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Einstein’s Hydrogen Atom

Y. S Kim

Marviand Center for Fundamental

hysics.

University of Marvland. College Park. Munvland 20742, USA
Email: vskim@umd.edu

Abstract—-In 19035, Einstein formulated his special relativity
for point particles. For those particles. his Lorentz covariance
and energv-momentum relation are by now firmiy established.
How about the hydrogen atom? It is possible to perform Lorentz
boosts on the proton assuming that it is a point particle. Then
what happens to the electron orbit? The orbit conld go through
an elliptic deformation, but it is not possible to understand
this probfem without quantum mechanics. where the orbit is
a standing wave leading to a localized probability distribution.
Is this concept consistent with Einstein’s Lorentz covariance?
Dirac, Wigner, and Feyvnman contributed important building
blocks for understanding this problem. The remaining problem
is to assemble those blocks to construct a Lorentz-covariant
picture of quantum hound states based on standing waves. It is
shown possible to assemble those building blocks using harmonic
oscillators.

KNEYWORDS: Quantum bound states, Lorentz covariance.

1. INTRODUCTION

Niels Bohr had a great respect for Einstein, and he adds
“time” whenever he mentions “space™ in his philosophical
writings. However. for his hydrogen atom. the proton was
sitting at the center of the absolute frame. Einstein presumably
thought about how the hydrogen atom would look 10 a moving
observer. but he never raised the issue. The reason is that
the hvdrogen atom moving with a relativistic speed was not
conceivable for them.

Things are different these days. Protons can move with a
speed close to the light speed. In addition. like the hydrogen
atom, the proton is a bound state of the more fundamental
particles called the ~quarks.” The proton thus has the same
quantum mechanical ingredients as the hydrogen aiom has.
We can therefore study the hvdrogen atom in Einstein’s world
by studying the proton in high-energy physics. This historical
trend is illustrated in Fig. 1.

Without the quark model. Paul A. M. Dirac devoted much of
research life to the problem of constructing Lorentz-covariant
wave functions. He published four papers on this problem from
1927 to 1963 {1]. {2]. {3]. [4]. We shall construct the bound-
state model by combining these four papers.

In order 10 do this. we have to understand the symmetry
probiems for bound-state problems. In 1939, Eugene Wigner
worked out the internal space-time symmetries of relativistic
pariicles [5]. In so doing he worked out the symmetnes of
bound states in the Lorentz-covariant world [6].

Richard Fevnman invented Feynman diagrams. but he said
in 1970 that we should use harmonic oscillators. instead of
Feynman diagrams, for understanding bound state problems in
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Fig. 1.
the hvdrogen atom to a relativistic speed. Bois however possible these dins
to produce protons moving with a speed close 10 the light speed. Also these
davs. the proton is thought to be a bound state of quarks. Tt is thus suthcient
1o study high-enerey protons to study the hyvdrogen atom in Einstein’s world.

Evolution of the hvdrogen atom. It 1s stiil not possible to aceelerate

the Lorentz-covariant world cite7. He then published a paper
saying the same with his students in 197] [8]. The difficulty of
using the S-matrix for boundstates had been noted before 191,

In Sec. 1l we list Dirac’s four papers. and point out what
he did and what be could have don in these papers. We do
the same for Feynman's three papers in Sec. [11. In Sev JV. it
was noted first that space-ime symmetry of guantum bound
states 1s simpler than the full-fiedged Lorentz group. Unlike
Kiein-Gordon waves. the symmetry of standing wave is that of
the three-dimensional rotation group [5]. This point is missing
in Dirac’s papers and Feynman's 1971 paper [§]. It is noted
also that that the covariant harmonic oscillators sausfy all the
required symumetries.

We then discuss the essential features of the oscillator
formalism which describes the effect of the proton wave
function under Lorentz boot. It is shown that the wave function
becomes “squeezed” when it is boosted.

It 1s then shown in Sec. V that this squeeze effect manifests
itself in Fevnman's panon picture for the proton moving with
a speed close to that of hight. We esiablish that the quark
model and the parton model are two different manifestations
of one Lorentz-covariant model of quantum bound states. This
is what Einstein’s hydrogen atom is about.

