate linear combination of these two wave functions.

The solution of this first order differential equation is(
ψ1

ψ2

)
= exp

{(
0 −(ω + µ)t

(ω − µ)t

)}(
C1

C2

)
, (4.22)

where C1 = ψ1(0) and C2 = ψ2(0). We can then obtain the solutions by following the
procedure developed in Sec. 4.1.

1. If ω > µ, the solution becomes(
ψ1

ψ2

)
=
(

cos(ω′t) −eη sin(ω′t)
e−η sin(ω′t) cos(ω′t)

)(
C1

C2

)
, (4.23)

with

ω′ =
√
ω2 − µ2, and eη =

√
ω + µ

|ω − µ|
. (4.24)
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sine to sinh cosine to cosh

Figure 4.1: Transitions from sine to sinh, and from cosine to cosh . They are continuous
transitions. Their first derivatives are also continuous, but the second derivatives are not.
Thus, they are not analytically but only tangentially continuous (Başkal and Kim 2014).

2. If ω = µ, the solution becomes(
ψ1

ψ2

)
=
(
1 −2ωt
0 1

)(
C1

C2

)
. (4.25)

3. If µ > ω, the solution matrix becomes(
cosh(µ′t) eη sinh(µ′t)

e−η sinh(µ′t) cosh(µ′t)

)
, (4.26)

with eη given in Eq. (4.24), and

µ′ =
√
µ2 − ω2. (4.27)

Let us now turn to the main issue of what happened when µ is close to ω. If ω is
sufficiently close to µ, we can let

µ− ω = 2µϵ, and µ+ ω = 2ω. (4.28)

If ω is greater than µ, then ϵ defined in Eq. (4.28) becomes negative. The solution
matrix becomes (

1− (−ϵ/2)(2ωt)2 −2ωt
−(−ϵ)(2ωt) 1− (−ϵ/2)(2ωt)2

)
, (4.29)

which can be written as 1− (1/2)
[(
2ω

√
−ϵ
)
t
]2

−2ωt

−
√
−ϵ

[(
2ω

√
−ϵ
)
t
]

1− (1/2)
[(
2ω

√
−ϵ
)
t
]2
 . (4.30)

If ϵ is positive, Eq. (4.26) can be written as(
1 + (1/2) [(2ω

√
ϵ) t]

2 −2ωt

−
√
ϵ [(2ω

√
ϵ) t] 1 + (1/2) [(2ω

√
ϵ) t]

2

)
. (4.31)

The transition from Eq. (4.30) to Eq. (4.31) is continuous as they become identical
when ϵ = 0. As ϵ changes its sign, the diagonal elements of above matrices tell us how
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Table 4.1: Damped Oscillators and space-time symmetries. They are based on the same
set of two-by-two matrices.

Trace Damped Oscillator Particle Symmetry

Smaller than 2 Oscillation Mode Massive Particles

Equal to 2 Transition Mode Massless Particles

Larger than 2 Damping Mode Imaginary-mass Particles

cos(ω′t) becomes cosh(µ′t). The upper-right element remains as sin(ω′t) during this tran-
sitional process. The lower left element becomes sinh(µ′t). This non-analytic continuity
is illustrated in Fig. 4.1.

During this continuation process, the function remains the same. So does its first
derivative, but the second derivative does not. Thus, the two functions share the same
tangential line. It is indeed a tangential coninuity. The continuity from one little group
to another was discussed in Sec. 4.1. This mathematical similarity is summarized in
Table 4.1.

4.3 Little groups in the light-cone coordinate system

Speaking of tangential continuity, it was Inönü and Wigner (Inönü and Wigner 1953) who
first considered that the E(2) (two-dimensional Euclidean) group can be constructed as a
contraction of the O(3) group, by considering a flat plane tangential to a sphere. This is
very easy to visualize. A football field is clearly a flat two-dimensional surface, but it is
also part of the surface of the spherical earth. Thus, the E(2) group can be constructed
as a contraction of the O(3) group, by considering a flat plane tangential to a sphere.
Hence, E(2) can be constructed from O(3) in the large-radius limit. For convenience, we
can choose a plane tangent to the north pole.

For the same sphere, we can consider also a cylinder tangent to the equatorial belt. We
shall consider that the four-by-four representation of the Lorentz group can produce both
the E(2) and the cylindrical symmetries. This aspect is illustrated in fig.(a) of Fig. 4.2.

We noted in Sec. 2.3 that the little groups for massive and massless particles are
isomorphic to O(3) and E(2) respectively. It is not difficult to construct the O(3)-like
geometry of the little group for a massive particle at rest (Wigner 1939). Let us start
with a massive particle at rest. The little group is generated by J1, J2, and J3, whose
four-by-four forms are given in Sec. 1.1.

For the massless particle, the little group is generated by

N1 = K1 − J2, N2 = K2 + J1, and J3. (4.32)



36 CHAPTER 4. ONE LITTLE GROUP WITH THREE BRANCHES

 fig. (a)

   fig. (b)

Figure 4.2: Contractions of the three-dimensional rotation group. This group can be
illustrated by a sphere. This group can become the two-dimensional Euclidean group
on a plane tangent at the north pole as illustrated in fig.(a). It was later noted that
there is a cylinder tangential to this sphere, and the up and down translations on this
cylinder correspond to the gauge transformation for photons (Kim and Wigner 1987). As
illustrated in fig.(b), the four-dimensional representation of the Lorentz group contains
both elongation and contraction of the z axis, as the system is boosted along this di-
rection. The elongation and contraction become the cylindrical and Euclidean groups,
respectively (Kim and Wigner 1987, 1990).

These generators satisfy the closed set of commutation relations which constitute the Lie
algebra of E(2) or the two-dimensional Euclidean group.

In this section, we approach the same problem using Dirac’s light-cone coordinate
system (Dirac 1949), where the variables u and v are defined as

u =
t+ z√

2
, v =

t− z√
2
, (4.33)

and we have to work with the four-vector (u, v, x, y). The major advantage of the light-
cone variables is that the Lorentz boost is diagonal. Under the boost, the u and v variables
become

eηu = eη
(
t+ z√

2

)
, e−ηv = e−η

(
t− z√

2

)
, (4.34)

while the boost matrix takes the form

e−iηK3 =


eη 0 0 0
0 e−η 0 0
0 0 1 0
0 0 0 1

 . (4.35)
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In the light-cone coordinate system, the generators take the form

J3 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , K3 =


i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0

 ,

J1 =
1√
2


0 0 0 i
0 0 0 i
0 0 0 0
−i −i 0 0

 , K1 =
1√
2


0 0 i 0
0 0 −i 0
i −i 0 0
0 0 0 0

 ,

J2 =
1√
2


0 0 −i 0
0 0 −i 0
i i 0 0
0 0 0 0

 , K2 =
1√
2


0 0 0 i
0 0 0 −i
0 0 0 0
i −i 0 0

 . (4.36)

(4.37)

If a massive particle is at rest, its little group is generated by J1, J2, in addition to
J3. For a massless particle moving along the z direction, the little group is generated by
N1, N2 and J3, where

N1 = K1 − J2, N2 = K2 + J1, (4.38)

which can be written as

N1 =


0 0 i 0
0 0 0 0
0 −i 0 0
0 0 0 0

 , N2 =


0 0 0 i
0 0 0 0
0 0 0 0
0 −i 0 0

 . (4.39)

For convenience, we have dropped the normalization factor of
√
2.

These matrices satisfy the commutation relations:

[J3, N1] = iN2, [J3, N2] = −iN1, [N1, N2] = 0. (4.40)

The transformation generated by the N1 and N2 matrices is

D(γ, ϕ) = exp {−iγ [(cosϕ)N1 + (sinϕ)N2]}. (4.41)

Since N3
1 = N3

2 = 0, the Taylor expansion of this exponential form truncates, and it
becomes 

1 γ2/2 γ cosϕ γ sinϕ
0 1 0 0
0 −γ cosϕ 1 0
0 −γ sinϕ 0 1

 . (4.42)

In the light-cone coordinate system, the four components of the vector particle takes
the form

(A+, A−, Ax, Ay) exp {i (p+v + p+u)}, (4.43)
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with

A+ =
A0 + Az√

2
, A− =

A0 − Az√
2

. (4.44)

Thus, for massless photons, the Lorentz condition leads to A0 = Az or A− = 0 . When
the D matrix is applied to this photon four-vector,

1 γ2/2 γ cosϕ γ sinϕ
0 1 0 0
0 −γ cosϕ 1 0
0 −γ sinϕ 0 1



A+

0
Ax

Ay

 =


A+ + γ(Ax cosϕ+ Ay sinϕ)

0
Ax

Ay

 , (4.45)

the transverse components Ax and Ay are not affected. The transformation changes only
the A0 and Az components. This is a gauge transformation.

This cylindrical transformation has been discussed in Sec. 2.3. The light-cone coordi-
nate system gives a more transparent mathematics. Indeed, this coordinate system is the
natural language for the photon internal symmetry.

4.4 Lorentz completion in the light-cone coordinate

system

As was noted in Sec. 4.3, the matrix for the Lorentz boost is diagonal in the light-cone
coordinate system. Let us start with the four-vector for a massive particle

V = (V+, V−, Vx, Vy) . (4.46)

If the particle is at rest, this should represent the three-dimensional symmetry, with three
independent coordinate variables. This means V+ = V− in the light-cone coordinate
system. If we boost the system, this four-vector becomes(

eηV+, e
−ηV−, Vx, Vy

)
. (4.47)

For large values of η, the e−ηV− component vanishes. In the language of photons, it
is called the Lorentz condition or A0 = Az. The interesting problem is what happens
between those two limits.

To study this problem we can start with two spheres, both with the unit horizontal
radius. One of them has the vertical radius eη and the other with e−η. Since

eη =

[√
p2 +m2 + p√
p2 +m2 − p

]1/2
, (4.48)

this expression is one when the particle is at rest with p = 0. In the limit of large values
of p, this number is infinite, while e−η becomes zero.

As p increases, both go through elliptic deformations as illustrated in fig.(b) of Fig. 4.2.
In the large-η limit, one of them becomes a cylinder, and the other a flat surface. This
picture is equivalent to the tangential plane and cylinder described in fig.(a) of Fig. 4.2.
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Symmetry 6 473 - 515.

Dirac, P. A. M. 1949. Forms of relativistic dynamics. Rev. Mod. Phys. 21 392 - 399.
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Chapter 5

Lorentz-covariant harmonic
oscillators

Einstein and Bohr met occasionally, before and after 1927, to discuss physics. Einstein
was interested in how things look to moving observers, while Bohr was interested in why
the energy levels of the hydrogen atom are discrete. Then they must have talked about
how the electron orbit of the hydrogen atom looks to a moving observer. There does not
seem to be written records to indicate how they sketched the orbits.

However, it is not uncommon to see in the literature the description of the Lorentz
deformation as described in Fig. 5.1. This figure became outdated in 1927. The electron
orbit is now a standing wave. Thus, the question is how the standing wave appears when
the it is boosted along a given direction.

As is indicated in Fig. 5.1, the longitudinal component is affected while the transverse
components remain unchanged. With this point in mind, we shall study harmonic oscil-
lators. Since the wave equation for the three-dimensional oscillator is separable in the
Cartesian coordinate system, it is sufficient to study the effect of the Lorentz boost only
for the longitudinal component of the wave function.

Paul A. M. Dirac spent many years trying to construct a quantum mechanics consistent
with special relativity. In his three papers published in 1927, 1945, and 1949 (Dirac 1927,
1945, 1949), Dirac essentially presented all essential ideas on how to construct harmonic
oscillator wave functions that can be Lorentz transformed. However, Dirac’s most serious
problem was the lack of physical phenomena to which his ideas were applicable. The
physical example did not exist until Gell-Mann published his paper on the quark model
in 1964 (Gell-Mann 1964), where the proton was described as a bound state of three
quarks. The proton can be accelerated to speeds very close to that of light.

Dirac (Dirac 1949) said that the problem of Lorentz covariant quantum mechanics
is the same as that of constructing a representation of the Poincaré group. Thus, he
was telling us to construct the representation based on harmonic oscillators. Since the
standing wave is for a bound state, its symmetry is that of Wigner’s little group which
dictates the internal space-time symmetry (Wigner 1939).

Indeed, the most serious problem in Dirac’s paper is that he did not specify the stand-
ing wave as a bound state. This problem was clarified later in the paper of Feynman,
Kislinger, and Ravndal (Feynman et al. 1971). They start with a system of two quarks
bound together by a harmonic oscillator force, and write down a Lorentz-invariant dif-

41
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Longitudinal Axis

contracted to

Figure 5.1: Classical picture of Lorentz contraction of the electron orbit in the hydrogen
atom. It is expected that the longitudinal component becomes contracted while the
transverse components are not affected. In his the first edition of his book published in
1987, 60 years after 1927, John S. Bell included this picture of the orbit viewed by a
moving observer (Bell 2004). While talking about quantum mechanics in his book, Bell
overlooked the fact that the electron orbit in the hydrogen atom had been replaced by a
standing wave in 1927. The question then is how standing waves look to moving observers.

ferential equation. This differental equation has many different forms of solutions. It is
possible to construct a set of solutions which constitute a representation of Wigner’s little
group. We shall thus start with the Lorentz-invariant differential equation of Feynman et
al.

5.1 Dirac’s plan to construct Lorentz-covariant quan-

tum mechanics

The year 1927 is known for Heisenberg’s uncertainty relation. In the same year, based
on the line width and lifetime of excited energy levels, Paul A. M. Dirac formulated his
c-number time energy uncertainty relation (Dirac 1927).

During World War II, Dirac was looking into the possibility of constructing represen-
tations of the Lorentz group using harmonic oscillator wave functions (Dirac 1945). The
Lorentz group is the language of special relativity, and the present form of quantum me-
chanics starts with harmonic oscillators. Therefore, he was interested in making quantum
mechanics Lorentz covariant by constructing representations of the Lorentz group using
harmonic oscillators.

In his 1945 paper (Dirac 1945), Dirac considers the Gaussian form

exp
{
−1

2

(
x2 + y2 + z2 + t2

)}
. (5.1)

We note that this Gaussian form is in the (x, y, z, t) coordinate variables. Thus, if we
consider a Lorentz boost along the z direction, we can drop the x and y variables, and
write the above equation as

exp
{
−1

2

(
z2 + t2

)}
. (5.2)

This is a strange expression for those who believe in Lorentz invariance where (z2 − t2) is
an invariant quantity.
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t
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    T-E Uncertainty 

without Excitations

   Heisenberg’s 

Uncetainty with 

     Excitations

Dirac (1927)

t

z

Gaussian 

  Cut-o!
Dirac (1945)

Figure 5.2: Space-time picture of quantum mechanics. In 1927, Dirac noted that there is
an uncertainty in the time and energy variables, but there are no excitations along the
time axis. He called it the “c-number” time-energy relation. In 1945, Dirac attempted to
construct a reprsentation of the Lorentz group using harmonic oscillator wave functions.
According to his 1927 paper, the Gaussian cut-off along the time axis represents the time-
energy uncertainty relation. His c-number relation means that only the ground state is
allowed along the time axis (Kim and Noz 1986).

On the other hand, this expression is consistent with his earlier papers on the time-
energy uncertainty relation (Dirac 1927). In those papers, Dirac observed that there is a
time-energy uncertainty relation, while there are no excitations along the time axis.

Let us look at Fig. 5.2 carefully. This figure is a pictorial representation of Dirac’s
Eq. (5.2), with localization in both space and time coordinates. Then Dirac’s fundamental
question would be how this figure appears to a moving observer.

5.2 Dirac’s forms of relativistic dynamics

In 1949, the Reviews of Modern Physics published a special issue to celebrate Einstein’s
70th birthday. This issue contains Dirac’s paper entitled “Forms of Relativistic Dynam-
ics” (Dirac 1949). In this paper, Dirac points out problems that have to be overcome in
extending quantum mechanics to be relativistic. He considers possible constraints that
can be imposed on the Lorentz transformations.

1. In this paper also, Dirac’s main problem was to deal with the time variable, and he
writes down the equation

x0 ≈ 0. (5.3)

Since Dirac offered no further explanations on his ≈ sign, we are free to interpret this
as his c-number time-energy uncertainty relation. In terms of the harmonic oscilla-
tors which he discussed in 1945, this condition means that the harmonic oscillator
wave function in the time variable is always in the ground state.

2. Dirac wrote down ten generators of the Poincaré group and their commutation re-
lations, which he called Poison brackets. The Poincaré group is the inhomogeneous
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A=4u'v '

u

v

A=4uv

=2(t
2
–z

2
)

z

tDirac 1949

Figure 5.3: Lorentz boost in the light-cone coordinate system. The boost traces a point
along the hyperbola. The boost also squeezes the square into a rectangle (Kim and Noz
1986).

Lorentz group with three rotation generators, three boost generators, and four gen-
erators of translations. Dirac notes that the rotation and translation generators are
associated with angular momentum and space-time translations respectively. On
the other hand, there are no dynamical variables associated with the generators of
boosts.

Dirac then states that the construction of relativistic quantum mechanics is achieved
through the construction of the representation of the Poincaré group. Even though
Dirac did not tell us how to construct such a representation, he made an attempt
in 1945 (Dirac 1945) to use harmonic oscillators to construct a representation of
the Lorentz group. We should therefore use harmonic oscillator wave functions
to construct the representation of the Poincaré group and the Lorentz-covariant
quantum mechanics.

3. Also in his 1949 paper, Dirac introduced the light-cone coordinate system. When
the system is boosted along the z direction, the transformation takes the form(

z′

t′

)
=
(
cosh η sinh η
sinh η cosh η

)(
z
t

)
. (5.4)

This is not a rotation, because the space and time variables become entangled. Dirac
introduced his light-cone variables defined as

u = (z + t)/
√
2, v = (z − t)/

√
2, (5.5)

hence the boost transformation of Eq. (5.4) takes the form

u′ = eηu, v′ = e−ηv. (5.6)
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The u variable becomes expanded while the v variable becomes contracted, as is
illustrated in Fig. 5.3. Their product

uv =
1

2
(z + t)(z − t) =

1

2

(
z2 − t2

)
(5.7)

remains invariant. Indeed, in Dirac’s picture, the Lorentz boost is a an area-
preserving squeeze transformation, as indicated in Fig. 5.3.

