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Abstract

A set of rotations and Lorentz boosts is presented for studying the three-parameter little
groups of the Poincaré group. This set constitutes a Lorentz generalization of the Euler angles
for the description of classical rigid bodies. The concept of Lorentz-generalized Euler rotations is
then extended to the parameterization of the E(2)-like little group and the O(2, 1)-like little group
for massless and imaginary-mass particles respectively. It is shown that the E(2)-like little group
for massless particles is a limiting case of the O(3)-like or O(2, 1)-like little group. A detailed
analysis is carried out for the two-component SL(2, c) spinors. It is shown that the gauge degrees
of freedom associated with the translation-like transformation of the E(2)-like little group can
be traced to the SL(2, c) spins which fail to align themselves to their respective momenta in the
limit of large momentum



1 Introduction

The Euler angles consitute a convenient parameterization of the three-dimensional rotation group.
The Euler kinematics consists of two rotations around the z axis with one rotation around the y axis
between them. The first question we would like to address in this paper is what happens if we add
a Lorentz boost along the z direction to this traditional procedure. Since the rotation around the z
axis is not affected by the boost along the same axis, we are asking what is the Lorentz-generalized
form of the rotation around the y axis.

Since the publication of Wigner’s fundamental paper on the Poincaré group in 1939 [1], a number
of mathematical techniques have been developed to deal with the three-parameter little groups which
leave a given four-momentum invariant. Our second question is why we do not yet have a standard
set of transformations for Wigner’s little groups.

In this paper, we combine the first and second questions. One of Wigner’s little groups is locally
isomprphic to O(3). Furthermore, the Euler angles constitute the natural language for spinning tops
in classical mechanics, while Wigner’s little groups are the description of the internal space-time
symmetries of relativistic particles, including spins. It is thus quite natural for us to look for a
possible Eulerian parameterization of the three-parameter little groups.

As far as massive particles are concerned, the traditional approach to this problem is to go to the
Lorentz frame in which the particle is at rest, and then perform rotations there [1]. Then, its four-
momentum is not affected, but the direction of its spin becomes changed. This operation however is
not applicable to the case of massless or imaginary-mass particles.

In order to construct a Lorentz kinematics which include both massive and massless particles, we
observe that the transformation which changes a given four-momentum can be carried out in many
different ways. However, as Wigner observed in 1957, the resulting spin orientation depends on the
way in which the transformation is performed and on the mass of the particle [2]. For instance, when
a particle with positive helicity is rotated, the helicity remains unchanged. As far as the momentum
is concerned, we can achieve the same purpose by performing a simple boost. However, this boost
does not leave the helicity invariant. Furthermore, the change in the direction of spin depends on
the mass.

Indeed, the difference between the rotation and boost was studied for massless photons by Ku-
persztych [3] who observed that this difference amounts to a gauge transformation. In this paper,
we extend the kinematics of Kupersztych to include massive and imaginary-mass particles. We shall
show then that this extended kinematics constitutes the above-mentioned Lorentz generalization of
the Euler rotations.

We then study the extended Kupersztych kinematics using the SL(2, c) spinors. Among the four
two-component SL(2, c) spinors, two of them preserve the helicity under boosts in the zero-mass
limit, as was noted by Wigner in 1957. However, the remaining two do not preserve the helicity in
the same limit. We show that these helicity non-preserving spinors are responsible for gauge degrees
of freedom contained in the E(2)-like little group for photons.

In Sec. 2, we work out the Kupersztych kinematics for massive particles. It is pointed out that
this new kinematics is equivalent to the traditional O(3)-like kinematics in which the particle is
rotated in its rest frame. We show in Sec. 3 that the E(2)-like little group for massless particles is
the infinite-momentum/zero-mass limit of the O(3)-like little group discussed in Sec. 2. In Sec. 4,
we discuss the continutation of the transformation matrices for the O(3)-like little group to the case
of imaginary-mass particles.