1. DIRAC'S FOUR PAPERS

Paul A. M. Dirac devoted much of his research efforts 10
making quantum mechanics consistent with special relativity.
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wrote down the Gaussian form
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but did not explain the phyvsics of the Guussian distribu-
tion in the tme vurable.
e In 1949 [3]. he started with the Lorentz transformation
3 .
. \ (2)
/

I ( coshigy i /
\\ Z' ) \ sinhiy coshy, \/ 7

He then introduced the light-cone variables

sinli g

In terms of these variables, the Lorentz boost takes the
form He then diagonualize this equation to

H 1/

u ¢ ¢ T, (4)

These light-cone variables serve very useful purposes.
Here one coordinate expands and the other contracts.
Thus. the Lorentz boost 1s a squeeze transformation [10].
In the same paper. Dirac stated that the problem of
constructing relativistic dynamics 18 the same as that
of constructing a suitable representation of the Poincaré
group. In his earlier paper [2]. Dirac started this work
using harmonic oscillators. but he did not elaborate on
this in hs 1949 paper.

o In 1963 {4]. Diruc used two harmonic oscillators to
construct the O{3.2) deSitter group. which is a Loreniz
group applicable to thee space-like and two time-like
coordinates. This representation later became the mathe-
matical basis for two-mode squeezed states in quantum
optics {11]. [12]. and became a bridge between special
relativity and optical sciences.

In the present paper. we address these soft spots in these
papers according to Dirac’s own suggestion: to construct the
representation of the Poincaré group using harmonic oscilla-
tors [2]. [3]. Dirac missed this point again in his 1963 paper [4}
while he was constructing the representation of the O{3.2)
group which contains the Lorentz group O(3. 1) as a subgroup.

We cun remove these soft spots by constructing Wigner's
litle groups [5] of the Poincaré group using harmonic oscil-
lators [6]. [13].

I11. FEYNMAN'S THREE PAPERS

Richard Feynman made impornan! contributions in many
different branches of physics. In the following three papers.
he left some important questions as home work problems for
younger generations.

01

o In 1969 1

\ ¢ the concept of
purions. 11 the proten moves w

L i1AE Fevnn

close to that

of light 1t appeurs

hke a cofiecion of partons whose

properties are yuire frovt ihe quarks which
are constrtuent particles inside the proton at resi. The
quesiion then i whether the quurks and panons are two
differsnt manifestauon of one Lorentz-covariani entity.

o In 1970. Fevnman guve a wlk at the spring meeting
of the American physical Society held in Wushington.
He started with hsdrons which are bound stutes of
quark {16]. He noted that the hadronie spectra could best
be understood in terms of the three-dimensionul harmonic
ascillators. As for the Lorentz covariunt uspect of his
oseillator formalism. he pointed out that there 1s the dme
separation between the guarks, However. since he did
not know what 1o do with it. he chose to ignore the
variable. He then published the content of this talk with
his students 1n 1971 {&8]. He did not jusufy what he did
on this tme separation variable.

« In his book on sutisucal published in
1972 1174 Fevoman discussed density matrices and mea-
surement problems. He stated When we solve a quantum-
mechanical problem, whar we realiy do is divide the

mechanics

universe into two parts - the system in which we are
interested and the rest of the universe. We then usually act
as if the system in which we are inierested comprised the
entire universe. To mortivate the use of density matrices.
let ws see whar happens vwhen we include the part of the
wiiverse outside the svsiem.

Feymman then used one hurmonic oscillator to illustrate
his rest of the univerce. The question is how one oscillator
can explain both the real world and the rest of the
universe. He could have used two coupied oscillators
to illustrate his his rest of the universe. but he left this
problem as a homework problem for us [1].

In these three papers. Fevnman raised very fundamental
1ssues in physics. but did not provide complete solutions. The
issue on his rest of the universe has been discussed in the
literature in terms of the coupled oscillators [18]. and also in
terims of the time-separation variable in the Lorentz-covanant
world [19].

In the present paper. we are interested in addressing the
soft spots in Fevnman's 1969 papers on the parton picture
and those in his 1971 paper on harmonic oscillators. As in the
case of Dirac, it is possible 1o transform Feynman's oscillator
formalism into the representation of Wigner’s little group using
harmonic osciljators [6]. [13].

1V. COVARIANT HARMONIC OSCILLATORS

In Sec. 11 and Sec. ll. we stated that it Is possible to
remove the soft spots in Dirac’s four papers and Feynman's
three pupers by constructing Wigner's lintle groups. These
little groups are the subgroups of the Poincaré group whose
transformations leave the four-momentum of a given particle
invariant [5). [6]. For a massive particle. we can consider the
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In dealing with plane wanves. we sart with the Klein-Gordon

ons of this equation are Lorentz-invariant,

]

equation. The
The running waves in the Loreniz-covarant world share ihe
samie symmetry property as that of the Klein-Gordon wiaves.
it conwains the {ull svmmetry of the Poincaré group with
ten mterdependent paperers. These aspects of the space-time
symmetry 15 iltustrated in Fig. 2. This figure describes the
space-time synuuetry of Einstein’s hvdrogen atom given in
Fig. 1.

