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Abstract

It is shown possible to define the temperature of Lorentz-squeezed hadrons in terms
of their speed. Within the framework of the covariant harmonic oscillator formalism
which is the simplest scientific language for Lorentz-squeezed hadrons, the hadronic
temperature is measured through(

v

c

)2

= exp

(−h̄ω

kT

)
.

As the temperature rises, the hadron goes through a transition from the confinement
phase to a plasma phase.
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The purpose of this paper is to introduce the concept of temperature for relativistic
extended hadrons, based on the theoretical frameworks of three seemingly different branches
of physics, ie., two-mode squeezed states of light citepaper101, thermo-field-dynamics [2],
and the space-time geometry of extended hadrons [3]. This concept is consistent with the
expectation that rising hadronic temperature leads to a transition from the confinement to
the plasma phase [4].

One of the remarkable features of squeezed light is that its underlying scientific language
is that of the (2 + 1)-dimensional Lorentz group [1, 5]. Therefore, the study of squeezed
states of light may teach new lessons on Lorentz transformations, as in the case of the Thomas
precession [6]. In this paper, we would like to point out first that the mathematics of two-
mode squeezed states is the same as that for the covariant harmonic oscillator formalism
for relativistic extended hadrons [3]. We shall therefore show that fast-moving hadrons
undergo a Lorentz squeeze. The squeeze parameter in this case is related to the Lorentz-
boost parameter.

Another remarkable feature of two-mode squeezed states of light is that its formalism
is identical to that of thermo-field-dynamics [2] and the C∗-algebra [7] which gives a pure-
state description for thermally excited bosonic states, as was discussed recently by several
authors [8]. The temperature is in this case related to the squeeze parameter. It is therefore
possible to define the temperature of a Lorentz-squeezed hadron within the framework of
the covariant harmonic oscillator model.,

As is well known, the mathematics of photon-number states is based on the one-dimensional
harmonic oscillator. Let us start with the one-dimensional harmonic oscillator described by
,

1

2

mω2X2 − 1

m

(
∂

∂X

)2
Ψn(X) = (n+ 1)ωΨn(X). (1)

Under the scale transformation x =
√
mωX, this equation becomes independent of ω,

1

2

x2 − (
∂

∂x

)2
ψn(x) = (n+ 1)ψn(x). (2)

Thus the frequency dependence is solely in the scale transformation from X to x. For the
case of photons, ψn(x) represents the n-photon state. With this understanding, we can
construct a product of ground states of two oscillators with different frequencies ω1 and ω2,
and thus two different coordinates x1 and x2,

ψ (x1, x2) =
1√
π
exp

[
−1

2

(
x21 + x22

)]
. (3)

In the language of photons, the above wave function corresponds to the zero-photon state
in the two-photon mode [1, 8]. This ground state is invariant under rotations around the
origin of the two-dimensional space of x1 and x2. In particular, we can consider the variables
y1 = (x1 + x2) /

√
2 and y2 = (x1 − x2) /

√
2 . Then the squeezed vacuum corresponds to the

contraction and expansion along the y1 and y2 axes respectively: ,

ψη (x1, x2) =
1√
π
exp

{
−1

2

[
e−2η (x1 + x2)

2 + e2η (x1 − x2)
2
]}
. (4)
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In terms of ψn(x), this form can be expanded as [8]

ψη (x1, x2) =
1

cosh η
Σn(tanh η)

nψn (x1)ψn (x2) . (5)

In the above expression, ψn (x1) and ψn (x1) represent the n-photon states for the first and
second modes respectively. This form is identical to the thermally excited field [8, 8]:,

ψT (x1, x2) =
(
1− e−ω/T

)1/2∑
n

e−nω/2Tψn (x1)ψn (x2) , (6)

if we identify (tanh η)2 with the Boltzmann factor exp (−7ω/T ), where T is measured in units
of Boltzmann’s constant k. In thermo-field-dynamics, x is called the primary coordinate if
x1 is chosen to be 7w 1, and x is called the shadow coordinate [2].

It is now possible to construct the density matrix for the thermally excited state of the
first mode by integrating over the shadow coordinate the expression ψ (x1, x2)ψ

∗ (x1, x2) [8],

ρT (x1, x
′
1) =

∫
ψη (x1, x2)ψ

∗
η (x

′
1, x2) dx2

=
(
1− e−ω/T

)∑
n

e−nω/Tψn (x1)ψ
∗
n (x

′
1) , (7)

This form of the density matrix for the one-dimensional harmonic oscillator is readily avail-
able in the literature [9]. ,

The transformation from the two-oscillator ground state to the thermally excited state
had been known in condensed matter physics before the concept of squeezed states of light
was introduced. This is known as the Bogoliubov transformation [2, 7, 8].

In this paper, we would like to show that the relativistic quark model can also be framed
into the formalism of the Bogoliubov transformation. The relativistic quark model based
on the covariant harmonic oscillator formalism is consistent with the observed hadron mass
spectrum, hadronic form factors, and Feynman’s original form of the parton picture [3, 10,
11]. It also constitutes a representation of the Poincaré group [3, 12].