Let us go back to the ground-state wave function of Eq.(5.2) whose Gaussian form is
illustrated in Fig. 5.2. If the oscillator moves along the z direction, it should appear as

exp
{
−1

4

[
e−2η(z + t)2 + e2η(z − t)2

]}
, (5.8)

according to the Lorentz-boost in the light-cone system given in Eq.(5.6). This is a
Lorentz-squeezed Gaussian distribution, as shown in Fig. 5.4. Indeed. the Lorentz boost
is a squeeze transformation (Kim and Noz 1973).

t

z

t

z

β = 0.8

Boost

β = 0

Figure 5.4: Lorentz-squeezed quantum mechanics. Dirac’s attempt for relativistic quan-
tum mechanics starts from the Gaussian distribution given in Fig. 5.2. This figure shows
how the Gaussian distribution appears to an observer moving with the velocity parameter
β = v/c = 0.8 (Kim et al. 1979a)

5.3 Running waves and standing waves

We are quite familiar with the Klein-Gorden equation( ∂

∂x

)2

+m2

ϕ(x) = 0, (5.9)

for a single particle, where

(
∂

∂x

)2

=
∂2

∂t2
− ∂2

∂z2
− ∂2

∂x2
− ∂2

∂y2
. (5.10)



46 CHAPTER 5. LORENTZ-COVARIANT HARMONIC OSCILLATORS

Figure 5.5: Feynman’s suggestion for combining quantum mechanics with special rela-
tivity. Feynman diagrams work for running waves, and they provide a satisfactory in-
terpretation of scattering states in Einstein’s world. For standing waves trapped inside
a hadron, Feynman (Feynman 1970) suggested harmonic oscillators as the first step, as
illustrated in fig.(a). From his suggestion, we can construct a historical perspective start-
ing from comets and planets, as shown in fig.(b). Dirac’s three papers are discussed in
Sec. 5.2. It has been shown by Han et al. that the covariant oscillator formalism shares
the same set of physical principles as Feynman diagrams for scattering problems (Han et
al. 1981).

This equation and its solutions are well know in physics. Then the equation( ∂

∂xa

)2

+

(
∂

∂xb

)2

+m2
a +m2

b

ϕ (xa)ϕ (xb) = 0, (5.11)

is for two independent particles whose coordinates are xa and xb respectively. They are
four-vectors, and we shall use the notation

x2 ≡ t2 − z2 − x2 − y2 (5.12)

for both xa and xb. The physics of this system for two free particles is also well known. The
question is what happens when (m2

a +m2
b) is replaced by a term containing (xa − xb)

2.
Indeed, Feynman et al. (Feynman et al. 1971) wrote down the equation2

( ∂

∂xa

)2

+

(
∂

∂xb

)2
− 1

16
(xa − xb)

2 +m2
0

ϕ (xa, xb) = 0, (5.13)

for the bound state called the “hadron” consisting of two constituent particles called
“quarks” bound together in a harmonic oscillator potential.

Let us introduce the coordinates

X =
xa + xb

2
, and x =

xa − xb

2
√
2
. (5.14)
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The X coordinate is for the space-time specification of the hadron, while the x vari-
able measures the relative space-time separation between the quarks. In terms of these
variables, Eq. (5.13) can be written as

(
∂

∂X

)2

+m2
0 +

1

2

( ∂

∂x

)2

− x2

ϕ (X, x) = 0, (5.15)

This equation is separable in the X and x variables, and can be separated by using the
equation:

ϕ (X, x) = f (X)ψ(x), (5.16)

where f(X) and ψ(x) satisfy the following differential equations respectively:
(
∂

∂X

)2

+m2
0 + (λ+ 1)

 f(X) = 0, (5.17)

and
1

2

( ∂

∂x

)2

− x2

ψ(x) = (λ+ 1)ψ(x). (5.18)

The differential equation of Eq. (5.17) is a Klein-Gordon equation, and its solutions are
well known. It takes the form

f(X) = exp (±ip ·X) (5.19)

with
p2 = m2

0 + (λ+ 1), (5.20)

where p is the four-momentum of the hadron. p2 is, of course, the (mass)2 of the hadron
and is numerically constrained to take the values allowed by Eq. (5.20). The separa-
tion constant λ is determined from the solutions of the harmonic oscillator equation of
Eq. (5.18).

Indeed, the wave function of Eq. (5.16) is for the hadron moving with the four-
momentum pµ with the internal structure dictated by the oscillaror equation, as is de-
scribed in Fig. 5.5. Wigner’s little group is applicable to the internal space-time symmetry
dictated by the oscillator equation of Eq. (5.18) (Kim and Noz 1978, Kim et al. 1979a,
Kim and Noz 1986).

The space-time transformation of the total wave function of Eq. (5.16) is generated
by the following ten generators of the Poincaré group. The operators

Pµ = i
∂

∂Xµ
(5.21)

generate space-time translations. Lorentz transformations, which include boosts and ro-
tations, are generated by

Mµν = L∗
µν + Lµν (5.22)

where

L∗
µν = i

(
Xµ

∂

∂Xν
−Xν

∂

∂Xµ

)
,

Lµν = i

(
xµ

∂

∂xν
− xν

∂

∂xµ

)
.
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The translation operators Pµ, act only on the hadronic coordinate, and do not af-
fect the internal coordinate. The operators L∗

µν and Lµν Lorentz-transform the hadronic
and internal coordinates respectively. The above ten generators satisfy the commutation
relations for the Poincaré group.

In order to consider irreducible representations of the Poincaré group, we have to
construct wave functions which are diagonal in the invariant Casimir operators of the
group, which commute with all the generators of Eqs. (5.21) and (5.22). The Casimir
operators in this case are

P µPµ, and W µWµ, (5.23)

where
Wµ = ϵµναβP

νMαβ (5.24)

The eigenvalues of the above P 2 and W 2 represent respectively the mass and spin of the
hadron.

The algebra of these generators becomes much simpler when the hadronic momentum
is constant, as in the case of Wigner’s little group. While translation generators can be
dropped from the algebra, the operator P ν can be replaced by the four-vector

p = (E, p, 0, 0) (5.25)

for the hadron momentum moving in the z direction. As a consequence the eigenvalues
of the Casimir operators become m2 = (mass)2 and m2ℓ(ℓ + 1), where ℓ is the total
angular momenum of oscillator. These eigenvalues are invariant under Poincaré or Lorentz
transformations.

5.4 Little groups for relativistic extended particles

The harmonic oscillator equation of Eq. (5.18) is invariant under Lorentz transformations.
For instance, if the system is boosted along the z direction according to Eq. (5.4), the
differential equation takes the same form in the new coordinate variables. Thus, the
solution also takes the previous form. With this point in mind, we can now study the
solution of the diffential equation in the Lorentz frame where the hadron is at rest. Let
us spell out the oscillator equation.

1

2


x2 + y2 + z2 −

(
∂

∂x

)2

−
(
∂

∂y

)2

−
(
∂

∂z

)2
−

t2 − (
∂

∂t

)2
ψ(x) = (λ+ 1)ψ(x).

(5.26)
According to Dirac’s c-number time-energy uncertainty relation, the time component of
the solution should be always in the ground state, and thus the solution takes the form

ψ(x) = φ(z, x, y)

[(
1

π

)1/4

e−t2/2

]
, (5.27)

with

1

2

x2 + y2 + z2 −
(
∂

∂x

)2

−
(
∂

∂y

)2

−
(
∂

∂z

)2
φ(z, x, y) = (

λ+
3

2

)
φ(z, x, y). (5.28)
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This equation is very familiar to us from textbooks. However, the equation carried the
following additional interpretations.

1. The Cartesian variables z, x, and y are internal coordinate variables for the hadron.

2. This equation is separable in both the spherical and Cartesian coordinate system.
For the discussion of the Poincaré symmetry, we need the spherical coordinate sys-
tem to construct the representation diagonal in the Casimir operators where the
eigenvalue ℓ is needed.

3. When the system is boosted along the z direction, the transverse x and y are not
affected, and they can be separated out from the differential equation of Eq. (5.26).

4. The spherical solutions can be written in terms of the linear combinations of the
Cartesian solutions.

The solution in the spherical coordinate system should take the form

φ(r, θ, ϕ) = Rnℓm(r)Yℓm(θ, ϕ), (5.29)

where Yℓm(θ, ϕ) are the spherical harmonics. The radial function Rnℓm(r) is well defined,
but its explicit form is not readily available in the literature. It should take the form

Rnℓm(r) = rmgnℓ(r)e
−r2/2, (5.30)

with

gnℓ =
∑
k

a2kr
2k, (5.31)

where
a2k+2

a2k
=

2(λ− ℓ− 2k)

ℓ(ℓ+ 1)− (ℓ+ 2k + 3)(ℓ+ 2k + 2)
. (5.32)

For large values of k, this ratio becomes 1/k, which is like the expansion of the exponential
exp (r2) leading the radial function of Eq. (5.30) to increase as exp (r2/2). Thus the series
has to be truncated with

λ = 2k + ℓ. (5.33)

The first term a0 in the series is determined by the normalization condition∫ ∞

0
[rRnℓm(r)]

2 dr = 1. (5.34)

The increases in ℓ and n are called the orbital and radial excitations in the literature.

If the system is Lorentz-boosted along the z direction according to Eq. (5.4), the
Lorentz-invariant differential equation of Eq. (5.18) remains invariant. The z and t vari-
ables in Eq. (5.26) become z′ and t′ respectively, and the wave function becomes modified
accordingly. The important point is that the eigenvalue λ remains invariant.
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5.5 Further properties of covariant oscillator wave

functions

Since the x and y coordinates are not affected, we drop their terms from the differential
equation from Eq. (5.18), and consider the equation

1

2


z2 − (

∂

∂z

)2
−

t2 − (
∂

∂t

)2
ψ(z, t) = λψ(z, t). (5.35)

The solution of this equation should take the form

ψn
0 (z, t) =

[
1

π2nn!

]1/2
Hn(z) exp

[
−1

2

(
z2 + t2

)]
, (5.36)

where Hn(z) is the Hermite polynomial of order n.
The differential equation of Eq. (5.35) is invariant under the Lorentz boost along the

z direction, and is invariant under the replacements of z and t by z′ and t′ respectively,
where (

z′

t′

)
=
(

cosh η − sinh η
− sinh η cosh η

)(
z
t

)
. (5.37)

This is the inverse of the transformation given in Eq. (5.4). We thus achieve the Lorentz
boost of the wave function by writing

ψn
η (z, t) = ψn

0 (z
′, t′)

=
[

1

π2nn!

]1/2
Hn(z

′) exp
[
−1

2

(
z′2 + t′2

)]
. (5.38)

It is possible to expand this in terms of the functions of z and t variables (Ruiz 1974, Kim
et al. 1979b, Kim and Noz 1986, Rotbart 1981), and the result is

ψn
η (z, t) =

(
1

cosh η

)(n+1)∑
k

[
(n+ k)!

n!k!

]1/2
(tanh η)kχn+k(z)χk(t), (5.39)

where χn(z) is the n
th excited state oscillator wave function which takes the familiar form

χn(z) =

[
1√
π2nn!

]1/2
Hn(z) exp

(
−z2

2

)
. (5.40)

If n = 0, this formula becomes simplified to (Ruiz 1974)

ψ0
η(z, t) =

(
1

cosh η

)1/2∑
k

(tanh η)kχk(z)χk(t). (5.41)

This formula plays an important role also in squeezed states of light (Yuen 1976) and
also in continuous-variable entanglement (Giedke et al. 2003, Dodd and Halliwell 2004,
Braunstein and van Loock 2005, Adesso and Illuminati 2007, Paz and Roncaglia 2008,
Chou et al. 2008, Xiang et al. 2011).
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According to the Gaussian form of Eq.(5.8), the ground-state wave function of Eq. (5.41)
takes the form (Kim and Noz 1973)

ψ0
η(z, t) =

(
1

π

)1/2

exp
{
−1

4

[
e−2η(z + t)2 + e2η(z − t)2

]}
. (5.42)

This is precisely the formula for Dirac’s picture of the Lorentz squeeze, as illustrated in
Fig. 5.2.

Figure 5.6: Two overlapping wave functions. The wave functions with β = 0 and β = 0.08
are sketched in Fig. 5.4. They can overlap as shown in the present figure. The wave
functions can also move in the opposite directions with β = ±0.8 (Kim and Noz 1973,
1986).

Relativity and quantum mechanics are the two most important physical theories de-
veloped in the 20th century. Thus, the most pressing issue in modern physics is to make
quantum mechanics consistent with special relativity and then with general relativity.
Since the harmonic oscillator plays the central role in quantum mechanics, the problem
is to construct harmonic oscillator wave functions consistent with Lorentz covariance. A
comprehensive list of early papers on this problem was given by Kim and Noz in their
book (Kim and Noz 1986). There also more recent papers on this subject (Navarro and
Navarro-Salas 1996, Gazeau and Graffi 1997, Oda et al. 1999, Bars 2009, Kowalski and
Rembielinski 2010, Simon 2011, Pavsc 2013).

5.6 Lorentz contraction of harmonic oscillators

Let us now consider the overlap of the wave function ψn
η (z, t) with that with η = 0, as

indicated in Fig. 5.6. We are interested in the integral∫ (
ψn′

η (z, t)
)∗
ψn
0 (z, t)dz dt, (5.43)

where ψn
0 (z, t), given in Eq. (5.36), can be written as

ψn
0 = χnχ0(t). (5.44)
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Figure 5.7: Orthogonality relations for covariant oscillator wave functions. The harmonic
oscillator can be excited and can also be Lorentz boosted as illustrated in fig.(a). The
orthogonality relations remain invariant under Lorentz boosts, and their inner products
have the Lorentz-contraction property given in fig.(b) (Ruiz 1974, Kim and Noz 1986).

Then evaluation of this integral is straight-foward from Eq. (5.39), and the result
is (Ruiz 1974) (

ψn′

η , ψ
n
0

)
=

(
1

cosh η

)(n+1)

δnn′ (5.45)

This means that the orthogonality relation is preserved between two wave functions in
two different frames.

If n = n′, the inner product between two wave functions leads to the contraction given
on the right hand side of Eq. (5.45). In terms of the velocity parameter β = v/c, where
v is the hadronic velocity,

1

cosh η
=
√
1− β2. (5.46)

This expression is more familar to us, and the right-hand side of Eq. (5.45) is

(√
1− β2

)(n+1)

. (5.47)

For the ground-state wave function with n = 0, it is like the Lorentz contraction of a
rigid body. For the first excited state, it is like an additional rod. This is not surprising
in view of the fact that the excited states are obtained through application of the step-up
operator. The nth excited state |n > can be written as

1√
n!

(
a†
)n

|0 >, (5.48)

The additional contraction factor
√
1− β2 comes from the step-up operator.

If the value of η in one of the wave functions is replaced by nonzero value η′, cosh η
in Eq. (5.39) should become cosh(η− η′). Of particular interest is the case with η′ = −η,
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as shown in Fig.(5.6). In this case, this is an overlap of two wave functions moving in the
opposite directions, and the contaction factor is

(
1

cosh(2η)

)(n+1)

, (5.49)

which, in the language of β, becomes

(
1− β2

1 + β2

)(n+1)

. (5.50)

Based on these orthogonality and contraction properties, it appears possible to give a
quantum probability interpretation to the covariant harmonic oscillator in the Lorentz-
covariant world as shown in Fig.(5.7). On the other hand, these wave functions contain
the time separation variable between the constituent particles. What is the meaning of
the distribution in terms of this variable, which is thoroughly hidden (Kim and Noz 2003)
in the present form of quatum mechanics? In order clarify this issue, let us examine the
concept of Feynman’s rest of the universe.

5.7 Feynman’s rest of the universe

As was noted in the previous section, the time-separation variable has an important role
in the covariant formulation of the harmonic oscillator wave functions. It should exist
wherever the space separation exists. The Bohr radius is the measure of the separation
between the proton and electron in the hydrogen atom. If this atom moves, the radius
picks up the time separation, according to Einstein.

On the other hand, the present form of quantum mechanics does not include this
time-separation variable. The best way we can interpret it at the present time is to treat
this time separation as a variable in Feynman’s rest of the universe (Han at al. 1999). In
his book on statistical mechanics (Feynman 1972), Feynman states

When we solve a quantum-mechanical problem, what we really do is divide the
universe into two parts - the system in which we are interested and the rest of
the universe. We then usually act as if the system in which we are interested
comprised the entire universe. To motivate the use of density matrices, let us
see what happens when we include the part of the universe outside the system.

The failure to include what happens outside the system results in an increase of en-
tropy. The entropy is a measure of our ignorance and is computed from the density
matrix (von Neumann 1932). The density matrix is needed when the experimental pro-
cedure does not analyze all relevant variables to the maximum extent consistent with
quantum mechanics (Fano 1957). If we do not take into account the time-separation
variable, the result is an increase in entropy (Kim and Wigner 1990, Kim and Noz 2014).

For the covariant oscillator wave functions defined in Eq. (5.38), the pure-state density
matrix is

ρnη (z, t; z
′, t′) = ψn

η (z, t)ψ
n
η (z

′, t′), (5.51)
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which satisfies the condition ρ2 = ρ :

ρnη (z, t;x
′, t′) =

∫
ρnη (z, t;x”, t”)ρ

n
η (z”, t”; z

′, t′)dz”dt”. (5.52)

However, in the present form of quantum mechanics, it is not possible to take into
account the time separation variables. Thus, we have to take the trace of the matrix with
respect to the t variable. Then the resulting density matrix is

ρnη (z, z
′) =

∫
ψn
η (z, t)ψ

n
η (z

′, t)dt

=

(
1

cosh η

)2(n+1)∑
k

(n+ k)!

n!k!
(tanh η)2kψn+k(z)ψ

∗
n+k(z

′). (5.53)

The trace of this density matrix is one, but the trace of ρ2 is less than one, as

Tr
(
ρ2
)
=
∫
ρnη (z, z

′)ρnη (z
′, z)dzdz′

=

(
1

cosh η

)4(n+1)∑
k

[
(n+ k)!

n!k!

]2
(tanh η)4k, (5.54)

which is less than one. This is due to the fact that we do not know how to deal with the
time-like separation in the present formulation of quantum mechanics. Our knowledge is
less than complete.