Running Waves

Transition to the
Lorsntz-covariant Worid
Wigner's Klein-Gordon Waves
Little Groups Lorentz Group
l
Construction of
Mathematical Forrnulas
Harmonic Feynman Diagrams N

Oscilfators

Fig. 2. Running waves and standing waves in quantum theory. If o particle
Is allowed 1o travel from Infinity (o intinitv, it corresponds 10 a running wave
according to the wave picture of quantam mechanios. M. on the other hand.
10 1s trapped Ina Jocalized region, we have 1o use standing waves 1o interpret
1ts Jocation in terms of probability distribution.

Since the internal space-time svmmetry is like the three-
dimensional rotation group, the standing waves trapped within
a quantum bound state should also satisfy this symmetry. It
ts important 10 note that we are dealing here with space-time
separations. For instance. the Bohr radius is the separation
between the proton and electron. One of the soft spots in
Dirac’s four papers is that Dirac did not clarify this separation
issue. The soft spots in both Dirac’s papers and Feynman’s
i971 paper [8] is that the time-like direction is not required
in Wigner's three-dimensional space.

Thus. Dirac’s concern about the space-time asymmetry Is
not necessary. Feynman er a/. said they wanted to drop the
time-like variable because they do not know what to do with
it. They did not know they were right. Theyv did not have 1o
do anything about what does not exist.

Then. our next problem is to build a model of bound states
satisfying Wigner's O(3}-like symmetry. which is consistent
with Einstein’s Lorentz covariance, As was noted by Fevn-
man {7]. the easiest way Is to start with harmonic oscillators.
The oscillator system does not require additional boundary

conditions. Indeed. before the paper of Fevnman er

number of authors published their papers on this subject [20]

220012300 (24

According to Gell-Mann 161 the proton 1> a4 bound siaie
of two guarks. but we consider here for simphicity « bound
state of two quarks. As s the case of Fevaman ¢r af.. we siarl
with the two quarks whose space-tune positions are o, and
x,. Then the standard procedure is o use the variabies

N w2 R R S (3
The four-vector X specifies where the proton is located in
space und tme. while the vanable .+ measures the space-
tme separation between the quarks. This o varieble has
four components. but it has only three degrees of freedom
according 1o Wigner's symmetry. This will appear as the
lack of excitauons along the ume-hke direction as noted by
Dirac [1]. [3].

Does this time-separation variable exist when the proton
is at rest? Yes. according to Einstein. In the present form of
quantum mechanics. we pretend not to know amvthing about
this variable. Indeed. this variable belongs to Fevnman's rest
of the universe [19].

Alco in the present form of quantum mechanics. there 1s
an uncertainty relation between the time and energy variables.
However. there are no known time-like excitations. Unlike the
position or momentum variable. the time-separation variable
is c-number. and its uncertainty with the energy separation a
c-number uncertainty relation [1}. With this point in mind. let
us go to the osaillmor formalism proposed by Fevnman {7].
(8]

Fevnman et al. start with the Lorentz-invariant differential

equation [8&]
.
{1'2 — —ﬁd“ } w{a)
T 572 o
(71.))

This partial differential equation has many different solutions
depending on the choice of separable variables and boundary
conditions. Fevnman er al. insist on Lorentz-invariant solutions
which are not normalizable. On the other hand. if we insist on
normalization. the ground-state wave function takes the form
of Eg.(1). which now can be written as

Mol (6)

1O =

] ;o 9,
w(z.t) -34:2 2. (7)

where we dropped the transverse components of 2 and y. As
in the case of Eq.(2). we make Lorentz boosts along the :.

We dropped also the normalization constant for simplicity. In
terms of the light-cone vanables. this wave function becomes

Cu v exp ]‘-—— (2 1.‘2)1[, (8)

{
i

[NR R

/_/
If the system is boosted. the u and ' variables are replaced
by u €77 and v €" respectively. The wave function then
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hecomes

9

ex = fe
Lo
The wave function sausfied the Lorentz-invariant differential
equation of Eq.t6). This wave function 1s expanded along the
u direction. while it becomes contracted along the ¢ direcuon.
This aspect of the Lorentz-squeeze 1s iHustrated in [ig. 3.