If the space-time position of two quarks are specified by xa and xb respectively, the system
can be described by the variables:,

X = (xa + xb) /2, x = (xa − xb) /2
√
2. (8)

The four-vector X specifies where the hadron is located in space and time, while the variable
x measures the space-time separation between the quarks. In the convention of Feynman
3et al1. [13], the internal motion of the quarks can be described by the Lorentz-invariant
oscillator equation,

1

2

Ω2x2µ −
(
∂

∂xµ

)2
ψ(x) = (ωλ)ψ(x), (9)

where we use the space-favored metric: xµ = (x, y, z, t). The four-dimensional covariant
oscillator wave functions are Hermite polynomials multiplied by a Gaussian factor, which
dictates the localization property of the wave function. As Dirac suggested [14], the Gaussian
factor takes the form, (

Ω

π

)
exp

[
−1

2
Ω
(
x2 + y2 + z2 + t2

)]
. (10)
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Figure 1: Lorentz-squeezed hadron. The upper half of this figure describes the space-time
squeeze, while the lower half is for the squeeze in the momentum-energy plane, where qz
and q0 measure the longitudinal and time-like momentum separations respectively. This
squeeze property, together with the present figure, has been repeatedly discussed in the
literature [3, 11]. When the hadron is at rest, it appears as a bound state of quarks. When
it moves with its velocity close to that of light, it appears as a collection of free partons. It
is interesting to note that this transition mechanism is the same as that of thermally excited
states of light from two-mode squeezed states.

4



Figure 2: Transition from the confinement phase to a plasma phase. This figure is a new
interpretation of Fig. 1.

This expression is not Lorentz-invariant, and its localization undergoes a Lorentz deforma-
tion [3, 11]. Since the x and y components are invariant under Lorentz boosts along the z
direction, and since the oscillator wave functions are separable in the Cartesian coordinate
system, we can drop the x and y variables from the above expression, and restore them
whenever necessary.

The Lorentz boost along the z direction takes a simple form in the 1light-cone coordinate
system, in which the variables (z + t)/

√
2 and (z − t)/

√
2 are transformed to eη(z + t)/

√
2

and e−η(z − t)/
√
2 respectively, where η is the boost parameter and is tanh−1(v/c). Then

the ground-state wave function will be Lorentz-squeezed as [3]

(
Ω

π

)1/2

exp
{
−1

4
Ω
[
(z + t)2 + (z − t)2

]}
. (11)

This squeeze property is illustrated in Fig. 1. The above wave function can be expanded
as [3]

ψη(z, t) =
1

cosh η

∑
n

(tanh η)nψn

(√
Ωz
)
ψn

(√
Ωt
)
. (12)

Indeed, this expression is the same as that for the two-mode squeezed state given in Eq.(5),
if η is identified as the squeeze parameter of Eq.(4) or Eq.(5). It is thus possible to relate the
boost parameter to the Boltzmann factor by (tanhη)2 = exp (−ω/T ), with ω = Ω/m where
m is the reduced mass of the quark. The hadronic temperature T can therefore be defined
as , (

v

c

)2

= exp
(−Ω

mT

)
, T =

Ω/m

ln [1 + (M/P )2]
, (13)

where M and P are the hadronic mass and its magnitude of momentum respectively. If the
hadron is at rest with P = 0, T vanishes. The temperature rises as the hadronic momentum
increases. As the momentum becomes very large, T increases as (Ω/mM2)P 2.

In the present case, the concept of hadronic temperature is derived from the Lorentz-
squeezed wave function, and the temperature is a measure of squeeze as in the case of two-
mode squeezed states of light [8]. The Lorentz-squeeze of hadronic distribution is observed
experimentally in high energy laboratories in the form of the parton model [10, 11]. If
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we regard z and t as the primary and shadow coordinates respectively, then the hadronic
distribution can be derived from the density matrix:

ρ (z, z′) =
∫
ψη

(√
Ωz,

√
Ωt
)
ψ∗
η

(√
Ωz′,

√
Ωt
)
dt

=

(
1

cosh η

)2∑
n

(tanh η)nψn

(√
Ωz
)
ψ∗
n

(√
Ωz′

)
, (14)

whose diagonal elements become the distribution of the quarks:

ρ(z) = e−η
(
Ω

π

)1/2

exp
[
−
(
Ωe−2η

)
z2
]
. (15)

This leads to a wide-spread distribution along the z axis as (v/c)2 becomes close to 1 [3, 11],
or equivalently as the temperature T becomes very high. As is indicated in Fig. 1, the
momentum distribution undergoes a similar deformation. The simultaneous expansion in
both spatial and momentum distributions leads to the transition from the quark model to
Feynman’s original form of the parton model, in which the hadron appears as a collection
of an infinite number of free partons with a wide-spread momentum distribution [?, 10, 11].
This means that the rapidly-moving hadron is in a plasma phase.

The Boltzmann factor exp (−E/T ) and (v/c)2 in special relativity are two of the most
fundamental quantities in physics. We realize that it is a serious venture to suggest that they
are in any way equal to each other, and therefore that an entirely new physical interpretation
may emerge from this suggestion. While we are not able to explain fully the significance
of this possibility, we are reporting the fact that Tused in this paper is clearly a Lorentz-
transformation parameter, while at the same time it is temperature in the thermally excited
oscillator [9], as well as in thermo-field-dynamics and squeezed states of light [2, 8]. As
is illustrated in Fig. 2, this definition of temperature leads to the conclusion that hadrons
undergo a phase transition from the confinement phase to a plasma phase as the temperature
rises [4].

We are then led to the question of how to determine the critical temperature at which
the system undergoes the phase transition. The parton model does not specify the critical
speed at which the hadron becomes a collection of plasma-like partons. This transition is
known to be a gradual process. On the other hand, as is illustrated in Fig. 3, the (v/c)2

factor as a function of T has an abrupt change in slope in the interval between T = 5Ω/m
and 15Ω/m. The critical temperature is within this interval.

The authors would like to thank Professor E. P. Wigner for helpful discussions on the
density matrix formulation of quantum mechanics and its possible role in relativistic quantum
mechanics.,
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