The standard way to measure this ignorance is to calculate the entropy defined as

S = −Tr (ρ ln(ρ)) . (5.55)

If we pretend to know the distribution along the time-like direction and use the pure-
state density matrix given in Eq. (5.51), then the entropy is zero. However, if we do not
know how to deal with the distribution along t, then we should use the density matrix of
Eq. (5.53) to calculate the entropy, and the result is

S = (n+ 1)
{
(cosh η)2 ln(cosh η)2 − (sinh η)2 ln(sinh η)2

}

−
(

1

cosh η

)2(n+1)∑
k

(n+ k)!

n!k!
ln

[
(n+ k)!

n!k!

]
(tanh η)2k. (5.56)

In terms of the velocity paramter β of the hadron,

tanh η = β =
v

c
, (5.57)

and

S = −(n+ 1)

{
ln
(
1− β2

)
+
β2 ln β2

1− β2

}

−
(
1− β2

)(n+1)∑
k

(n+ k)!

n!k!
ln

[
(n+ k)!

n!k!

]
β2k. (5.58)
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Figure 5.8: Localization property in the zt plane. When the hadron is at rest, the
Gaussian form is concentrated within a circular region specified by (z+ t)2+(z− t)2 = 1.
As the hadron gains speed, the region becomes deformed to e−2η(z+ t)2+ e2η(z− t)2 = 1.
Since it is not possible to make measurements along the t direction, we have to deal with
information that is less than complete (Kim and Wigner 1990).

Let us go back to the wave function given in Eq. (5.39). As is illustrated in Fig. 5.8, its
localization property is dictated by the Gaussian factor which corresponds to the ground-
state wave function. For this reason, we expect that much of the behavior of the density
matrix or the entropy for the nth excited state will be the same as that for the ground
state with n = 0.

For the ground state with n = 0, the density matrix can be computed from the
Gaussian form of Eq. (5.41), and it becomes

ρ(z, z′) =

(
1

π cosh(2η)

)1/2

exp

{
−1

4

[
(z + z′)2

cosh(2η)
+ (z − z′)2 cosh(2η)

]}
, (5.59)

For this ground state, the entropy becomes

S = (cosh η)2 ln(cosh η)2 − (sinh η)2 ln(sinh η)2. (5.60)

In terms of the velocity parameter β, this entropy can be written as

S =
1

1− β2
ln

[
1

1− β2

]
− β2 ln β2. (5.61)

The width of the distribution becomes
√
cosh(2η). In terms of β,

√
cosh(2η) =

√
1 + β2

1− β2
, (5.62)

which becomes very large as β → 1, as is illustrated in Fig. 5.9
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Entropy Uncertainty

Figure 5.9: Entropy and uncertainty in the Lorentz-covariant system. The horizontal axis
measures β in both graphs. The formulas for the entropy and uncertainty are given in
Eq. (5.60) and Eq. (5.65) respectively. These quantites arise from our ignorance about the
time-separation variable, which is hidden in the present form of quantum mechanics (Kim
and Noz 2014).

Figure 5.10: The uncertainty from the hidden time-separation coordinate. The small
circle indicates the minimal uncertainty when the hadron is at rest. More uncertainty is
added when the hadron moves. This is illustrated by a larger circle. The radius of this

circle increases by
√
cosh(2η) (Kim and Noz 2014) .
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The time-separation variable exists in the Lorentz-covariant world, but we pretend not
to know about it. It thus is in Feynman’s rest of the universe. If we do not measure this
time separation, it becomes translated into the entropy.

We can see the uncertainty in our measurement process from the Wigner function
defined as (Wigner 1932, Kim and Noz 1991)

W (z, q) =
1

π

∫
ρ(z + y, z − y)e2iqydy. (5.63)

After integration, this Wigner function becomes

W (z, q) =
1

π cosh(2η)
exp

{
−
(
z2 + q2

cosh(2η)

)}
. (5.64)

We use here q instead of p for the momentum conjugate to z. The notation p has been
used for the hadronic momentum.

This Wigner phase-space distribution is illustrated in Fig. 5.10. The smaller inner
circle corresponds to the minimal uncertainty of the single oscillator. The larger circle is
for the total uncertainty including the statistical uncertainty from our failure to observe
the time-separation variable. The larger radius is

√
cosh(2η) =

√
1 + β2

1− β2
. (5.65)

The behavior of this radius is illustrated in Fig. 5.9. This radius takes the minimum value
of one when β = 0, and increases rapidly when β becomes close to one.
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Chapter 6

Quarks and partons in the
Lorentz-covariant world

Since the time of Einstein and Bohr, there has been an evolution of the way in which we
look at quantum bound states, as illustrated in Fig. 6.1. The evolution took place in the
following three steps.

1. The energy levels of the hydrogen atom played the pivotal role by replacing the
electron orbit of the hydrogen atom with a standing wave, leading to bound states
in quantum mechanics. However, the hydrogen atom cannot play a role in the
Lorentz covariant world since it cannot be accelerated to a relativistic speed.

2. 1964, the proton became a bound state of the more fundamental constituents called
“quarks” (Gell-mann 1964). Of course, the proton is different from the hydrogen
atom, but inherits the same quantum mechanics from the hydrogen atom. Unlike the
hydrogen atom, the proton can be accelerated, and its speed can become very close
to that of light. Thus, it is possible to study the quantum mechanics of the hydrogen
atom or bound states in the Lorentz-covariant world by studying the proton in the
quark model. Fig. 6.1 illustrates this transition.

3. In 1969, Feynman observed that the proton, when it moves with a velocity close
to that of light, appears like a collection of partons with a wide-spread momentum
distribution (Feynman 1969). Partons are like free particles. Quarks and partons are
the same particles but they appear differently to observers in two different reference
frames. Therefore, there must be a Lorentz-covariant model for quantum bound
states, as illustrated in Fig. 6.2.

At the time of Einstein and Bohr, both the proton and electron were regarded as
point particles. However, the discovery of Hofstadter and McAllister changed our picture
of the proton (Hofstadter and McAllister 1955). The proton charge has an internal dis-
tribution. Within the framework of quantum electrodynamics, it is possible to calculate
the Rutherford formula for electron-proton scattering when both electron and proton are
point particles. Because the proton is not a point particle, there is a deviation from
the Rutherford formula. We describe this deviation as the “proton form factor” which
depends on the momentum transfer during electron-proton scattering.
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Figure 6.1: Evolution of the hydrogen atom. The electron orbit was replaced by a standing
wave, but the hydrogen atom cannot not be accelerated. In 1964, the proton as a bound
state inherited the quantum mechanics of the hydrogen atom (Gell-mann 1964). The
proton these days can move with a speed very close to that of light and exhibits the
properties of quantum bound states in the Lorentz-covariant world.

Figure 6.2: Two distinct ways in which the proton appears in the real world. If the
proton is at rest, it appears as a bound state of three quarks (Gell-mann 1964). If it
moves with a speed close to that of light, it appears like a collection of an infinite number
of partons (Feynman 1969). Then the question is whether quarks and partons are two
different manifestations of the same Lorentz-covariant entity.
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Indeed, the study of the proton form factor has been and still is one of the central
issues in high-energy physics. The proton form factor decreases as the momentum transfer
increases. Its behavior is called the “dipole cut-off” meaning an inverse-square decrease,
and it has been a challenging problem in quantum field theory and other theoretical
models (Frazer and Fulco 1960). Since the emergence of the quark model in 1964 (Gell-
Mann 1964), the hadrons are regarded as quantum bound states of quarks with space-time
extensions.

Furthermore, the hadronic mass spectra indicate that the binding force between the
quarks is like that of the harmonic oscillator (Feynman et al. 1971). This leads us to
suspect that the quark model with harmonic oscillator wave functions could explain the
behavior of the proton form factor. There are indeed many papers written on this subject.
We shall return to this problem in Sec. 6.4.

Another problem in high-energy physics is Feynman’s parton picture (Feynman 1969).
If the hadron is at rest, we can approach this problem within the framework of bound-state
quantum mechanics. If it moves with a speed close to that of light, it appears as a collec-
tion of an infinite number of partons, which interact with external signals incoherently.
This phenomenon raises the question of whether the Lorentz boost destroysquantum co-
herence (Kim 1998).

6.1 Lorentz-covariant quark model

In the quark model, mesons are two-body bound states of one quark and one anti-
quark, and baryons are bound states of three quarks. The early successes of the quark
model include the ratio of the proton-neutron electromagnetic potential and magnetic mo-
ments (Beg et al. 1964). Also the hadronic mass spectra are like those of three-dimensional
harmonic oscillators (Feynman et al. 1971).

The question then is how the mass spectrum calculated within the framework of non-
relativistic quantum mechanics is valid for this relativistic case, while ignoring the time-
separation variable. For this question, the answer given in the 1971 paper of Feynman et
al. is not satisfactory. The correct answer to this question is that Wigner’s little group
for massive particles is like the three-dimensional rotation group as was spelled out in
Chapter 2 and in Chapter 5. The role of the time-separation variable is discussed there.

Our original question is how the hydrogen atom looks to a moving observer. The
question now is how much we can learn about this Bohr-Einstein issue by studying the
proton in the quark model based on the three-dimensional harmonic oscillator. For the
hydrogen atom, we use the Coulomb potential, while the binding force between quarks
is that of the oscillator. The point is that those two different potentials share the same
quantum mechanics.

For this purpose, we will need a bound-state wave function which can be Lorentz-
boosted. Here the natural choice is the harmonic oscillator wave function discussed in
Chapter 5. We can start with the ground-state wave function which can be Lorentz
boosted. Since the harmonic oscillator wave function is separable in the Cartesian co-
ordinate system, we can leave out the transverse components of the wave function, and
consider only the longitudinal and time-like coordinates. For this purpose, let us rewrite
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Figure 6.3: Lorentz-squeezed space-time and momentum-energy wave functions. As the
hadron’s speed approaches that of light, both wave functions become concentrated along
their respective positive light-cone axes. These light-cone concentrations lead to Feyn-
man’s parton picture (Kim and Noz 1977, Kim 1989). The external signal, since it is
moving in the direction opposite to the direction of the hadron, travels along the negative
light-cone axis. Thus, the interaction time of this signal with the bound state is much
shorter than the period of oscillation of the quarks inside the hadron. This effect is called
Feynman’s time dilation (Feynman 1969, Kim and Noz 2005).

the wave function of Eq. (5.42) as

ψη(z, t) =
1√
π
exp

{
−1

4

[(
e2η(z + t)2 + e−2η(z − t)2

)]}
, (6.1)

which becomes

ψη(z, t) =
1√
π
exp

{
−1

2

[(
z2 + t2

)]}
, (6.2)

for η = 0.

6.2 Feynman’s parton picture

Let us go back to the two-body problem and discuss what happens to the wave function
when the proton is Lorentz-boosted. For this system, we have discussed the Lorentz-
squeeze problem in Sec. 5.2.

It is a widely accepted view that hadrons are quantum bound states of quarks having a
localized probability distribution. As in all bound-state cases, this localization condition
is responsible for the existence of discrete mass spectra. The most convincing evidence
for this bound-state picture is the hadronic mass spectra (Feynman et al. 1971, Kim and
Noz 1986).
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However, this picture of bound states is applicable only to observers in the Lorentz
frame in which the hadron is at rest. How would the hadrons appear to observers in other
Lorentz frames?

In 1969, Feynman observed that a fast-moving hadron can be regarded as a collec-
tion of many “partons” whose properties appear to be quite different from those of the
quarks (Feynman 1969, Kim and Noz 1986). For example, the number of quarks inside
a static proton is three, while the number of partons in a rapidly moving proton appears
to be infinite. The question then is how the proton looking like a bound state of quarks
to one observer can appear so differently to an observer in a different Lorentz frame?
Feynman made the following systematic observations.

a. The picture is valid only for hadrons moving with velocity close to that of light.

b. The interaction time between the quarks becomes dilated, and partons behave as
free independent particles.

c. The momentum distribution of partons becomes widespread as the hadron moves
fast.

d. The number of partons seems to be infinite or much larger than that of quarks.

Because the hadron is believed to be a bound state of two or three quarks, each of the
above phenomena appears as a paradox, particularly b) and c) together. How can a free
particle have a wide-spread momentum distribution?

In order to resolve this paradox, let us construct the momentum-energy wave function
corresponding to Eq. (5.42). If the quarks have the four-momenta pa and pb, we can
construct two independent four-momentum variables (Feynman et al. 1971)

P = pa + pb, q =
√
2 (pa − pb) . (6.3)

The four-momentum P is the total four-momentum and is thus the hadronic four-momentum
while q measures the four-momentum separation between the quarks.

The resulting momentum-energy wave function is

ϕη(qz, q0) =
(
1

π

)1/2

exp
{
−1

4

[
e−2η (qz + q0)

2 + e2η (qz − q0)
2
]}
. (6.4)

For large values of η, we can let q0 = qz, and the wave function becomes

ϕη(qz) =
(
1

π

)1/4

exp
{
−
[
e−2η (qz)

2
]}
. (6.5)

Because we are using here the harmonic oscillator, the mathematical form of the above
momentum-energy wave function is identical to that of the space-time wave function of
Eq. (5.42). The Lorentz Squeeze properties of these wave functions are also the same.
This aspect of the squeeze has been exhaustively discussed in the literature (Kim and
Noz 1977, Kim 1989), and it is illustrated again in Fig. 6.3. The hadronic structure
function calculated from this formalism is in reasonable agreement with the experimental
data (Hussar 1981).



66
CHAPTER 6. QUARKS AND PARTONS IN THE LORENTZ-COVARIANT

WORLD

When the hadron is at rest with η = 0, both wave functions behave like those for
the static bound state of quarks. As η increases, the wave functions become continuously
squeezed until they become concentrated along their respective positive light-cone axes.
Let us look at the z-axis projection of the space-time wave function. Indeed, the width
of the quark distribution increases as the hadronic speed approaches that of the speed of
light. The position of each quark appears widespread to the observer in the laboratory
frame, and the quarks appear like free particles.

The momentum-energy wave function is just like the space-time wave function. The
longitudinal momentum distribution becomes wide-spread as the hadronic speed ap-
proaches the velocity of light. This is in contradiction with our expectation from non-
relativistic quantum mechanics that the width of the momentum distribution is inversely
proportional to that of the position wave function. Our expectation is that if quarks are
free, they must have a sharply defined momenta, not a wide-spread distribution.

However, according to our Lorentz-squeezed space-time and momentum-energy wave
functions, the space-time width and the momentum-energy width increase in the same
direction as the hadron is boosted. This is of course an effect of Lorentz covariance. This
indeed leads to the resolution of one of the quark-parton puzzles (Kim and Noz 1977,
1986, Kim 1989).

Another puzzling problem in the parton picture is that partons appear as incoherent
particles, while quarks are coherent when the hadron is at rest. Does this mean that the
coherence is destroyed by the Lorentz boost (Kim 1998, 2004)? The answer is NO, and
here is the resolution to this puzzle.

When the hadron is boosted, the hadronic matter becomes squeezed and becomes
concentrated in the elliptic region along the positive light-cone axis. The length of the
major axis becomes expanded by eη, and the minor axis is contracted by e−η.

This means that the interaction time of the quarks among themselves becomes di-
lated. Because the wave function becomes wide-spread, the distance between one end of
the oscillator well and the other end increases. This effect, first noted by Feynman (Feyn-
man 1969), is universally observed in high-energy hadronic experiments. The period of
oscillation increases like eη. On the other hand, the external signal, since it is moving in
the direction opposite to the direction of the hadron, travels along the negative light-cone
axis.

If the hadron contracts along the negative light-cone axis, the interaction time de-
creases by e−η. The ratio of the interaction time to the oscillator period becomes e−2η.
The energy of each proton coming out of the LHC accelerator is 13 TeV . This leads to
the ratio 1.25 × 10−9. This is indeed a small number. The external signal is not able to
sense the interaction of the quarks among themselves inside the hadron.

Indeed, the covariant harmonic oscillator formalism provides one Lorentz-covariant
entity which produces the quark and parton models as two limiting cases as is indicated
in Table 6.1.

6.3 Proton structure function

The quark distribution in momentum-energy space can be measured from the inelastic
electron-proton scattering with one-photon exchange (Bjorken and Paschos 1969). The
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Table 6.1: Further contents of Einstein’s E = mc2. The fourth row is added to Table 2.1.
Indeed, the unified picture of the quark and parton models can be viewed as a further
content of Einstein’s energy-momentum relation (Kim and Noz 1986, Kim 1989).

Massive Lorentz Massless
Slow Covariance Fast

Energy- E = Einstein’s
Momentum p2/2m E = [p2 +m2]1/2 E = p

Spin,Helicity S3 Wigner’s Helicity
Gauge Trans. S1, S2 Little Group Gauge Trans.

Hadron’s Gell-Mann’s Lorentz-covariant Feynman’s
Constituents Quark Model Harmonic Oscillator Parton Picture

measured distribution is called the proton structure function. We are now interested in
how close the Gaussian form of Eq.(6.4) is to the experimental world.

First of all, in the large-η limit, the proton wave function is within the narrow elliptic
region where qz = q0, and we are left with the wave function depending on only one
variable. Thus, this one-variable wave function takes the form

ϕη(qz) =
(
1

π

)1/4

exp
{
−
[
e−2η (qz)

2
]}
. (6.6)

According to Eq.(6.3), the

pa =
√
2 (Pz − 2pa) , pb =

√
2 (Pz + 2pa) . (6.7)

If we introduce the parameter

x =
paz
Pz

, (6.8)

This is the ratio of the quark momentum to the hadronic momentum. Indeed, this variable
is used for measuring the parton distribution in high-energy laboratories.

It is then possible to write the Gaussian form of Eq.(6.6) in terms of this x variable,
and the quark distribution can be written as

ρ(x) = exp

[
−γ

(
x− 1

2

)2
]
, (6.9)

where the constant γ is to be determined from the level separation from the hadronic
mass spectra (Feynman et al. 1971). The variable x ranges from its minimum value of
zero to the maximum value 1. This Gaussian form peaks at x = 1/2.
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Before attempting to make a real contact with the experimental world, we have to face
the fact that the proton is a bound state of three quarks. Within the harmonic oscillator
regime, the three-body bound system can be separated into a regime of two independent
oscillators. This problem was worked out in detail in the 1971 paper of Feynman et al..
Let us reproduce their calculation.

Let xa, xb, xc represent the space-time coordinates for those quarks. If there is an
oscillator force between two quarks, we are led the quadratic form[

(xa − xb)
2 + (xb − xc)

2 + (xc − xa)
2
]
. (6.10)

In order to deal with this expression, Feynman et al. introduced the following three
variables:

X =
xa + xb + xc

3
,

r =
xa + xb − 2xc

6
,

s =
xb − xa

2
, (6.11)

and

xa = X − 2r,

xb = X + r −
√
3s,

xc = X + r +
√
3s. (6.12)

In terms of the r and s variables, the quadratic form becomes

18
(
r2 + s2

)
, (6.13)

and does not depend on the X variable, which specifies the space-time coordinate of the
proton.