Dirac (1827,1945}
Quarntum Mechanics

Dirac (1949)
Lorentz Covarisnce

t

t c-number
Time-energy
Uncertainty
z
Heisenberg Q 2
Uncertainty

Lorentz-covariant Quantum Mechanics

Feynman

1969: Parton Picture

1971: Oscillator Mode! for
Bound States

1973 Rest of the Universe

Fig Spuace-time picture of quantum mechanics. There are quantum
excitations along the space-like longitudinal direction. but there are no
excitations along the tme-like direction. The time-enerey relation is a ¢
number uncertainty relation.

Let us go back to the Gaussian form of Eq.(7). If we
allow excitations along the = direction while keeping the f
component in its ground state. the wave function takes the
form
A
! 242
- =) H,(z).

L -

ey (zat) (10}
where H, is u Hermite polyvnomial. This wave function
satisfies Dirac’s c-number time-energy uncertainty relation, It
can also be Lorentz-boosted in the same manner as the ground-
sate wave function of Eq.(7) becomes its squeezed form of
Eq.(9). This aspect of the Lorentz-covariant c¢-number time-
energy uncertainty relation is discussed in the literature {31].
{32].

Since the oscillator system is separable in the Cartesian
coordinate system. the Gaussian form of Eq.(7} can be restored
to its dimensional form of Eq.(1). This form can allow
excitations along the transverse directions of x and y. We we
add the Hermite polynomials in along these components, this
wave function can possess the symmetry under rotations in the
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Fig. 4. Coherence bhetween the wavelength and the proton size. As the
momentum transfer increases. the external signal sees Lorentz-contructing
proton distribution. On the other hand. the wavelength of the signal also
decreases. Thus, the cutoff s not as severe as the case where the proton
distribution 18 not contracied.

three-dimensional space. This is the content of Wigner's U(3)-
like little group applicable to this system. These transverse
excitation remain invariant when the system is boosted. This
aspect has also been discussed in the literature [13].

This elliptic squeeze i« consistent with the Lorentz contrac-
tion along the longintudinal direction according 1o Einstein’s
special relauvity. However. it raises a new wuestion of how
to deal with the the time-separation variable which becomes
more prominet as the proton picks up the speed [10]. [19].

As for the experimental side of this Lorentz squeeze. this
problem was studied in connection with the proton form factor
for high momentum transfer in electron-proton scattering. The
early authors attempted to explain the dipole cut-off behavior
using the oscillator formalism presented in this section {22].
[23]. [24).

There is still more work to be done. For instance. the effect
of the quark spin should be addressed [25]. {26]. Also there are
reports of deviations from the exact dipole cut-off [27]. There
have been attempts o study the form factors based on the
four-dimensional rotation group [28}. and also on the latice
QCD [29]. p Indeed. this form factor behavior is one of the
centrail issues in high-energy physics.

Yet, it is gratifving to note that the effect of Lorentz
squeeze leads to the polynomial decrease in the momentum
transfer, thanks to the Lorentz coherence illustrated in Fig. 4.
This aspect of coherence probem has been discussed in the
literature [6]. [10]. [30].



Vo FEYNMAN'S PaRTON PICTURE

Itisaw accepted view that the hadrons
bound states uf auarks with localized probubiln
all S ihis ]md]zzulmn
exponsible for the existence of discrete mass specira
most convipemng evidence for this bound-state picture i< the
hadronic muss spectra which are observed 1n high-energy
laboratories {6]. {8]. The proton i1s one of those hadrons.

In 1969. Fevnman observed that a fast-moving proton can be
recarded as a collection of many “partons” whose prop>' ties
appear 1o be guite different from those of the quarks [i5].
For example. the number of quarks inside a static proton i
three. while the number of partons in a rapidly moving proton
appears o be ipfinite. The question then s how the proton
looking Iike a bound state of quarks 1o one observer cun appeur
different 1o an observer in u different Lorentz frame? Fevnmun
made the following systematic observations.

are guantum
v distributions.
condion s
The

As in bhound

dle cases.

a. The picture 1s valid only for protons moving with velocin

close to that of light.

b. The interaction time between the quarks becomes dilated.

and partons behave as {ree independent particles.

c. The momentum distribution of partons  becomes

widespreud as the prolon moves fast.

d. The number of partons appear to be infinite or much

targer than that of quarks.
Because the proton is believed 10 be a bound stute of two
or three quurks. euach of the above phenomena appears as a
paradox. particularly by and ¢ together.