In Sec. 5, we study the transformation properties of the four two-component spinors in the
SL(2, c) regime. It is shown that in the limit of infinite momentum and/or zero mass, two of the
SL(2, c) spinors preserve their respective helicities, while the remaining two do not. We note in Sec.
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6, that four-vectors can be constructed from the four two-component SL(2, c) spinors. It is shown
that the origin of the gauge degrees of freedom for photons can be traced to the spinors which refuse
to align themselves to the momentum in the infinite-momentum/zero-mass limit.

2 Kinematics of the O(3)-like Little Group

The Euler rotation consists of a rotation around the y axis preceded and followed by rotations around
the z axis. If the boost is made along the z axis, the rotations around the z axis are not affected. In
this section, we discuss a Lorentz generalization of the rotation around the y axis and its relation to
the O(3)-like little group for massive particles.

Let us start with a massive particle at rest whose four-momentum is

(0, 0, 0,m). (1)

We use the four-vector convention: xµ = (x, y, x, t). We can boost the above four-momentum along
the z direction with velocity parameter α.

P = m
(
0, 0, α/(1− α2)1/2, 1/(1− α2)1/2

)
. (2)

The four-by-four matrix which transforms the four-vector of Eq.(1) to that of Eq.(2) is

A(α) =


1 0 0 0
0 1 0 0
0 0 1/(1− α2)1/2 α/(1− α2)1/2

0 0 α/(1− α2)1/2 1/(1− α2)1/2

 . (3)

Let us next rotate the four-vector of Eq.(2) using the rotation matrix:

R(θ) =


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

 . (4)

This rotation does not alter the helicity of the particle [2].
As is specified in Fig. 1, we can achieve the same result on the four-momentum by applying a boost

matrix. However, unlike the rotation of Eq.(4), this boost is not a helicity-preserving transformation
[2]. We can study the difference between these two transformations by taking the product of the
rotation and the inverse of the boost. This inverse boost is illustrated in Fig. 1, and is represented
by

S(θ, α) =


1 + 2 ((sinh(λ/2) cos(θ/2))2 0 − (sinhλ/2)2 −(sinhλ) cos(θ/2)

0 1 0 0
− (sinh(λ/2))2 sin θ 0 1 + 2 (sinh(λ/2) sin(θ/2))2 (sinhλ) sin(θ/2)
−(sinhλ) cos(θ/2) 0 (sinhλ) sin(θ/2) cosh(λ)

 (5)

where
λ = 2 ( tanh−1[α(sin(θ/2))] ) . (6)

This matrix depends on the rotation angle θ and the velocity parameter α, and becomes identity
matrix when the particle is at rest with α = 0.
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Figure 1: Lorentz-generalized Euler rotations. The traditional Euler parametrization consists of two
rotations around the z axis with one rotation around the y axis between them. If we add a Lorentz
boost along the z axis, the two rotations around the z axis are not affected. The rotation around
the y axis can be Lorentz-generalized in the following manner. If we boost the system along the z
direction, we are dealing with the system with a non-zero four-momentum along the same direction.
The four-momentum p can be rotated around the y axis by angle θ. The same result can be achieved
by boost S−1. However, these two transformations do not produce the same effect on the spin. The
most effective way of studying this difference is to study the transformation SR which leaves the
initial four-momentum invariant.
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Indeed, the rotation R(θ) followed by the boost S(α, θ) leaves the four-momentum p of Eq.(2)
invariant:

P = D(α, θ)P, (7)

where D(α, θ) = S(α, θ)R(θ). The multiplication of the two matrices is straightforward, and the
result is

D(α, θ) =


1− (1− α2)u2/2T 0 −u/T αu/T

0 1 0 0
u/T 0 0 0
u/T 0 1 + u2/2T αu2/2T
αu/T 0 −αu2/2T 1 + αu2/2T

 (8)

where u = −2 tan(θ/2), and T = 1+(1−α2)(tan(θ/2))2 . This complicated expression leaves the four-
momentum P of Eq.(2) invariant. Indeed, if the particle is at rest with vanishing velocity parameter
α, the above expression becomes a rotation matrix. As the velocity parameter α increases, this D
matrix performs a combination of rotation and boost, but leaves the four-momentum invariant.