As for the momentum-energy four-vectors, let us call them pa, pb, and pc for the quarks
a, b, c respectively, and introduce the following variables. For the momentum-energy four-
vectors, we can introduce the following three variables.

P = pa + pb + pc,

q = pa + pb − 2pc,

k =
√
3 (pb − pa) . (6.14)

Then

pa =
1

3
P +

1

6
q − 1

2
√
3
k,

pb =
1

3
P +

1

6
q +

1

2
√
3
k,

pc =
1

3
P − 1

3
q. (6.15)
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Figure 6.4: Parton distribution function compared with experimental data. The boosted
oscillator has its peak at x = 1/3 . This Gaussian form gives a reasonable agreement
with experimental data for large values of x, but the disagreement is substantial for small
values of x. This figure is from Paul Hussar’s paper (Hussar 1981).

In terms of these variables we are led to consider the quadratic form of

18
(
q2 + k2

)
. (6.16)

This form does not depend on the variable P , which measures the momentum and energy
of the proton.

If the external signal interacts with quark c, its momentum depends only on the q
variable, which can be written as

q = P − 3pc. (6.17)

We can then define the x variable as

x =
pcz
Pz

. (6.18)

Then the quark distribution should take the form

ρ(x) =

(
1

πγ

)1/2

exp

[
−γ

(
1− 1

3

)2
]
. (6.19)

The constant γ is to be determined from the hadronc mass spectra based on the oscillator
model (Feynman et al. 1971). Figure 6.4 shows this Gaussian form, and its comparison
with what we observe in the real world.

On the same figure, there is a curve derived from the distribution derived from the
experimental data. This distribution is measured from inelastic electron-proton scattering
(Bjorken and Paschos 1969). These two curves are somewhat different because the quarks
do not interact with the incoming photon as a point particle.

The simplest model is to put all those effects into one additional quark in the oscillator
system. This leads to the proton as a bound state of four quarks. The fourth quark is
responsible for all those un-explained effects (Kim and Noz 1978). Another model is to
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use the valon model (Hwa 1980, Hwa and Zahir 1981) which allows us to screen out all
those non-point effects. Using this valon model, Hussar (1981) derived the experimental
curve to be compared with the Gaussian form as shown in Fig. 6.4.

This graph may not be as accurate as we desire. However, the remarkable feature is
that the Gaussian form was calculated from the proton at rest. So is the constant γ. It
came from the level spacing in the hadronic mass spectra. It is remarkable that these two
features manifest themselves for the proton whose speed is very close to that of the light.

There are many other models to deal with the problem of providing corrections to
the parton distribution. QCD (quantum chromodyanics) is a case in point (Buras 1980).
QCD can provide corrections to the distribution, but it does not produce the distribution
from which to start. The covariant harmonic oscillator function provides this starting
point.

It is like the case of quantum electrodynamics. QED was quite successful in produc-
ing the Lamb shift in the the hydrogen energy spectrum, but QED cannot produce the
Rydberg energy levels to which the correction is made. The hydrogen energy levels are
still obtained from the Schrödinger or Dirac equation with the localization condition on
wave functions.

6.4 Proton form factor and Lorentz coherence

Let us now consider the elastic scattering of proton and electron with one photon exchange.
If the proton is a point particle, the scattering cross section can be calculated from the
one-photon exchange Feynman diagram. The calculation is straight-forward if the proton
is a point particle. This process is called the Rutherford scattering, and the cross section
becomes the same as the classical Coulomb scattering if the proton’s recoil is negligible.

As the momentum transfer becomes substantial as indicated in Fig. 6.5 the cross
section deviates from the that of the Rutherford scattering, as was observed first by
Hofstadter and McCallister in 1955 (Hofstadter and McCallister 1955). Subsequently, it
was observed that the cross section decreases as

1

(momentum transfer)8
. (6.20)

This deviation comes from the fact that the proton is not a point particle and that the
electric charge inside the proton is distributed with a finite radius. The portion of the
scattering amplitude describing this distribution is called the proton form factor. The
proton form factor should therefore decrease as

1

(momentum transfer)4
. (6.21)

This behavior of decrease is known as the dipole cut-off in the literature. This dipole cut-
off and possible deviations from it constitute one of the major branches of high-energy
physics. There have been in the past some far-reaching theoretical models to deal with
this problem (Frazer and Fulco 1960).

In this section, we are interested in approaching this problem using the harmonic
oscillator formalism developed in Chapter 5. We shall show that the dipole cut-off is a
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Figure 6.5: Breit frame. The incoming and outgoing protons move with equal magnitude
of momentum in opposite directions (Kim and Noz 1986).

consequence of the coherence between the contraction of the proton wave function and
the decrease in the wavelength of the incoming signal.

While the formalism of Chapter 5 is largely based on the papers written by Dirac
and Wigner, it is interesting to note that the same harmonic oscillator functions can be
derived from those authors who attempted to understand the proton form factor. These
authors were not aware of the works of Dirac and Wigner. Let us briefly review what
they did.

In 1953, Yukawa was interested in constructing harmonic oscillator wave functions
that can be Lorentz-transformed (Yukawa 1953). His primary interest was in the mass
spectrum produced by his Lorentz-invariant differential equation. However, at that time,
his mass spectrum did not appear to have anything to do with the physical world.

After witnessing a non-zero charge radius of the proton observed by Hofstadter and
McAllister (Hofstadter and McAllister 1955, Hofstadter 1956), Markov in 1956 considered
using Yukawa’s oscillator formalism for calculating the proton form factor (Markov 1956).

However, the constituent particles of the oscillator wave functions were not defined
at that time. Shortly after the emergence of the quark model in 1964 (Gell-Mann 1964),
Ginzburg and Man’ko (1985) considered relativistic harmonic oscillators for bound-states
of quarks.

Even though they did not mention Yukawa’s 1953 paper, Fujimura, Kobayashi, and
Namiki used the quark model based on Yukawa’s relativistic oscillator wave function, to
calculate the proton form factor, and obtained the dipole cut-off (Fujimura et al. 1970).
In the same year, Licht and Pagnamenta derived the same result using Lorentz-contracted
oscillator wave functions. They used the Breit coordinate system in order to by-pass the
time-separation variable appearing in the covariant formalism (Licht and Pagnamenta
1970, Kim and Noz 1973).

In 1971, Feynman, Kislinger, and Ravndal noted that the observed hadronic mass
spectra can be explained in terms of the degeneracies of three-dimensional harmonic
oscillators (Feynman et al. 1971), confirming the earlier suggestion made by Yukawa in
1953. They quoted the paper by Fujimura et al. (Fujimura et al. 1970), but they did not
mention Yukawa’s 1953 paper. This is the reason why Feynman et al. could not write
down normalizable wave functions.

Let us go back to the formalism developed in Chapter 5. When considering the
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scattering of one electron and one proton by exchanging one photon it is possible to
choose the Lorentz frame in which the incoming and outgoing protons are moving in
opposite directions with the same speed. Let us assume that the proton is moving along
the z direction as indicated in Fig. 6.5, and let p be the magnitude of the momentum.
Then the initial and final momentum-energy four-vectors are

(p, E) and (−p, E), (6.22)

respectively, where E =
√
1 + p2. The momentum transfer in this Breit frame is

(p, E)− (−p, E) = (2p, 0), (6.23)

with zero energy component.
The proton form factor then becomes

F (p) =
∫
e2ipz (ψη(z, t))

∗ ψ−η(z, t) dz dt. (6.24)

If we use the ground-state harmonic oscillator wave function, this integral becomes

1

π

∫
e2ipz exp

{
− cosh(2η)

(
z2 + t2

)}
dz dt. (6.25)

The physics of cosh(2η) in this expression was explained in Eq. (5.49).
In the Fourier integral of Eq. (6.25), the exponential function does not depend on the

t variable. Thus, after the t integration, Eq. (6.25) becomes

F (p) =
1√

π cosh(2η)

∫
e2ipz exp

{
−z2 cosh(2η)

}
dz. (6.26)

If we complete this integral, the proton form factor becomes

F (p) =
1

cosh(2η)
exp

{
−p2

cosh(2η)

}
. (6.27)

If we use the expression of cosh(2η) given in Eq. (5.49), this proton form factor becomes

F (p) =
1

1 + 2p2
exp

(
−p2

1 + 2p2

)
, (6.28)

which decreases as 1/p2 for large values of p.
In order to illustrate the effect of the role of this Lorentz contraction in more detail,

let us perform the integral of Eq. (6.26) without the contraction factor cosh(2η). This
means that the wave function ψη(z, t) in the Eq. (6.24) is replaced by the Gaussian form
ψ0(z, t) of Eq. (6.2). With this non-squeezed wave function, the Fourier integral becomes

G(p) =
∫
e2ipz (ψ0(z, t))

∗ ψ0(z, t) dz dt. (6.29)

The result of this integral is

G(p) =
1√
π
exp (−p2). (6.30)
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Figure 6.6: Coherence between the wavelength and the proton size. Referring back to
Fig. 6.5, the proton sees the incoming photon. The wavelength of this photon becomes
smaller for increasing momentum transfer. If the proton size remains unchanged, there is
a rapid oscillation cutoff in the Fourier integral for the form factor leading to a Gaussian
cutoff. However, if the proton size decreases coherently with the wavelength, there are
no oscillation effects, leading to a polynomial decrease of the form factor (Kim and Noz
1986, 2011).

This leads to a Gaussian cutoff of the proton form factor. This does not happen in the
real world, and the calculation of G(p) is for an illustrative purpose only.

Let us go back to the Fourier integrals of Eq. (6.24) and Eq. (6.29). The only difference
is the cosh(2η) factor in Eq. (6.24). This factor is in the normalization constant and comes
from the integration over the t variable which does not affect the Fourier integral.

However, it causes the Gaussian width to shrink by 1/
√
2p for large values of p. The

wavelength of the sinusoidal factor is inversely proportional to the momentum 2p. Thus,
both the Gaussian width and the wavelength of the incoming signal shrink at the same
rate of 1/p as p becomes large. Without this coherence, the cutoff is Gaussian as noted
in Eq. (6.30). The effect of this Lorentz coherence is illustrated in Fig. 6.6.

There still is a gap between F (p) of Eq. (6.28) and the real world. Before comparing
this expression with the experimental data, we have to realize that there are three quarks
inside the proton with two oscillator modes.

One of the modes goes through the Lorentz coherence process discussed in this section.
The other mode goes through the contraction process given in Eq. (5.49). The net effect
is

F3(p) =

(
1

1 + 2p2

)2

exp

(
−p2

1 + 2p2

)
. (6.31)

This will lead to the desired dipole cut-off of (1/p2)
2
.

In addition, the effect of the quark spin should be addressed. There are also reports
of deviations from the exact dipole cut-off. There have been attempts to study the
proton form factors based on the four-dimensional rotation group with an imaginary time
coordinate. There are also many papers based on the lattice QCD. A brief list of the
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references to these efforts is given in (Kim and Noz 2011).
The purpose of this section was limited to studying in detail the role of Lorentz coher-

ence in keeping the proton form factor from the steep Gaussian cutoff in the momentum
transfer variable. The coherence problem is one of the primary issues of the current trend
in physics.

6.5 Coherence in momentum-energy space

We are now interested in how Lorentz coherence manifests itself in momentum-energy
space. We start with the Lorentz-squeezed wave function in momentum-energy space,
which can be written as

ϕη (qz, q0) =
1

2π

∫
e−i(qzz−q0t)ψη(z, t)dt dz. (6.32)

This is a Fourier transformation of the Lorentz-squeezed wave function of Eq. (6.1), where
qz and q0 are Fourier conjugate variables to z and t respectively. The result of this integral
is

ϕη (qz, q0) =
1√
π
exp

{
−1

4

[
e−2η (qz + q0)

2 + e2η (qz − q0)
2
]}
. (6.33)

In terms of this momentum-energy wave function, the proton form factor of Eq. (6.24)
can be written as

F (p) =
∫
ϕ∗
−η (q0, qz − p)ϕη (q0, qz + p) dq0 dqz. (6.34)

The evaluation of this integral leads to the proton form factor F (p) given in Eq. (6.28).
In order to see the effect of the Lorentz coherence, let us look at two wave functions in

Fig. 6.7. The integral is carried out over the qz qo plane. As the momentum p increases, the
two wave functions become separated. Without the Lorentz squeeze, the wave functions do
not overlap, and this leads to a sharp Gaussian cutoff as in the case of G(p) of Eq. (6.30).

On the other hand, the squeezed wave functions have an overlap as shown in Fig. 6.7,
and this overlap becomes smaller as p increases. This leads to a slower polynomial cut-
off (Kim and Noz 1986, 2011).

The discovery of the non-zero size of the proton opened a new era of physics (Hofstadter
1956). The proton is no longer a point particle. One way to measure its internal structure
is to study the proton-electron scattering amplitude with one photon exchange, and its
dependence on the momentum transfer. The deviation from the case with the point-
particle proton is called the proton form factor.

On the experimental front, the dipole cut-off has been firmly established. Yes, there
are also experimental results indicating deviations from this dipole behavior (Alkofer
2005, Matevosyan 2005). However, in the present section, no attempts have been made
to review all the papers written on the corrections. From the theoretical point of view,
those deviations are corrections from the basic dipole behavior.

While the study of the proton form factor is still a major subject in physics, it is
gratifying to note that the proton’s dipole cut-off comes from the coherence between the
Lorentz contraction of the proton’s longitudinal size and the decrease in the wavelength
of the incoming signal.
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Figure 6.7: Lorentz coherence in the momentum-energy space. Both squeezed and non-
squeezed wave functions are given. As p increases, the two wave functions in Eq. (6.34)
become separated. Without the squeeze, there are no overlaps. This leads to a Gaussian
cutoff. The squeezed wave functions maintain an overlap, leading to a slower polynomial
cutoff (Kim and Noz 1986).

6.6 Hadronic temperature and boiling quarks

Harmonic oscillator wave functions are used for all branches of physics. The single-variable
ground-state harmonic oscillator can be excited in the following three different ways.

1. Energy level excitations, with the energy eigenvalues h̄ω(n+ 1/2).

2. Coherent state excitations resulting in

|α >= eαa
†
=
∑
n

αn

√
n!
|n > . (6.35)

3. Thermal excitations resulting in the density matrix of the form

ρT (z, z
′) =

(
1− e−h̄ω/kT

)∑
k

e−kh̄ω/kTϕk(z)ϕ
∗
k(z

′), (6.36)

where h̄ω and k are the oscillator energy separation and Boltzmann’s constant re-
spectively. This form of the density matrix is well known (Landau and Lifshitz 1958,
Davies and Davies 1975, Kim and Li 1989, Han et al. 1990).

We are now interested in the thermal excitation. If the temperature is measured in
units of h̄ω/k, the density matrix of Eq. (6.36) can be written as

ρT (z, z
′) =

(
1− e−1/T

)∑
k

e−1/Tϕk(z)ϕ
∗
k(z

′), (6.37)
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Figure 6.8: Hadronic temperature plotted against β. As the hadron gains in speed, the
quarks inside become excited and this results in a rise in temperature. If the temperature
is sufficiently high, those quarks start boiling and become partons (Kim and Noz 2014).

If we compare this expression with the density matrix of Eq. (5.59), we are led to

tanh2 η = exp (−1/T ), (6.38)

and to

T =
−1

ln
(
tanh2 η

) (6.39)

The temperature can be calculated as a function of tanh(η), and this calculation is plotted
in Fig. 6.8.

Earlier in Eq. (5.57), we noted that tanh(η) is proportional to velocity of the hadron,
and tanh(η) = v/c. Thus, the oscillator becomes thermally excited as it moves, as is
illustrated in Fig. 6.8.

Let us look at the velocity dependence of the temperature again. It is almost propor-
tional to the velocity from tanh(η) = 0 to 0.7, and again from tanh(η) = 0.9 to 1 with
different slopes.

While the physical motivation for this section was based on Feynman’s time separation
variable (Feynman et al. 1971) and his rest of the universe (Feynman 1972), we should
note that many authors have discussed field theoretic approaches to derive the density
matrix of Eq. (6.36). Among them are two-mode squeezed states of light (Yuen 1976,
Yurke et al. 1986, Han et al. 1993, Kim and Noz 1991) and thermo-field-dynamics (Fetter
and Walecka 1971, Ojima 1981, Umezawa et al. 1982, Mann and Revzen 1989).

The mathematics of two-mode squeezed states is the same as that for the covariant
harmonic oscillator formalism discussed in Chapter 5 (Dirac 1963, Yurke 1986, Kim and
Noz 1991, Han et al. 1993). Instead of the z and t coordinates, there are two measurable
photons. If we choose not to observe one of them (Yurke and Potasek 1987, Ekert and
Knight 1989), it belongs to Feynman’s rest of the universe (Han et al. 1999)

Another remarkable feature of two-mode squeezed states of light is that its formalism
is identical to that of thermo-field-dynamics. The temperature is related to the squeeze
parameter in the two-mode case. It is therefore possible to define the temperature of a
Lorentz-squeezed hadron within the framework of the covariant harmonic oscillator model.
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Chapter 7

Coupled oscillators and squeezed
states of light

Let us start with the one-dimensional harmonic oscillator equation

1

2

−( ∂

∂x

)2

+ x2

χn(x) =
(
n+

1

2

)
χn(x), (7.1)

whose solution takes the form

χn(x) =

[
1√
π2nn!

]1/2
Hn(x) exp

(
−x2

2

)
, (7.2)

where Hn(x) is the Hermite polynomial of the nth degree. The properties of this wave
function are well known.

We can now consider two oscillators with coordinates x1 and x2 respectively. There
are thus two differential equations with the x1 and x2 variables respectively. If we take
the difference of these two equations, we obtain

1

2

−( ∂

∂x1

)2

+

(
∂

∂x2

)2

+ x21 − x22

ψ(x1, x2) = (n− n′)ψ(x1, x2). (7.3)

In terms of the light-cone variables defined in Sec. 4.3

u =
x1 + x2√

2
, and v =

x1 − x2√
2

, (7.4)

the differential equation of Eq. (7.3) takes the form

1

2

[
− ∂

∂u

∂

∂v
+ uv

]
ψ(u, v) = (n− n′)ψ(u, v). (7.5)

This equation is invariant under the transformation

u→ eηu and v → e−ηv. (7.6)

Indeed, this was the property of the Lorentz-invariant differential equation which was the
starting point of Chapter 5.