In order to resolve this paradox. let us consider the
momentum-energy wave function for this two-quark system.
If we Iet the quarks have the four-momenta p, and p.
1t is possible to construct two independent four-momentum
variables {§]

Poope q \’/Ek[’<x‘7)h)- (rh

where F is the towl four-momentum. It is the proton four-
momentum.

The variable ¢ measures the four-momentum separation
between the quarks. Their light-cone variables are

g oo N2 g (g0 — g1V (a2

The resulting momentum-energy wave function is
y [ 1 oy 0 2 2y | A
{4z - qu) e\pL S q ) (13)

Because we are using here the harmonic oscillator. the mathe-
matical form of the above momentum-energy wave function is
identical to that of the space-time wave function. The Lorentz
squeeze properties of these wave functions are also the same.
This aspect of the squeeze has been exhaustively discussed in
the literature [6]. [33]. [34].

When the proton is at rest with 7 0. both wave functions
behave like those for the static bound state of quarks. As 7
increases. the wave functions become continuously squeezed
unti! they become concentrated along their respective positive
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Fig. 5. Lorentz-squeczed space-time and momentum-cnergy wave functions,
As the proton’s speed approaches that of light. both wave functions become
concentrated along their respective positive light-cone axes. These hghi-cone
concentrations lead to Fevaman's parton picture.

light-cone axes. Let us look at the z-uxis projection of the
space-time wave function. Indeed. the width of the quark
diatribution increases as the proton’s speed approaches that
of the speed of light. The position of each quark appears
widespread to the observer in the laboratory frume. and the
quarks appear like free panicles.

The momentum-energy wave function is just like the space-
tme wave function. as is shown in Fig. 5. The longitudinal
momentum distribution becomes wide-spread as the proton’s
speed approaches the velocity of light. This is in contradiction
with our expectation from non-relativistic quantum mechanics
that the width of the momentum distnbution is inversely pro-
portional to that of the position wave function. Our expectation
1s that if the quarks are free. they must have their sharply
defined momenta, not a wide-spread distribution.

However. according to our Lorentz-squeezed space-time and
momentum-energy wave functons, the space-time width and
the momentum-energy width increase in the same direction as
the proton is boosted. This is of course an effect of Lorentz
covariance. This indeed is the key to the resolution of the
quark-parton paradox [6]. [33]. [34].

Feynman's parton picture is one of the most controversial
phvsical models proposed in the 20th century. The original
model is valid only in Loreniz frames where the initial proton
moves with infinite momentum. It is gratifying to note that
this model can be produced as a limiting case of one covariant
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CONCLUDING REMARKS

Since 1973 [30]. mostdy with Manlyn Noz.
publishing papers on constructing a model of quantum bound
states In Einstein’s Lorentz-covaniant world. In 1986 {6]. we
published & book on this subject. Of course. we were not the
first ones 1o study this problem.

It was noted first that Dirac and Fevnman made pivotal
contributions. However, they looked at the same problem
differently in thetr papers. It was seen tn the present report that
their results can become much stronger if they are combined
into one paper. During this process. Wigner's 1939 paper |5}
plays the essenual role.

Here. the key word 1 “harmony.” The works of those great
physicists can be put together in harmony. I am very happy
10 mention this point in China, where the concept of harmony
was formulated many centuries ago through the philosophy of
“Taoism.”

As for Einstein. let us go 1o Table 1. This is a table on
harmony. Observers in different Lorentz {rames see things
differently. but they are in harmony. Then. did Einstein study
the oriental philosophy of Taoism? 1 do not know.

However. it is well known that he studied the philosophy
of Immanuel Kant in his early years. It is also known that his
formulation of relativity was influenced by Kant's view of the
world. Different observers can see differently one thing which
1s called “Ding an Sich™ by Kant.

What is Ding an Sich?. A Coca-Cola can looks like a
rectable 10 an observer who Jooks at its side. It is a circle
viewed from the top. Here. the Coke can is the Ding an Sich.

Thus. according to Kant. Einstein’s special relativity re-
quires an absolute frame (Ding an Sich). This is not what
Einstein wanted. In Table 1. there are no places for Kant's
Ding an Sich.

I have been

Jf not Kantamsm. where 15 Ein<iein’s philos
How can the observers !
oncile their differences”
lie within the
along this direcuon |-

So far. the quesuon of ha
Einstein’s world of reluinvity.
quantum mechanics and

1otwo Gifferent Loveniz frames rec-
or o 1S gueslion seems o

maose

" The ansae

f C Tecisia, We have 0 study

framewars of
razh
o

ha< been restricted 1o

Our uitimate guestion i~ how

relativity will be combined together

in harmony.
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