81
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For the ground state, the solution takes the form

ψη(u, v) =
1√
π
exp

{
−1

2

(
e−2ηu2 + e2ηv2

)}
. (7.7)

In terms of the x1 x2 variables, it can be written as

ψη(x1, x2) =
1√
π
exp

{
−1

4

[
e−2η(x1 + x2)

2 + e2η(x1 − x2)
2
]}
. (7.8)

We noted further that this Gaussian form can be expanded as

ψη(x1, x2) =

(
1

cosh η

)∑
k

(tanh η)kχk(x1)χk(x2). (7.9)

In this chapter, we are interested in what happens if the two oscillators given in
Eq. (7.3) are coupled with the equation

1

2

−( ∂

∂x1

)2

−
(
∂

∂x2

)2

+ x21 + x22 +K(x1 − x2)
2

 f (x1, x2) = λf(x1, x2), (7.10)

where K measures the strength of the coupling.

7.1 Two coupled oscillators

The variables u and v of Eq. (7.4) are called the normal coordinates for two coupled
oscillators. In terms of these variables, the differential equation of Eq. (7.10) becomes
separable and can be written as

1

2

−( ∂

∂u

)2

−
(
∂

∂v

)2

+ u2 + e4ηv2

 f(u, v) = λf(u, v), (7.11)

where

e4η = 1 +K.

If we make the coordinate transformation

u→ eηu, v → e−ηv, (7.12)

the differential equation of Eq. (7.11) becomes

1

2

[(
e2ηp2u − e−2ηp2v

)
+ e−2ηu2 + e2ηv2

]
f(u, v) = λf(u, v), (7.13)

with

pu = −i ∂
∂u
, and pv = −i ∂

∂v
. (7.14)
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Figure 7.1: Lorentz transformations and canonical transformations. In the Lorentz trans-
formations, the momentum wavefunction is squeezed in the same direction as the space
wave function, while the canonical wave function is squeezed in the opposite direction to
the space wave function.

According to Eq. (7.12), the transformation property of variables x1, p1 and x2, p2 can be
written as 

u′

v′

p′u
p′v

 =


eη 0 0 0
0 e−η 0 0
0 0 e−η 0
0 0 0 eη



u
v
pu
pv

 . (7.15)

This is a canonical transformation, while the Lorentz transformation takes the form
u′

v′

p′u
p′v

 =


eη 0 0 0
0 e−η 0 0
0 0 eη 0
0 0 0 e−η



u
v
pu
pv

 . (7.16)

as noted in Chapter 5. For both cases, the transformation in xy space is the same, but
they are different in momentum space, as illustrated in Fig. 7.1.

For the ground state of this coupled system, the Gaussian form of the wave function
becomes

fη(x1, x2) =
1√
π
exp

{
−1

4

[
e−2η(x1 + x2)

2 + e2η(x1 − x2)
2
]}
, (7.17)

as in the case of Eq. (7.8). According to Eq. (7.9), this Gaussian form can also be written
as

fη(x1, x2) =

(
1

cosh η

)∑
k

(tanh η)kχk(x1)χk(x2). (7.18)

It is interesting to note that both the coupled oscillators and the covariant oscillator lead
to the same Gaussian form of Eq. (7.17) with its series expansion. This series serves also
as the starting formula for the two-photon coherent (Yuen 1976) as well as the Gaussian
entangled state (Giedke et al. 2003, Dodd and Halliwell 2004, Braunstein and van Loock
2005, Adesso and Illuminati 2007, Paz and Roncaglia 2008, Chou et al. 2008, Xiang et
al. 2011).
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If η = 0, which means k = 0 in Eq. (7.10), the Gaussian form of Eq. (7.17) becomes

f0(x1, x2) =
1√
π
exp

{
−1

2

(
x21 + x22

)}
, (7.19)

and the series of Eq. (7.18) becomes disentangled to

f0(x1, x2) = χ0(x1)χ0(x2). (7.20)

7.2 Squeezed states of light

Let us go back to the complete set of oscillator functions given in Eq. (7.2) and introduce
the operators a and a†, defined as

a =
1√
2

(
x+

∂

∂x

)
, and a† =

1√
2

(
x− ∂

∂x

)
. (7.21)

When these operators are applied to the wave functions, we obtain

a χn(x) =
√
n χn−1(x), and a† χn =

√
n+ 1 χn+1(x). (7.22)

Thus, χn(x) can be used for the state of n photons, while a and a† can serve as the
annihilation and creation operators respectively. If there are two kinds of photons, we
can use

a1 =
1√
2

(
x1 +

∂

∂x1

)
, a†1 =

1√
2

(
x1 −

∂

∂x1

)
,

a2 =
1√
2

(
x2 +

∂

∂x2

)
, a†2 =

1√
2

(
x2 −

∂

∂x2

)
. (7.23)

The single-photon coherent state takes the form

|α >= e−αα∗/2
∑
n

αn

√
n!
|n >, (7.24)

which can be expanded as

|α >= e−αα∗/2
∑
n

αn

n!

(
a†
)n

|0 >=
{
e−αα∗/2

}
exp

{
αa†

}
|0 > . (7.25)

This aspect of the single-photon coherent state is well known. Here we are dealing with
one kind of photon, namely with a given momentum and polarization. The state |n >
means there are n photons of the same kind, and |0 > is for the zero-photon vacuum state
corresponding to the ground state oscillator wave function.

Let us next consider a state of two kinds of photons, and write |n1, n2 > as the state
of n1 photons of the first kind, and n2 photons of the second kind (Yuen 1976). We are
then led to the exponential form

|β >=
(
1− β2

)1/2
exp

{
βa†1a

†
2

}
|0, 0 > . (7.26)
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The Taylor expansion of this formula leads to

|β >=
(
1− β2

)1/2∑
k

βk|k, k >, (7.27)

which is the two-photon coherent state (Yuen 1976). In the language of harmonic oscilla-
tors, this formula is fη (x1, x2) of Eq. (7.18) with

β = tanh η. (7.28)

In view of Fig. 7.1, it is quite appropriate to call this two-photon state the “squeezed
state”.

The total energy of the state with n1 and n2 photons is clearly

ω1n1 + ω2n2, (7.29)

where ω1 and ω2 are the frequencies of the first and second kinds respectively. Then the
energy of the squeezed state of Eq. (7.8) is

(ω1 + ω2)
(
1− β2

)∑
k

kβ2k = (ω1 + ω2)
(
1− β2

) β
2

(
∂

∂β

∑
k

β2k

)
. (7.30)

which becomes
(ω1 + ω2) β

2

(1− β2)
= (ω1 + ω2) (sinh η)

2. (7.31)

The energy is zero for the vacuum state with η = 0, but it increases as the system gets
squeezed with increasing values of η.

Since the two-mode squeezed state and the covariant harmonic oscillators share the
same set of mathematical formulas, it is possible to transmit physical interpretations
from one to the other. For the two-mode squeezed state, both photons carry physical
interpretations, while the interpretation is yet to be given to the time-separation variable
in the covariant oscillator formalism. It is clear from Eq. (5.39) and Eq. (5.53) that the
time-like excitations are like the second-photon states. What would happen if the second
photon is not observed as is illustrated in Fig. 7.2?

This interesting problem was addressed by Yurke and Potasek (Yurke and Potasek
1987) and by Ekert and Knight (Ekert and Knight 1989). They used the density matrix
formalism and integrated out the second-photon states, by using the same mathematics
as in Sec. 5.7.

According to Yurke et al. (Yurke et al. 1986), it is possible to consider interferometers
applicable to two-mode states. First of all, they picked the following three Hermitian
operators

J1 =
1

2

(
a†1a2 + a†2a1

)
,

J2 =
1

2i

(
a†1a2 − a†2a1

)
,

J3 =
1

2

(
a†1a1 − a†2a2

)
, (7.32)
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Figure 7.2: Feynman’s rest of the universe in the entangled system of two photons. If one
of the photons is not observed, it is in the rest of the universe. This figure is identical
with Fig. 5.8 except for the labeling of the coordinate axes.

in addition to the number operator

N = a†1a1 + a†2a2. (7.33)

Since these operators satisfy the commutation relations

[Ji, Jj] = iϵijkJj, (7.34)

it is possible to study the symmetry property of the three-dimensional rotation group.
In addition, they wrote down another set of operators which could lead to effects on

the two-mode states. They are

S3 =
1

2

(
a†1a1 + a2a

†
2

)
,

Q3 =
i

2

(
a†1a

†
2 − a1a2

)
,

K3 =
1

2

(
a†1a

†
2 + a1a2

)
, (7.35)

where they satisfy the commutation relations

[K3, Q3] = −iS3, [Q3, S3] = iK3, [S3, K3] = iQ3. (7.36)

These relations are like those for the SU(1, 1) group or the Lorentz group O(2, 1), appli-
cable to two space dimensions and one time dimension.

The question is whether it is possible to combine the three-operators of Eq. (7.32) and
those of Eq. (7.35).

7.3 O(3,2) symmetry from Dirac’s coupled oscillators

In his 1963 paper, Dirac (Dirac 1963) started with the Schrödinger equation for two
harmonic oscillators given in Eq. (7.11). We can now consider unitary transformations
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applicable to the ground-state wave function of Eq. (7.19). Here, Dirac noted that those
unitary transformations are generated by

L1 =
1

2

(
a†1a2 + a†2a1

)
, L2 =

1

2i

(
a†1a2 − a†2a1

)
,

L3 =
1

2

(
a†1a1 − a†2a2

)
, S3 =

1

2

(
a†1a1 + a2a

†
2

)
,

K1 = −1

4

(
a†1a

†
1 + a1a1 − a†2a

†
2 − a2a2

)
,

K2 =
i

4

(
a†1a

†
1 − a1a1 + a†2a

†
2 − a2a2

)
,

K3 =
1

2

(
a†1a

†
2 + a1a2

)
,

Q1 = − i

4

(
a†1a

†
1 − a1a1 − a†2a

†
2 + a2a2

)
,

Q2 = −1

4

(
a†1a

†
1 + a1a1 + a†2a

†
2 + a2a2

)
,

Q3 =
i

2

(
a†1a

†
2 − a1a2

)
, (7.37)

where a† and a are the step-up and step-down operators applicable to harmonic oscillator
wave functions. These operators satisfy the following set of commutation relations.

[Li, Lj] = iϵijkLk, [Li, Kj] = iϵijkKk, [Li, Qj] = iϵijkQk,

[Ki, Kj] = [Qi, Qj] = −iϵijkLk, [Li, S3] = 0,

[Ki, Qj] = −iδijS3, [Ki, S3] = −iQi, [Qi, S3] = iKi. (7.38)

Dirac then determined that these commutation relations constitute the Lie algebra for
the O(3, 2) de Sitter group with ten generators. This de Sitter group is the Lorentz group
applicable to three space coordinates and two time coordinates. Let us use the notation
(x, y, z, t, s), with (x, y, z) as space coordinates and (t, s) as two time coordinates. Then
the rotation around the z axis is generated by

L3 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (7.39)

The generators L1 and L2 can be also be constructed. The K3 and Q3 generators will
take the form

K3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 i 0 0
0 0 0 0 0

 , Q3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 i 0 0

 . (7.40)
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From these two matrices, the generatorsK1, K2, Q1, Q2 can be constructed. The generator
S3 can be written as

S3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0

 . (7.41)

The last five-by-five matrix generates rotations in the two-dimensional space of (t, s).
In his 1963 paper, Dirac states that the Lie algebra of Eq. (7.38) can serve as the four-

dimensional symplectic group Sp(4). In order to see this point, let us go to the Wigner
phase-space picture of the coupled oscillators.

For a dynamical system consisting of two pairs of canonical variables x1, p1 and x2, p2,
we can use the coordinate variables defined as (Han et al. 1995)

(η1, η2, η3, η4) = (x1, p1, x2, p2) . (7.42)

Then the four-by-four transformation matrix M applicable to this four-component vector
is canonical (Abraham and Marsdan 1978, Goldstein 1980) if

MJM̃ = J, (7.43)

with

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (7.44)

According to this form of the J matrix, the area of the phase space for the x1 and p1
variables remains invariant, and the story is the same for the phase space of x2 and p2.

We can then write the generators of the Sp(4) group as

L1 =
−1

2

(
0 σ2
σ2 0

)
, L2 =

i

2

(
0 −I
I 0

)
,

L3 =
1

2

(−σ2 0
0 σ2

)
, S3 =

1

2

(
σ2 0
0 σ2

)
, (7.45)

and

K1 =
i

2

(
σ1 0
0 −σ1

)
, K2 =

i

2

(
σ3 0
0 σ3

)
, K3 = − i

2

(
0 σ1
σ1 0

)
,

and

Q1 =
i

2

(−σ3 0
0 σ3

)
, Q2 =

i

2

(
σ1 0
0 σ1

)
, Q3 =

i

2

(
0 σ3
σ3 0

)
. (7.46)

These four-by-four matrices satisfy the commutation relations given in Eq. (7.38).
Indeed, the de Sitter groupO(3, 2) is locally isomorphic to the Sp(4) group. The remaining
question is whether these ten matrices can serve as the fifteen Dirac matrices in the
Majorana representation (Majorana 1932, Kim and Noz 2012). The answer is clearly
No. How can ten matrices describe fifteen matrices? We should therefore add five more
matrices. In order to address this question, we need Wigner functions.
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7.4 O(3,3) symmetry from Dirac matrices

Since all the generators for the two coupled oscillator system can be written as four-by-
four matrices with imaginary elements, it is convenient to work with Dirac matrices in the
Majorana representation, where all the elements are imaginary (Majorana 1932, Itzykson
and Zuber 1980, Lee 1995). In the Majorana representation, the four Dirac’s γ matrices
are

γ1 = i
(
σ3 0
0 σ3

)
, γ2 =

(
0 −σ2
σ2 0

)
,

γ3 = −i
(
σ1 0
0 σ1

)
, γ0 =

(
0 σ2
σ2 0

)
, (7.47)

where

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

These γ matrices are transformed like four-vectors under Lorentz transformations. From
these four matrices, we can construct one pseudo-scalar matrix

γ5 = iγ0γ1γ2γ3 =
(
σ2 0
0 −σ2

)
, (7.48)

and a pseudo vector iγ5γµ consisting of

iγ5γ1 = i
(−σ1 0

0 σ1

)
, iγ5γ2 = −i

(
0 I
I 0

)
,

iγ5γ0 = i
(

0 I
−I 0

)
, iγ5γ3 = i

(−σ3 0
0 +σ3

)
. (7.49)

In addition, we can construct the tensor of the γ as

Tµν =
i

2
(γµγν − γνγµ) . (7.50)

This antisymmetric tensor has six components. They are

iγ0γ1 = −i
(

0 σ1
σ1 0

)
, iγ0γ2 = −i

(−I 0
0 I

)
, iγ0γ3 = −i

(
0 σ3
σ3 0

)
, (7.51)

and

iγ1γ2 = i
(

0 −σ1
σ1 0

)
, iγ2γ3 = −i

(
0 −σ3
σ3 0

)
, iγ3γ1 =

(
σ2 0
0 σ2

)
. (7.52)

There are now fifteen linearly independent four-by-four matrices. They are all trace-
less, their components are imaginary (Lee 1995). We shall call these Dirac matrices in
the Majorana representation.

As we saw in Sec. 7.3, Dirac (Dirac 1963) constructed a set of four-by-four matrices
from two coupled harmonic oscillators, within the framework of quantum mechanics. He
ended up with ten four-by-four matrices. It is of interest to compare his oscillator matrices
and his fifteen Majorana matrices.
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Unlike the case of the Schrödinger picture, it is possible to add five noncanonical
generators to the list of generators given in Sec. 7.3. They are

S1 = +
i

2

{(
x1

∂

∂x2
− x2

∂

∂x1

)
−
(
p1

∂

∂p2
− p2

∂

∂p1

)}
,

S2 = − i

2

{(
x1

∂

∂p2
− p2

∂

∂x1

)
+

(
x2

∂

∂p1
− p1

∂

∂x2

)}
, (7.53)

as well as three additional squeeze operators:

G1 = − i

2

{(
x1

∂

∂x2
+ x2

∂

∂x1

)
+

(
p1

∂

∂p2
+ p2

∂

∂p1

)}
,

G2 =
i

2

{(
x1

∂

∂p2
+ p2

∂

∂x1

)
−
(
x2

∂

∂p1
+ p1

∂

∂x2

)}
,

G3 = − i

2

{(
x1

∂

∂x1
+ p1

∂

∂p1

)
+

(
x2

∂

∂p2
+ p2

∂

∂x2

)}
. (7.54)

These five generators perform well-defined operations on the Wigner function. However,
the question is whether these additional generators are acceptable in the present form of
quantum mechanics.

In order to answer this question, let us note that the uncertainty principle in the
phase-space picture of quantum mechanics is stated in terms of the minimum area in
phase space for a given pair of conjugate variables. The minimum area is determined by
Planck’s constant. Thus we are allowed to expand phase space, but are not allowed to
contract it. With this point in mind, let us go back to G3 of Eq. (7.54), which generates
transformations which simultaneously expand one phase space and contract the other.
Thus, the G3 generator is not acceptable in quantum mechanics even though it generates
well-defined mathematical transformations of the Wigner function.

If the five generators of Eq. (7.53) and Eq. (7.54) are added to the ten generators given
in Eq. (7.37) and Eq. (7.38), there are fifteen generators. They satisfy the following set
of commutation relations.

[Li, Lj] = iϵijkLk, [Si, Sj] = iϵijkSk, [Li, Sj] = 0,

[Li, Kj] = iϵijkKk, [Li, Qj] = iϵijkQk, [Li, Gj] = iϵijkGk,

[Ki, Kj] = [Qi, Qj] = [Qi, Qj] = −iϵijkLk,

[Ki, Qj] = −iδijS3, [Qi, Gj] = −iδijS1, [Gi, Kj] = −iδijS2,

[Ki, S3] = −iQi, [Qi, S3] = iKi, [Gi, S3] = 0,

[Ki, S1] = 0, [Qi, S1] = −iGi, [Gi, S1] = iQi,

[Ki, S2] = iGi, [Qi, S2] = 0, [Gi, S2] = −iKi. (7.55)

As was shown previously (Kim and Noz 2012), this set of commutation relations serves
as the Lie algebra for the group SL(4, r) and also for the O(3, 3) Lorentz group.
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These fifteen four-by-four matrices are tabulated in Table 7.1. There are six anti-
symmetric and nine symmetric matrices. These anti-symmetric matrices were divided
into two sets of three rotation generators in the four-dimensional phase space. The nine
symmetric matrices can be divided into three sets of three squeeze generators. However,
this classification scheme is easier to understand in terms the group O(3, 3).

Table 7.1: SL(4, r) and Dirac matrices. Two sets of rotation generators and three sets of
boost generators. There are 15 generators.

First component Second component Third component

Rotation L1 =
−i
2
γ0 L2 =

−i
2
γ5γ0 L3 =

−1
2
γ5

Rotation S1 =
i
2
γ2γ3 S2 =

i
2
γ1γ2 S3 =

i
2
γ3γ1

Boost K1 =
−i
2
γ5γ1 K2 =

1
2
γ1 K3 =

i
2
γ0γ1

Boost Q1 =
i
2
γ5γ3 Q2 =

−1
2
γ3 Q3 = − i

2
γ0γ3

Boost G1 =
−i
2
γ5γ2 G2 =

1
2
γ2 G3 =

i
2
γ0γ2

7.5 Non-canonical transformations in quantum me-

chanics

As we noted before, among the fifteen Dirac matrices, ten of them can be used for canonical
transformations in classical mechanics, and thus in quantum mechanics. They play a
special role in quantum optics (Yuen 1976, Yurke et al. 1986, Kim and Noz 1991, Han et
al. 1993).

The remaining five of them can be interpreted if the change in phase space area is
allowed. In quantum mechanics, the area can be increased, but it has a lower limit called
Plank’s constant. In classical mechanics, this constraint does not exist. The mathematical
formalism given in this chapter allows us to study this aspect of the system of coupled
oscillators.
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Let us choose the following three matrices from those in Eqs. (7.45) and (7.46).

S3 =
1

2

(
σ2 0
0 σ2

)
, K2 =

i

2

(
σ3 0
0 σ3

)
, Q2 =

i

2

(
σ1 0
0 σ1

)
(7.56)

They satisfy the closed set of commutation relations:

[S3, K2] = iQ2, [S3, Q2] = −iK2, [K2, Q2] = −iS3 (7.57)

This is the Lie algebra for the Sp(2) group, This is the symmetry group applicable to the
single-oscillator phase space (Kim and Noz 1991), with one rotation and two squeezes.
These matrices generate the same transformation for the first and second oscillators.

We can choose three other sets with similar properties. They are

S3 =
1

2

(
σ2 0
0 σ2

)
, Q1 =

−i
2

(
σ3 0
0 −σ3

)
, K1 =

i

2

(
σ1 0
0 −σ1

)
, (7.58)

L3 =
1

2

(−σ2 0
0 σ2

)
, K2 =

i

2

(
σ3 0
0 σ3

)
, K1 =

−i
2

(−σ1 0
0 σ1

)
, (7.59)

and

L3 =
1

2

(−σ2 0
0 σ2

)
, Q1 =

i

2

(−σ3 0
0 σ3

)
, Q2 =

i

2

(
σ1 0
0 σ1

)
. (7.60)

These matrices also satisfy the commutation relations given in Eq. (7.57). In this case,
the squeeze transformations take opposite directions in the second phase space.

Since all these transformations are canonical, they leave the area of each phase space
invariant. However, let us look at the non-canonical generator G3 of Eq. (7.54). It
generates the transformation matrix of the form(

eη 0
0 e−η

)
(7.61)

If η is positive, this matrix expands the first phase space while contracting the second.
This contraction of the second phase space is allowed in classical mechanics, but it has a
lower limit in quantum mechanics. This is illustrated in Fig. 7.3.

The expansion of the first phase space is exactly like the thermal expansion resulting
from our failure to observe the second oscillator that belongs to the rest of the universe. If
we expand the system of Dirac’s ten oscillator matrices to the world of his fifteen Majorana
matrices, we can expand and contract the first and second phase spaces without mixing
them up. We can thus construct a model where the observed world and the rest of the
universe remain separated. In the observable world, quantum mechanics remains valid
with thermal excitations. In the rest of the universe, since the area of the phase space
can decrease without lower limit, only classical mechanics is valid.

During the expansion/contraction process, the product of the areas of the two phase
spaces remains constant. This may or may not be an extended interpretation of the
uncertainty principle, but we choose not to speculate further on this issue.

Let us turn our attention to the fact that the groups SL(4, r) and Sp(4) are locally
isomorphic to O(3, 3) and O(3, 2) respectively. This means that we can do quantum
mechanics in one of the O(3, 2) subgroups of O(3, 3), as Dirac noted in his 1963 paper.
The remaining generators belong to Feynman’s rest of the universe.



7.6. ENTROPY AND THE EXPANDING WIGNER PHASE SPACE 93

p p

x x

1

1

2

2

Figure 7.3: Expanding and contracting phase spaces. Canonical transformations leave
the area of each phase space invariant. Non-canonical transformations can change them,
yet the product of these two areas remains invariant (Kim and Noz 2012).

7.6 Entropy and the expanding Wigner phase space

We have seen how Feynman’s rest of the universe increases the radius of the Wigner
function. It is important to note that the entropy of the system also increases.

Let us go back to the density matrix. The standard way to measure this ignorance is
to calculate the entropy defined as (von Neumann 1932, Landau and Lifshitz 1958, Fano
1957, Blum 1981, Kim and Wigner 1990, Kim and Noz 2014).

S = −Tr (ρ ln(ρ)) (7.62)

where S is measured in units of Boltzmann’s constant. If we use the density matrix given
in Eq. (5.53), the entropy becomes

S = 2
{
cosh2

(
η

2

)
ln
(
cosh

η

2

)
− sinh2

(
η

2

)
ln
(
sinh

η

2

)}
(7.63)

In order to express this equation in terms of the temperature variable T , we write

cosh η =
1 + e−1/T

1− e−1/T
(7.64)

which leads to

cosh2
(
η

2

)
=

1

1 + e−1/T
, sinh2

(
η

2

)
=

e−1/T

1 + e−1/T
(7.65)

Then the entropy of Eq. (7.63) takes the form (Han et al. 1999, Kim and Wigner
1990)

S =
(
1

T

){
1

exp (1/T )− 1

}
− ln

(
1− e−1/T

)
(7.66)

This familiar expression is for the entropy of an oscillator state in thermal equilibrium.
Thus, for this oscillator system, we can relate our ignorance of Feynman’s rest of the
universe, measured by the coupling parameter η, to the temperature.
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Chapter 8

Lorentz group in ray optics

While the Lorentz group serves as the basic language for Einstein’s special theory of
relativity, it can also be considered to be the basic mathematical instrument in optical
sciences, particularly in ray and polarization optics. In this chapter, the two-by-two
beam transfer matrix, commonly called the ABCD matrix, is shown to be a two-by-two
representation of the Lorentz group discussed in Sec. 1.2. It is thus possible to study
this matrix in terms of the mathematical device developed for studying Wigner’s little
groups dictating internal space-time symmetries of particles in the Lorentz-covariant
world discussed extensively in Chapter 3.

8.1 Group of ABCD matrices

The Lorentz group for particle physics is generated by six matrices, however, the elements
of the ABCD matrices are always real and unimodular (determinant = 1). Thus, this
matrix can be generated by J2, K3, and K1 given in Chapter 1, which lead to two-by-
two matrices with real elements. These generators satisfy the closed set of commutation
relations

[J2, K1] = −iK3, [J2, K3] = iK1, [K1, K3] = −iJ2, (8.1)

where

J2 =
i

2

(
0 −1
1 0

)
, K3 =

i

2

(
1 0
0 −1

)
, K1 =

i

2

(
0 1
1 0

)
. (8.2)

They form the Lie algebra for the Sp(2) group (Georgieva and Kim 2001, Sánchez-Soto
et al. 2012, Başkal and Kim 2013).

The representation of the Sp(2) group generated by the these commutation relations
consist of a rotation about the origin, a squeeze along the x direction and another squeeze
at along axes rotated by 45o respectively. These generators are equivalent to another
set of generators which form a representation of the Sp(2) group consisting of two shear
transformations and a squeeze transformation (Başkal and Kim 2001, 2003). Therefore
we shall use a rotation, a squeeze, and a shear matrix of the form (Başkal and Kim 2009):

R(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, B(η) =

(
eη/2 0
0 e−η/2

)
, (8.3)

and

T (γ) =
(
1 −γ
0 1

)
. (8.4)
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The last matrix can also be viewed as an optical filter (Han, el al. 1999), or as a translation
matrix (Başkal and Kim 2003).

The traces of these matrices are smaller than 2, equal to 2, and greater than 2, re-
spectively. In Chapter 4, we discussed how to make transitions from one to another.

Since the ABCD matrix has real elements and a determinant of one, it has three
independent parameters. The elements of the ABCD matrix are determined by optical
materials and how they are arranged. The purpose of this chapter is to explore the
mathematical properties of the ABCD matrix which can address more fundamental issues
in physics.

8.2 Equi-diagonalization of the ABCD matrix

In dealing with matrices, it is a routine process to diagonalize them. However, it is not
always possible. The triangular matrix in Eq. (8.4) cannot be diagonalized. On the other
hand, the two diagonal elements are equal.

The ABCD matrix with inputs from optical instruments is not always equi-diagonal.
Thus, we have to equi-diagonalize the matrix. Let us start from the matrix

[ABCD] =
(
A B
C D

)
, (8.5)

where A and D are not necessarily equal to each other. Then the transformation

B(η) [ABCD] B(η) =
(
eη/2 0
0 e−η/2

)(
A B
C D

)(
eη/2 0
0 e−η/2

)
(8.6)

will lead to the equi-diagonal form (√
AD B
C

√
AD

)
(8.7)

with
eη =

√
D/A.

The diagonal matrix B(η) is given in Eq. (8.3). This form of equi-diagonalization will be
useful in camera optics discussed in Sec. 8.6.

Although the transformation of Eq. (8.6) is an unimodular (determinant-preserving)
transformation, it is not a similarity transformation. Let us next consider a rotation of
the ABCD matrix

R(θ) [ABCD] R(−θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)(
A B
C D

)(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
,

(8.8)
which leads to the matrix (

A′ B′

C ′ D′

)
, (8.9)

with

A′ =
1

2
[A(1 + cos θ) +D(1− cos θ)− (C +B) sin θ],

D′ =
1

2
[A(1− cos θ) +D(1 + cos θ) + (C +B) sin θ]. (8.10)
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If these two diagonal elements are to be equal,

tan θ =
A−D

A+B
. (8.11)

We now have two different ways of transforming the ABCD matrix into a equi-diagonal
form. Is is possible to make these into one mathematical transformation? Let M be an
arbitrary element of the Sp(2) group. We can define the “Hermitian transformation” of
the ABCD matrix as

M [ABCD] M †, (8.12)

where M † is the Hermitian conjugate of M .
The Hermitian transformation of Eq. (8.12) is like the Lorentz transformation on

the four-vector discussed in Chapter 3. If M is Hermitian, and is anti-symmetric, its
Hermitian conjugate is its inverse. Thus the transformation is a similarity transformation.
If M is symmetric, its Hermitian conjugate is not its inverse. Thus the transformation is
not a similarity transformation.

The rotation matrix of Eq. (8.3) is anti-symmetric and its Hermitian conjugate is its
inverse. Thus, the transformation of Eq. (8.12) with the rotation matrix is a similarity
transformation. The squeeze matrix, such as B(η) is symmetric, and it is invariant under
Hermitian conjugation. The Hermitian transformation of Eq. (8.12) with the squeeze
matrix is not a similarity transformation.

Once theABCD matrix is equi-diagonalized, it can be brought to one of the forms (Başkal
and Kim 2009, 2010)

(
cos(θ/2) −eη sin(θ/2)

e−η sin(θ/2) cos(θ/2)

)
,

(
1 −eηγ
0 1

)
,

(
cosh(λ/2) −eη sinh(λ/2)

−e−η sinh(λ/2) cosh(λ/2)

)
. (8.13)

We shall use the notation W for these three equi-diagonal matrices. It is then possible
to use all the mathematical instruments developed for the two-by-two representation of
Wigner’s little group in Chapter 3. The expressions for these two-by-two matrices are
given in Table 3.2.

These three matrices, like the ones defined in Eqs. (8.3) and (8.4) form different classes
with different traces. They are smaller than, equal to, and greater than 2 respectively.
However, it is possible to make continuations from one to another through tangential
continuity as noted in Chapter 4.

8.3 Decomposition of the ABCD matrix

The equi-diagonal matrices of Eq. (8.13) can now be written as

B(η) W [B(η)]−1, (8.14)
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where W is one of the three single-parameter matrices:

R(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
,

T (γ) =
(
1 −γ
0 1

)
,

S(λ) =
(
cosh(λ/2) sinh(λ/2)
sinh(λ/2) cosh(λ/2)

)
. (8.15)

These matrices are given in Table 3.1, but they perform different physical operations.
The transformation of Eq. (8.14) is not a Hermitian transformation. It is a similarity
transformation.

We have seen above that the two-by-two ABCD matrix can be written as a similarity
transformation of one of the three possible W matrices given in Eq. (8.15). Thus, if
the ABCD matrix is equi-diagonalized by a rotation, it can be written as a similarity
transformation

[ABCD] = R(σ)B(η) W B(−η)R(−σ) = [R(σ)B(η)] W [R(σ)B(η)]−1. (8.16)

Thus, the repeated application of the ABCD matrix becomes

[ABCD]N = [R(σ)B(η)] WN [R(σ)B(η)]−1. (8.17)

There is another form of decomposition known as the Bargmann decomposition dis-
cussed in Sec. 3.3. This procedure combines all three different classes of Eq. (8.13) into
one analytic expression.

W = R(α)S(−2χ)R(α), (8.18)

where the forms of the rotation matrix R and the squeeze matrix S are given in Eq. (8.15).
If we carry out the matrix multiplication, the W matrix becomes(

(coshχ) cosα − sinhχ− (coshχ) sinα
− sinhχ+ (coshχ) sinα (coshχ) cosα

)
. (8.19)

This matrix also has two independent variables α and χ. We can write these parameters
in terms of the η, θ, and γ for the matrices given in Eq. (8.13) by comparing the matrix
elements.

If the off-diagonal elements have different signs, with (coshχ) sinα > sinχ, the diag-
onal elements become

cos(θ/2) = (coshχ) cosα. (8.20)

The off-diagonal elements lead to

e2η =
(coshχ) sinα + sinhχ

(coshχ) sinα− sinhχ
(8.21)

If the off-diagonal elements have the same sign, the diagonal elements become

cosh(λ/2) = (coshχ) cosα, (8.22)
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Figure 8.1: Optical rays in the laser cavity. fig.(a) illustrates that reflected beams are like
those going though a series of convex lenses. fig.(b) describes how the beams are reflected
from concave mirror surfaces (Başkal and Kim 2013).

with

e2η =
(coshχ) sinα+ sinhχ

sinhχ− (coshχ) sinα
. (8.23)

If the lower left element of Eq. (8.19) vanishes, the matrix becomes(
1 −2 sinhχ
0 1

)
. (8.24)

The matrix of Eq. (8.19) is useful when we make transition from one form to another
among the three matrices given in Eq. (8.13). We will need this procedure when we
discuss multi-layer optics.

8.4 Laser cavities

As the first example of the periodic system, let us consider the laser cavity consisting of
two identical concave mirrors separated by a distance d as shown in Fig. 8.1. Then the
ABCD matrix for a round trip of one beam is(

1 0
−2/R 1

)(
1 d
0 1

)(
1 0

−2/R 1

)(
1 d
0 1

)
, (8.25)
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where the matrices (
1 0

−2/R 1

)
and

(
1 d
0 1

)
(8.26)

are the mirror and translation matrices respectively. The parameters R and d are the
radius of the mirror and the mirror separation respectively. This form is quite familiar to
us from the laser literature (Yariv 1975, Haus 1984, Hawkes et al. 1995).

The question then is what happens when this process is repeated. We are thus led to
the question of whether the chain of matrices in Eq. (8.25) can be brought to an equi-
diagonal form and eventually to a form of the Wigner decomposition. For this purpose,
we rewrite the matrix of Eq. (8.25) as(

1 −d/2
0 1

)(
1 d/2
0 1

)(
1 0

−2/R 1

)(
1 d/2
0 1

)2

×
(

1 0
−2/R 1

)(
1 d/2
0 1

)(
1 d/2
0 1

)
. (8.27)

In this way, we translate the system by −d/2 using a translation matrix given in
Eq. (8.26), and write the ABCD matrix of Eq. (8.25) as(

1 −d/2
0 1

) [(
1− d/R d− d2/2R
−2/R 1− d/R

)]2 ( 1 d/2
0 1

)
. (8.28)

We are thus led to concentrate on the matrix in the middle(
1− d/R d− d2/2R
−2/R 1− d/R

)
, (8.29)

which can be written as(√
d 0
0 1/

√
d

)(
1− d/R 1− d/2R
−2d/R 1− d/R

)(
1/
√
d 0

0
√
d

)
. (8.30)

It is then possible to decompose the ABCD matrix into

E C2 E−1, (8.31)

with

C =
(
1− d/R 1− d/2R
−2d/R 1− d/R

)
,

E =
(
1 −d/2
0 1

)(√
d 0
0 1/

√
d

)
. (8.32)

The C matrix now contains only dimensionless numbers, and it can be written as

C =
(

cos(γ/2) eη sin(γ/2)
−e−η sin(γ/2) cos(γ/2)

)
, (8.33)

with

cos(γ/2) = 1− d

R
,

eη =

√
2R− d

4d
. (8.34)
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Here both d and R are positive, and the restriction on them is that d be smaller than 2R.
This is the stability condition frequently mentioned in the literature (Haus 1984, Hawkes
et al. 1995).

Thus, the equi-diagonal matrix is C2, and takes the form(
cos(γ) eη sin(γ)

−e−η sin(γ) cos(γ)

)
, (8.35)

which is

B(η)R(2γ)B(−η) (8.36)

The ABCD matrix takes the form

[ABCD] = [E B(η)] R(2χ) [E B(η)]−1. (8.37)

Thus, the repeated application becomes

[ABCD]N = [E B(η)] R(2Nχ) [E B(η)]−1. (8.38)

8.5 Multilayer optics

We consider an optical beam going through a periodic medium with two different refractive
indexes. If the beam traveling in the first medium hits the second medium, it is partially
transmitted and partially reflected. In order to maintain the continuity of the Poynting
vector, we define the electric fields as

E
(±)
1 =

1
√
n1

exp (±ik1z − ωt),

E
(±)
2 =

1
√
n2

exp (±ik2z − ωt) (8.39)

for the optical beams in the first and second media respectively. The superscript (+) and
(−) are for the incoming and reflected rays respectively.

These two optical rays are related by the two-by-two ABCD matrix, according to(
E

(+)
2

E
(−)
2

)
=
(
A B
C D

)(
E

(+)
1

E
(−)
1

)
. (8.40)

Of course the elements of this matrix are determined by transmission coefficients as well
as the phase shifts the beams experience while going through the media (Azzam and
Bashara 1977, Georgieva and Kim 2001).

When the beam goes through the first medium to the second, we may use the boundary
matrix given by Azzam and Bashara (Azzam and Bashara 1977) and by Monzón and
Sánchez-Soto (Monzón and Sánchez-Soto 1999, 2000, Dragoman 2010). In terms of the
refractive indexes n1 and n2,

S(σ) =
(
cosh(σ/2) sinh(σ/2)
sinh(σ/2) cosh(σ/2)

)
, (8.41)
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1 122

one cycle

S(σ) S(-σ)

Figure 8.2: Multi-layers. The cycle can start in such a way that the ABCD matrix
becomes equi-diagonal (Georgieva and Kim 2001, 2003).

where we can write the σ parameter as

cosh
(
σ

2

)
=
n1 + n2

2
√
n1n2

, sinh
(
σ

2

)
=
n1 − n2

2
√
n1n2

. (8.42)

The boundary matrix for the beam going from the second medium should be S(−σ) as
seen in Fig. 8.2.

In addition, we have to consider the phase shifts through which the beams have to
travel. When the beam goes through the first media, we can use the phase-shift matrix

P (δ1) =
(
e−iδ1/2 0

0 eiδ1/2

)
, (8.43)

and a similar expression for P (δ2) for the second medium. The phase shift δ is determined
by the wave number and thickness of the medium.

We are thus led to consider one complete cycle starting from the midpoint of the
second medium, and write

P (δ2/2)S(σ)P (δ1)S(−σ)P (δ2/2) . (8.44)

If multiplied into one matrix, is this matrix equi-diagonal to accept the Wigner and
Bargmann decompositions? Another question is whether the matrices in the above ex-
pression can be converted into matrices with real elements.

In order to answer the second question, let us consider the similarity transformation

C1 Z(δ)D(σ) C−1
1 , (8.45)

with

C1 =
1√
2

(
1 i
i 1

)
. (8.46)

This transformation leads to
R(δ)S(σ), (8.47)
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where

R(δ) =
(
cos(δ/2) − sin(δ/2)
sin(δ/2) cos(δ/2)

)
. (8.48)

This notation is consistent with the rotation matrices used in Sec. 8.3.
Let us make another similarity transformation with

C2 =
1√
2

(
1 1
−1 1

)
. (8.49)

This changes S(σ) into B(σ) without changing R(δ), where

B(σ) =
(
eσ/2 0
0 e−σ/2

)
, (8.50)

again consistent with the B(η) matrix used in Sec. 8.3.
Thus the net similarity transformation matrix is (Georgieva and Kim 2001)

C = C2C1 =
1√
2

(
eiπ/4 eiπ/4

−e−iπ/4 e−iπ/4

)
, (8.51)

with

C−1 =
1√
2

(
e−iπ/4 −eiπ/4
e−iπ/4 eiπ/4

)
. (8.52)

If we apply this similarity transformation to the long matrix chain of Eq. (8.44), it
becomes another chain

M = R (δ2/2)B(σ)R (δ1)B(−σ)R (δ2/2) , (8.53)

where all the matrices are real.
Let us now address the main question of whether this matrix chain can be brought to

one equi-diagonal matrix. We note first that the three middle matrices can be written in
a familiar form

M = B(σ)R (δ1)B(−σ)

=
(

cos(δ1/2) −eσ sin(δ1/2)
e−σ sin(δ1/2) cos(δ1/2)

)
. (8.54)

However, due to the rotation matrix R (δ2/2) at the beginning and at the end of Eq. (8.53),
it is not clear whether the entire chain can be written as a similarity transformation.

In order to resolve this issue, let us write Eq. (8.54) as a Bargmann decomposition

R(α)S(−2χ)R(α), (8.55)

with its explicit expression given in Eq. (8.19). The parameters α and χ are related to σ
and δ1 by

cos(δ1/2) = (coshχ) cosα,

e2η =
(coshχ) sinα + sinhχ

(coshχ) sinα− sinhχ
. (8.56)
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It is now clear that the entire chain of Eq. (8.44) can be written as another Bargmann
decomposition

M = R(α + δ2/2)S(−2χ)R(α + δ2/2). (8.57)

Finally, this expression can be converted to a Wigner deomposition (Georgieva and Kim
2003)

M = B(η)R(θ)B(−η), (8.58)

with

cos(θ/2) = (coshχ) cos(α + δ2/2),

e2η =
(coshχ) sin(α + δ2/2) + sinhχ

(coshχ) sin(α + δ2/2)− sinhχ
. (8.59)

The decomposition of Eq. (8.58) allows us to deal with the periodic system of multilayers.
For repeated application of M , we can now write

MN = B(η)R(Nθ)B(−η). (8.60)

8.6 Camera optics

The basic optical arrangement for the camera consists of a lens with focal length f and
the propagation of the ray by an amount d (Saleh and Teich 2007). The lens matrix is
given by (

1 0
−1/f 1

)
, (8.61)

and a translation of the ray is expressed by the matrix(
1 d
0 1

)
. (8.62)

If the object and the image are d1 and d2 distances away from the lens respectively,
the system is described by (

1 d2
0 1

)(
1 0

−1/f 1

)(
1 d1
0 1

)
. (8.63)

The multiplication of these matrices leads to the camera matrix of the form(
1− d2/f d1 + d2 − d1d2/f
−1/f 1− d1/f

)
. (8.64)

The image becomes focused when the upper right element of this matrix vanishes (Başkal
and Kim 2003), i.e.,

1

d1
+

1

d2
=

1

f
. (8.65)

For the camera optics, both d1 and d2 are longer than f . It is then more convenient to
deal with the negative of the matrix given in Eq. (8.64) with positive diagonal elements.
In addition, let us use the dimensionless variables

x1 = d1/f, x2 = d2/f. (8.66)
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Figure 8.3: Tangential continuity in the camera focusing. The vertical axis χ of this graph
is the upper-right element of the camera matrix and is -sin2(θ/2) for ξ < 0, and sinh2(λ/2)
for ξ > 0 (Başkal and Kim 2014).

Then the camera matrix becomes(
x2 − 1 (x1 − 1) (x2 − 1)− 1

1 x1 − 1

)
, (8.67)

with the focal condition
1

x1
+

1

x2
= 1. (8.68)

If we wish to study the formula of the camera matrix Eq. (8.67) as a representation
of the Lorentz group, the first step is to obtain its equi-diagonal form. However, if the
focal condition of Eq. 8.68 is to be preserved, the off-diagonal elements should remain
invariant. We thus have to resort to the Hermitian transformation given in Eq. (8.6). For
this purpose, we can use the transformation matrix(

eη/2 0
0 e−η/2

)
(8.69)

with

eη =

√
1− x2
1− x1

. (8.70)

The diagonal elements become √
(1− x1) (1− x2). (8.71)

If the diagonal elements are smaller than one, the camera matrix should take the form(
cos(θ/2) −eη sin(θ/2)

e−η sin(θ/2) cos(θ/2)

)
(8.72)

with
e−η sin(θ/2) = 1. (8.73)

Thus the matrix becomes (
cos(θ/2) − sin2(θ/2)

1 cos(θ/2)

)
. (8.74)

If the diagonal elements are greater than one, the camera matrix becomes(
cosh(λ/2) eη sinh(λ/2)

e−η sinh(λ/2) cosh(λ/2)

)
(8.75)



108 CHAPTER 8. LORENTZ GROUP IN RAY OPTICS

with

e−η sinh(λ/2) = 1, (8.76)

leading to (
cosh(λ/2) sinh2(λ/2)

1 cosh(λ/2)

)
. (8.77)

Thus, the focusing process is the transition from(
1− ξ2/2 −ξ2

1 1− ξ2/2

)
to

(
1 + ξ2/2 ξ2

1 1 + ξ2/2

)
, (8.78)

via ξ = 0. This transition is illustrated in Fig. 8.3. Indeed, this is the tangential continuity
discussed extensively in Chapter 4.
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Chapter 9

Polarization optics

In studying polarized light propagating along the z direction, the traditional approach is
to consider the x and y components of the electric fields. Their amplitude ratio and phase
difference determine the state of polarization. Thus, we can change the polarization either
by adjusting the amplitudes, by changing the relative phases, or both. For convenience,
we call the optical device which changes amplitudes an “attenuator” and the device which
changes the relative phase a “phase shifter.”

It is thus possible to describe polarization of light as two-component column vectors,
and two-by-two matrices applicable to those vectors. The two-by-two representation of
the Lorentz group was discussed in Sec. 1.2. We will examine the polarization of light
using the methods developed in the early chapters of this book.

The mathematics of the Lorentz group was originally developed for understanding
Einstein’s special relativity. However, it is interesting to note that the same set of math-
ematical tools can be used for studying polarization optics. The Jones vectors, Mueller
matrices, and Stokes parameters all constitute appropriate representations of the Lorentz
group (Opatrny and Perina 1993, Tudor 2015, Han et al. 1997, Ben-Aryeh 2005, Red’kov
2011, Başkal and Kim 2013, Franssens 2015).

9.1 Jones vectors

The traditional language for studying the two-component light vector is the Jones-matrix
formalism which is covered in standard optics textbooks (Hecht 2002, Saleh and Teich
2007). In this formalism, the two transverse components of the electric fields are combined
into one column matrix with the exponential form for the sinusoidal function(

Ex

Ey

)
=
(
A exp {i(kz − ωt+ ϕ1)}
B exp {i(kz − ωt+ ϕ2)}

)
. (9.1)

This column matrix is called the Jones vector (Jones 1941, 1947) .
In the existing textbooks (Hecht 2002), the Jones-matrix formalism (Hecht 1970) starts

with the projection operator (
1 0
0 0

)
, (9.2)

applicable to the Jones vector of Eq. (9.1). This operator keeps the x component and
completely eliminates the y-component of the electric field.
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This is an oversimplification of the real world when the attenuation factor in the y
direction is greater than that along the x direction. We shall replace this projection
operator by an attenuation matrix which is closer to the real world.

In this section, we replace the projection operator of Eq. (9.2) by a squeeze matrix.
There are two transverse directions which are perpendicular to each other. The absorption
coefficient in one transverse direction could be different from the coefficient along the other
direction. This can be described by the two-by-two matrix (Opatrny and Perina 1993,
Han et al. 1997, Ben-Aryeh 2005, Tudor 2010, 2015, Başkal and Kim 2013, Franssens
2015) (

e−µ1 0
0 e−µ2

)
= e−(µ1+µ2)/2

(
eµ/2 0
0 e−µ/2

)
(9.3)

with µ = µ2 − µ1. Let us look at the projection operator of Eq. (9.2). Physically, it
means that the absorption coefficient along the y direction is much larger than along the
x direction. The absorption matrix in Eq. (9.3) becomes the projection matrix if µ1 is
very close to zero and µ2 becomes infinitely large. The projection operator of Eq. (9.2) is
therefore a special case of the above attenuation matrix.

The attenuation matrix of Eq. (9.3) tells us that the electric fields are attenuated at
two different rates. The exponential factor e−(µ1+µ2)/2 reduces both components at the
same rate and does not affect the state of polarization. The effect of polarization is solely
determined by the squeeze matrix

B(µ) =
(
eµ/2 0
0 e−µ/2

)
. (9.4)

The diagonal matrix of this type served many different purposes in earlier chapters of this
book. It is a key element of the two-by-two representation of the Lorentz group.

Another basic element is the optical filter with different values of the index of refraction
along the two orthogonal directions. The effect on this filter can be written as(

e−iδ1 0
0 e−iδ2

)
= e−i(δ1+δ2)/2

(
e−iδ/2 0
0 eiδ/2

)
, (9.5)

with δ = δ1 − δ2 . In measurement processes, the overall phase factor e−i(δ2+δ2)/2 cannot
be detected, and can therefore be deleted. The polarization effect of the filter is solely
determined by the matrix

Z(δ) =
(
eiδ/2 0
0 e−iδ/2

)
, (9.6)

which leads to a phase difference of δ between the x and y components. The mathematical
expression for this matrix is given in Eq. (9.4). It has a different physical meaning in the
symmetry of the Lorentz group.

The polarization axes are not always the x and y axes. For this reason, we need the
rotation matrix

R(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (9.7)

to describe the rotation around the z axis.
The traditional Jones-matrix formalism consists of systematic combinations of the

three components given in Eq. (9.2), Eq. (9.6), and Eq. (9.7). However, in this chapter,
we shall use the squeeze matrix of Eq. (9.4) instead of the projection operator of Eq. (9.2).
Then they become the starters of the two-by-two representation of the Lorentz group.
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9.2 Squeeze and phase shift

The effect of the phase shift matrix Z(δ) of Eq. (9.6) on the Jones vector is well known, but
the effect of the squeeze matrix of Eq. (9.4) is not addressed adequately in the literature.
Let us discuss the combined effect of these two matrices. First of all both are diagonal
and they commute with each other.

The effect of the squeeze matrix on the Jones vector is straight-forward. If we apply
the squeeze matrix of Eq. (9.4) to the Jones vector, the net result is(

eµ/2 0
0 e−µ/2

)(
Ex

Ey

)
=
(
eµ/2Ex

e−µ/2Ey

)
. (9.8)

This squeeze transformation expands one amplitude, while contracting the other so that
the product of the amplitude remains invariant. This squeeze transformation is illustrated
in Fig. 9.1.

In order to illustrate phase shifts, we start with the Jones vector of the form(
exp (ikz)

exp [i(kz − π/2)]

)
, (9.9)

whose real part is (
x
y

)
=
(
cos(kz)
sin(kz)

)
, (9.10)

which corresponds to a circular polarization with

x2 + y2 = 1. (9.11)

If we apply the phase shift matrix, the resulting vector is(
x
y

)
=
(
cos(kz + δ/2)
sin(kz − δ/2)

)
, (9.12)

which can be written as (
x
y

)
=
(
cos(kz − π/4 + α)
cos(kz − π/4− α)

)
, (9.13)

with

α =
δ

2
+
π

4
. (9.14)

Then

x+ y = 2(cosα) cos(kz − π/4),

x− y = 2(sinα) sin(kz − π/4), (9.15)

and
(x+ y)2

4(cosα)2
+

(x− y)2

4(sinα)2
= 1. (9.16)

This is an elliptic polarization.
The squeeze operation of Eq. (9.4) is relatively simple. It changes the amplitudes, and

it commutes with the phase shift matrix. Thus, the combined effect could be illustrated
in Fig. 9.1.
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Circular

Phase Shift

Squeeze

Figure 9.1: Squeeze and Phase Shift. Both squeeze and phase shifts are elliptic deforma-
tions, but they are done differently (Başkal and Kim 2013).

9.3 Rotation of the polarization axes

If the polarization coordinate is the same as the xy coordinate where the electric field
components take the form of Eq. (9.1), the above attenuator is directly applicable to the
column matrix of Eq. (9.1). If the polarization coordinate is rotated by an angle θ/2, or
by the matrix

R(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (9.17)

the phase shifter takes the form

Z(θ, δ) = R(θ)Z(δ)R(−θ) (9.18)

=
(
cos(δ/2) + i sin(δ/2) cos θ i sin(δ/2) sin θ

i sin(δ/2) sin θ cos(δ/2)− i sin(δ/2) cos θ

)
. (9.19)

If the polarization coordinate system is rotated by 45o, the phase shifter matrix becomes

Q(δ) =
(
cos(δ/2) i sin(δ/2)
i sin(δ/2) cos(δ/2)

)
. (9.20)

In order to illustrate what this matrix does to the polarized beams, let us start with
the circularly polarized wave (

X
Y

)
=
(

1
−i

)
e(ikz−iωt), (9.21)

whose real part is (
X
Y

)
=
(
cos(kz − ωt)
sin(kz − ωt)

)
. (9.22)

This leads to the familiar equation for the circle

X2 + Y 2 = 1. (9.23)
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If the phase shifter of Eq. (9.20) is applied to the above Jones vector, the result is(
[cos(δ/2) + sin(δ/2)] cos(kz − ωt)
i[sin(δ/2)− cos(δ/2)] sin(kz − ωt)

)
(9.24)

with

cos(δ/2) = cos ([δ/2 + π/4]− π/4) ,

sin(δ/2) = cos ([δ/2 + π/4] + π/4) . (9.25)

Thus,

cos(δ/2) + sin(δ/2) =
√
2 cos (δ/2 + π/4) ,

cos(δ/2)− sin(δ/2) =
√
2 sin (δ/2 + π/4) . (9.26)

After the phase shift, the Jones vector becomes(
[
√
2 cosα] cos(kz − ωt)

[
√
2 sinα] sin(kz − ωt)

)
, (9.27)

with

α =
δ

2
+
π

4
. (9.28)

The the x and y components will satisfy the equation

X2

(
√
2 cosα)2

+
Y 2

(
√
2 sinα)2

= 1. (9.29)

This is an elliptic polarization. These steps are illustrated in Fig. 9.2.
Let us next consider rotations of the squeeze matrix.

B(θ, µ) = R(θ)B(µ)R(−θ), (9.30)

which leads to

B(θ, µ) =
(
cosh(µ/2) + sinh(µ/2) cos θ sinh(µ/2) sin θ

sinh(µ/2) sin θ cosh(µ/2)− sinh(µ/2) cos θ

)
. (9.31)

We are familiar with this squeeze operation from Sec. 8.3. This changes the amplitudes.
If the squeeze angle become 45o, we use the notation S(µ) for this special angle, and

S(µ) =
(
cosh(µ/2) sinh(µ/2)
sinh(µ/2) cosh(µ/2)

)
. (9.32)

The question is what happens if two squeeze transformations are made in two different
directions. Would the result be another squeeze? The answer is No. The result is another
squeeze matrix followed by a rotation, which can be written as (Başkal and Kim 2005)

B(θ, λ)B(0, η) = B(ϕ, ξ)R(ω), (9.33)
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Circular

Phase Shift

Rotation

Circular

Figure 9.2: Phase shift and rotation. They are rotated by 45o. (Başkal and Kim 2013).

where

cosh ξ = cosh η coshλ+ sinh η sinhλ cos θ,

tanϕ =
sin θ[sinhλ+ tanh η(coshλ− 1) cos θ]

sinhλ cos θ + tanh η[1 + (coshλ− 1) cos2 θ]
,

tanω =
2(sin θ)[sinhλ sinh η + C− cos θ]

C+ + C− cos(2θ) + 2 sinhλ sinh η cos θ
, (9.34)

with

C± = (coshλ± 1)(cosh η ± 1). (9.35)

Indeed, we write Eq. (9.33) as

R(ω) = B(ϕ,−ξ) B(θ, λ) B(0, η), (9.36)

three squeeze transformations lead to one rotation.
We have done this calculation using the kinematics of Lorentz transformations. On

the other hand, it does not appear possible to do experiments using high-energy particles.
However, it is gratifying to note that this experiment is possible in polarization optics.

If the angle θ is 90o, the calculation becomes simpler, and

B(λ)B(η) = B(ϕ, ξ)R(ω), (9.37)

where

cosh ξ = cosh η coshλ,
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tanϕ =
sinhλ

tanh η
,

tanω =
sinhλ sinh η

cosh η + coshλ
. (9.38)

9.4 Optical activities

For convenience, let us change the parameters θ and µ as

θ = 2αz, µ = 2βz. (9.39)

Then the R(θ) matrix can be written as

R(αz) =
(
cos(αz) − sin(αz)
sin(αz) cos(αz)

)
, (9.40)

and the rotation angle increases as the beam propagates along the z direction. This
version of optical activity is well known.

In addition, we can consider the squeeze operation

S(−βz) =
(

cosh(βz) − sinh(βz)
− sinh(βz) cosh(βz)

)
. (9.41)

Here the squeeze parameter increases as the beam moves. The negative sign for β is for
convenience.

If this squeeze is followed by the rotation of Eq. (9.40), the net effect is(
cosh(βz) − sinh(βz)
− sinh(βz) cosh(βz)

)
,
(
cos(αz) − sin(αz)
sin(αz) cos(αz)

)
(9.42)

where z is in a macroscopic scale, perhaps measured in centimeters. However, this is not
an accurate description of the optical process.

When this happens in a microscopic scale of z/N , it can become accumulated into the
macroscopic scale of z after the N repetitions, where N is a very large number. We are
thus led to the transformation matrix of the form (Kim 2010)

M(α, β, z) = [S(−βz/N)R(αz/N)]N . (9.43)

In the limit of large N , this quantity becomes[(
1 −βz/N

−βz/N 1

)(
1 −αz/N

αz/N 1

)]N
. (9.44)

Since αz/N and βz/N are very small,

M(α, β, z) =
[(

1 0
0 1

)
+
(

0 −(α + β)
(α− β) 0

)
z

N

]N
. (9.45)

For large N , we can write this matrix as

M(α, β, z) = exp (Gz), (9.46)
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with

G =
(

0 −(α + β)
(α− β) 0

)
. (9.47)

We can compute this matrix using the procedure developed in Sec. 8.3. If α is greater
than β, G becomes

G = α′
(

0 exp (η)
exp (−η) 0

)
, (9.48)

with

α′ =
√
α2 − β2,

exp (η) =

√
α + β

α− β
, (9.49)

and the M matrix of Eq. (9.46) take the form

(
cos(α′z) −eη sin(α′z)

e−η sin(α′z) cos(α′z)

)
. (9.50)

If β is greater than α, the off-diagonal elements have the same sign. We can then
write G as

G = −β′
(

0 exp (η)
exp (−η) 0

)
, (9.51)

with

β′ =
√
β2 − α2,

exp (η) =

√
β + α

β − α
, (9.52)

and the M matrix of Eq. (9.46) becomes

(
cosh(β′z) −eη sinh(β′z)

−e−η sinh(β′z) cosh(β′z)

)
. (9.53)

If α = β, the lower-left element of the G matrix has to vanish, and it becomes

G =
(
0 −2α
0 0

)
, (9.54)

and the M matrix takes the triangular form

(
1 −2αz
0 1

)
. (9.55)

The optical material can be made to provide rotations of the polarization axis. It is
much more interesting to see this additional effect of squeeze.
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Chapter 10

Poincaré sphere

While the Jones vector formalism is a concrete physical example of the two-by-two rep-
resentation of the Lorentz group, it cannot tell whether two orthogonal components are
coherent with each other. In order to address this coherency issue, we need the two-by
two coherency matrix consisting of four Stokes parameters.

These four Stokes parameters define the parameters for the three-dimensional Poincaré
sphere. The traditional Poincaré sphere needs three parameters like the Euler angles.
Then what role does the fourth Stokes parameter play? We shall show in this chapter,
the radius of the Poincaré sphere can change.

Since the Stokes parameters are constructed from the two-component Jones vectors,
which are transformed like the SL(2, c) spinors, the two-by-two coherency matrix should
transform like the two-by-two form of the space-time four-vector discussed extensively in
Sec. 1.2 and again in Chapter 3.

Thus, the Lorentz group should leave the determinant of the coherency matrix in-
variant, but the degree of coherency changes the determinant. Thus, the coherency is an
extra-Lorentzian variable. We shall study its implications in Einstein’s energy-momentum
relation where the particle mass is a Lorentz-invariant quantity. Thus the symmetry group
has to be extended to the O(3, 2) group discussed in Sec. 7.3.

10.1 Coherency matrix

In order to address the question of coherency between the two orthogonal electric fields,
we study the coherency matrix defined as (Born and Wolf 1980, Brosseau 1998)

C =
(
S11 S12

S21 S22

)
, (10.1)

with

< ψ∗
iψj >=

1

T

∫ T

0
ψ∗
i (t+ τ)ψj(t)dt, (10.2)

where T for a sufficiently long time interval, is much larger than τ . Then, those four
elements become (Han et al. 1997)

S11 =< ψ∗
1ψ1 >= a2, S12 =< ψ∗

1ψ2 >= ab e−(σ+iϕ),

S21 =< ψ∗
2ψ1 >= ab e−(σ−iϕ), S22 =< ψ∗

2ψ2 >= b2. (10.3)

121
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The diagonal elements are the absolute values of ψ1 and ψ2 respectively. The off-diagonal
elements could be smaller than the product of ψ1 and ψ2, if the two transverse components
are not completely coherent. The σ parameter specifies the degree of decoherence. The
system is completely coherent if σ = 0. It is totally incoherent if σ = ∞.

If we start with the Jones vector of the form of Eq. (9.1), the coherency matrix becomes

C =
(

a2 ab e−(σ+iϕ)

ab e−(σ−iϕ) b2

)
. (10.4)

We are interested in the symmetry properties of this matrix. Since the transformation
matrix applicable to the Jones vector is the two-by-two representation of the Lorentz
group, we are particularly interested in the transformation matrices applicable to this
coherency matrix.

The trace and determinant of the above coherency matrix are

det(C) = (ab)2
(
1− e−2σ

)
,

tr(C) = a2 + b2. (10.5)

Since e−σ is always smaller than one, we can introduce an angle χ defined as

cosχ = e−σ, (10.6)

and call it the “decoherence angle.” If χ = 0, the decoherence is minimum, and it is
maximum when χ = 90o. We can then write the coherency matrix of Eq. (10.4) as

C =
(

a2 ab(cosχ)e−iϕ

ab(cosχ)eiϕ b2

)
. (10.7)

The degree of polarization is defined as (Saleh and Teich 2007)

f =

√√√√1− 4 det(C)

(tr(C))2
=

√√√√1− 4(ab)2 sin2 χ

(a2 + b2)2
. (10.8)

This degree is one if χ = 0. When χ = 90o, it becomes

a2 − b2

a2 + b2
. (10.9)

Without loss of generality, we can assume that a is greater than b. If they are equal, this
minimum degree of polarization is zero.

Under the influence of the Lorentz transformation defined for the Jones vectors of
Chapter 9.1 and Sec. 1.2, this coherency matrix is transformed as

C ′ = G C G† =
(
S ′
11 S ′

12

S ′
21 S ′

22

)

=
(
α β
γ δ

)(
S11 S12

S21 S22

)(
α∗ γ∗

β∗ δ∗

)
. (10.10)
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Indeed, this is the Lorentz transformation defined in Sec. 1.2.
Then it is possible to write

S0 =
S11 + S22

2
, S3 =

S11 − S22

2
,

S1 =
S12 + S21

2
, S2 =

S12 − S21

2
, (10.11)

as a four-vector.
These four parameters are called Stokes parameters, and four-by-four transformations

applicable to these parameters are widely known as Mueller matrices (Mueller 1943, Az-
zam 1977, Brosseau 1998).

The Mueller matrices perform Lorentz transformations on the four Stokes parame-
ters. The correspondence between the four-by-four and two-by-two representations was
discussed in detail in Chapter 4.

Table 10.1: Polarization optics and special relativity sharing the same mathematics. Each
matrix has its clear role in both optics and relativity. The determinant of the two-by-
two matrix obtained from the Stokes vector or from the four-mometum remains invariant
under Lorentz transformations. It is interesting to note that the decoherency parameter
(least fundamental) in optics corresponds to the mass (most fundamental) in particle
physics.

Polarization Optics Transformation Matrix Particle Symmetry

Phase shift ϕ
(
e−iϕ/2 0
0 eiϕ/2

)
Rotation around z

Rotation around z
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
Rotation around y

Squeeze along x and y
(
eµ/2 0
0 e−µ/2

)
Boost along z

sin2 χ Determinant (mass)2

Since we can construct the Jones vector of Eq. (9.1) by making Lorentz transformations
on the simpler form (

ψ1

ψ2

)
=
(
a exp {i(kz − ωt)}
a exp {i(kz − ωt)}

)
, (10.12)

we can now drop the amplitude a and work with the coherency marrix of the form

C =
(

1 e−iϕ cosχ
eiϕ cosχ 1

)
. (10.13)
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The Stokes parameters are

S0 = 1, S3 = 0,

S1 = (cosχ) cosϕ, S2 = (cosχ)(sinϕ). (10.14)

The Poincaré sphere is defined by S1, S2, and S3.

R =
√
S2
1 + S2

2 + S2
3 . (10.15)

Since S3 = 0 in Eq. (10.14), the sphere collapses into a circle of radius

R =
√
S2
1 + S2

2 = cosχ. (10.16)

Let us go back to the four-momentum matrix of Eq. (1.21) of Sec. 1.2. Its determinant
is m2 and remains invariant under Lorentz transformations defined by Eq. (1.22). Like-
wise, the determinant of the coherency matrix of Eq. (10.4) should also remain invariant.
The determinant in this case is

S2
0 −R2 = sin2 χ. (10.17)

However, this quantity depends on the angle χ variable which measures decoherency of
the two transverse components. This aspect is illustrated in Table 10.1.

While the decoherency parameter is not fundamental and is influenced by environment,
it plays the same mathematical role as in the particle mass which remains as the most
fundamental quantity since Isaac Newton, and even after Einstein.

10.2 Entropy problem

It is remarkable that the coherency matrix can also serve as the density matrix if it is
divided by 2. It is written as

ρ(χ) =
C

2
=

1

2

(
1 cosχ

cosχ 1

)
, (10.18)

The trace of this densty matrix is one.
This density matrix can be diagonalized to

ρ(χ) =
1

2

(
1 + cosχ 0

0 1− cosχ

)
. (10.19)

Then the entropy becomes (Kim and Wigner 1990, Eisert et al. 2010, Kim and Noz 2014)

S(χ) = −1 + cosχ

2
ln
(
1 + cosχ

2

)
− 1− cosχ

2
ln
(
1− cosχ

2

)
, (10.20)

which can be simplified to

S(χ) = −[cos2(χ/2)] ln[cos2(χ/2)]− [sin2(χ/2)] ln[sin2(χ/2)]. (10.21)

If the enropy is zero the system is completely coherent with σ = χ. The entropy takes the
maximum value of ln(2) when the system is totally incoherent with χ = 90o and σ = ∞.
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fig.(a) fig.(b)

Figure 10.1: The momentum-mass relation for a fixed value of energy in fig.(a). As the
angle χ increases, the momentum increases, while the mass becomes smaller. The particle
becomes massless for χ = 90o. This transition is described in terms of the traditional
energy-momentum plot in fig.(b). This transition is not allowed within the framework of
of the Lorentz group. The Poincaré sphere allows this extra-Lorentz transformation.
.

10.3 Symmetries derivable from the Poincaré sphere

It has been demonstrated in Sec. 10.1 that the Poincaré sphere contains the symmetry
of the Lorentz group applicable to the momentum-energy four-vector. While the Lorentz
group cannot tolerate the variable mass, the sphere has an extra-Lorentz variable which
can change the mass. In order to understand this extra variable, we exploit the symmetry
between cosχ and sinχ, write another coherency matrix

C ′ =
(

1 e−iϕ sinχ
eiϕ sinχ 1

)
, (10.22)

with determinant cos2 χ.
It is possible to diagonalize both C and C ′ to

C =
(
1 + cosχ 0

0 1− cosχ

)
, C ′ =

(
1 + sinχ 0

0 1− sinχ

)
. (10.23)

whose determinants are sin2 χ and cos2 χ respectively. The matrices C and C ′ share the
same physics and the same mathematics. The choice is thus only for convenience.

We are now led to write the four-momentum matrix as

P =
(
E + p 0
0 E − p

)
, (10.24)

where E and p are the energy and the magnitude of the momentum respectively. The
particle moves along the z direction.

Let us write p = E cosχ, and then the matrix P becomes

P = E
(
1 + cosχ 0

0 1− cosχ

)
. (10.25)
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This matrix is like C of Eq. (10.23). If we let p = E sinχ,

P = E
(
1 + sinχ 0

0 1− sinχ

)
(10.26)

is like C ′.
Let us pick P of Eq. (10.26). If χ = 0, the matrix becomes the four-momentum of

the particle at rest with a mass E. If χ = 90o, the particle becomes massless with a
momentum of E. The continuous transition from χ = 0 to 90o is illustrated in Fig. 10.2.

Starting from a massive particle at rest, we are interested in reaching a massless
particle with the same energy. This problem is not new in that it was discussed in detail
in Chapter 4 within the framework of the Lorentz group. However, the transition from
the massive case to the massless case is a singular transformation, since the mass remains
invariant under Lorentz transformations.

On the other hand, in the case of the Poincaré sphere, this transition is continuous as
indicated in Fig. 10.1. The question is whether this extra-Lorentzian transformation can
be accommodated by a larger symmetry group.

10.4 O(3,2) symmetry

The group O(3, 2) is the Lorentz group applicable to a five-dimensional space applicable to
three space dimensions and two time dimensions. Likewise, there are two energy variables,
which lead to a five-component vector

(E1, E2, pz, px, py) . (10.27)

In order to study this group, we have to use five-by-five matrices, but we are interested
in its subgroups. First of all, there is a three-dimensional Euclidean space consisting of
pz, px, and py, to which the O(3) rotation group is applicable, as in the case of the O(3, 1)
Lorentz group.

If the momentum is in the z direction, this five-vector becomes

(E1, E2, p, 0, 0) . (10.28)

As for these two energy variables, they take the form

E1 =
√
p2 +m2

1, and E2 =
√
p2 +m2

2 cos
2 χ, (10.29)

with (Zee 2003, Başkal and Kim 2006)

m1 = m cosχ, m2 = m sinχ, (10.30)

and they maintain
E2

1 + E2
2 = m2 + 2p2, (10.31)

which remains constant for a fixed value of p2. There is thus a rotational symmetry
in the two-dimensional space of E1 and E2. Indeed, this defines the O(3, 2) de Sitter
symmetry (Başkal and Kim 2006, 2013).
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Figure 10.2: Energy-momentum hyperbolas for different values of the mass. The Lorentz
group does not allow us to jump from one hyperbola to another, but it is possible within
the framework of the O(3, 2) de Sitter symmetry. This figure illustrates the transition
while the magnitude of the momentum is kept constant.

For the present purpose, the most important subgroups are two Lorentz subgroups
applicable to the Minkowskian spaces of

(E1, p, 0, 0) , and (E2, p, 0, 0) . (10.32)

Then, in the two-by-two matrix representation, these four-momenta take the form(
E1 + p 0

0 E1 − p

)
, and

(
E2 + p 0

0 E2 − p

)
, (10.33)

with determinants equal to m2 cos2 χ and m2 sin2 χ respectively.
With this understanding, we can now concentrate only on the matrix with E1. For

χ = 0, E1 = p, and it takes a maximum value of
√
p2 +m2. This fixed-momentum

variation is illustrated in Fig. 10.2. Indeed, the de Sitter symmetry allows us to jump
from one mass hyperbola to another.

O(3, 2) or SO(3, 2) appears as the symmetry group in various branches of physics,
ranging from quantum mechanics to extended theories of gravity (Wesson 2006, Zee 2013).
In Sec. 7.3, we have extensively discussed the quantum mechanical case in the context of
the Dirac’s harmonic oscillator (Dirac 1963). In addition to Dirac’s oscillator, spin-orbit
coupled harmonic oscillators also admit the same symmetry group (Haaker 2014).

In fact, emerging from different viewpoints, attempts to accommodate another time-
like dimension to the usual spacetime is not new (Bars 1998, Wesson 2002). SO(3, 2) is
also the isometry group for the AdS4 (anti-de Sitter) spacetimes. It admits closed time-like
curves and solves Einstein’s equations with a negative cosmological constant accounting
for a contracting universe.

On the other hand, the dS4 (de Sitter) spacetime whose isometry group is O(4, 1)
is in contrast with AdS4 in the sense that it solves Einstein’s equations with a positive
cosmological constant and accounts for the expansion of the universe which is what we
are observing now in the real cosmos (Zee 2013). It is gratifying to note that the Poincaré
sphere contains this important symmetry.



128 CHAPTER 10. POINCARÉ SPHERE

References

Azzam, R. A. M.; Bashara, I. 1977. Ellipsometry and Polarized Light. North-Holland:
Amsterdam, The Netherlands.
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