Let us approach this problem in the traditional framework [1]. The above transformation is
clearly an element of the O(3)-like little group which leaves the four-momentum P invariant. Then
we can boost the particle with its four-momentum P by A−1 until the four-momentum becomes that
of Eq.(1), rotate it around the y axis, and then boost it by A until the four-momentum becomes
P of Eq.(2). It is appropriate to call this rotation in the rest frame the Wigner rotation [4]. The
transformation of the O(3)-like little group constructed in this manner should take the form:

D(α, θ) = A(α)W (θ∗)A(−α), (9)

where W is the Wigner rotation matrix:

W (θ∗) =


cosθ∗ 0 sin θ∗ 0
0 1 0 0

− sin θ∗ 0 cos θ∗ 0
0 0 0 1

 (10)

We may call θ∗ the Wigner angle. The question then is whether D of Eq.(9) is the same as D of
Eq.(8). In order to answer this question, we first take the trace of the expression given in Eq.(9).
The similarity transformation of Eq.(9) assures us that the trace of W be equal to that of D. This
leads to

θ∗ = cos−1

(
1− (1− α2)[tan(θ/2)]2

1 + (1− α2)[tan(θ/2)]2

)
. (11)

It is then a matter of matrix algebra to confirm that D of Eq.(9) and that of Eq.(8) are identical.
We have plotted in Fig. 2 the Wigner rotation angle θ∗ as a function of the velocity parameter

α. Here θ∗ becomes θ when α = 0, and remains approximately equal to θ when α is smaller than
0.4. Then θ∗ vanishes when α → 1. Indeed, for a given value of θ, it is possible to determine the
value of θ∗ which is the rotation angle in the Lorentz frame in which the particle is at rest.

The D matrix in the traditional form of Eq.(9) is well known [1]. However, the fact that it can
also be derived from the closed-loop R(θ) and S(α, θ) suggests that it has a richer content. For
instance, the closed-loop kinematics does not have to be unique. There is at least one other closed-
loop kinematics which leaves the four-momentum invariant [5]. The Kupersztych kinematics, which
we are using in this paper, is convenient for studying the relation between the Euler angles and the
parameters of the O(3)-like little group.
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Figure 2: Wigner rotation angle versus lab-frame rotation angle. We have plotted θ∗ as a fuction of
α for various values of θ using Eq.(11). θ = θ∗ at α = 0.θ∗ is nearly equal to θ for moderate values
of α, but it rapidly approaches 0 as α becomes 1.
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We have so far discussed the transformations in the xz plane. It is quite clear that the same
analysis can be carried out in the yz plane or any other plane containing the z axis. This means that
we can perform rotations Rz(ϕ) and Rz(ψ) respectively before and after carrying out the transfor-
mations in the xz plane. Indeed, together with the velocity parameter α, the three parameters θ, ϕ,
and ψ constitute the Eulerian parametrization of the O(3)-like little group.

3 E(2)-like Little Group for Massless Particles

Let us study in this section the D matrix of Eq.(8) as the particle mass becomes vanishingly small,
by taking the limit of α→ 1. In this limit, the D matrix of Eq.(8) becomes

D(u) =


1 0 −u u
0 1 0 0
u 0 1− u2/2 u2/2
u 0 −u2/2 1 + u2/2

 . (12)

After losing the memory of how the zero-mass limit was taken, it is impossible to transform this
matrix into a rotation matrix. There is no Lorentz frame in which the particle is at rest. If we boost
this expression along the z direction using the boost matrix:

B(β) =


1 0 0 0
0 1 0 0
0 0 1/(1− β2)1/2 β/(1− β2)1/2

0 0 β/(1− β2)1/2 1/(1− β2)1/2

 , (13)

D remains form-invariant:
D′(u) = B(β)D(u)[D(β)]−1 = D(u′), (14)

where
u′ = [(1 + β)/(1− β)]1/2u

. The matrix of Eq.(12) is the case where the Kupersztych kinematics is performed in the xz plane.
This kinematics can also be performed in the yz plane. Thus the most general form for the D matrix
is

D(u, v) =


1 0 −u u
0 1 −v v
u v 1− (u2 + v2)/2 (u2 + v2)/2
u v −(u2 + v2)/2 1 + (u2 + v2)/2

 , (15)

The algebraic property of this expression has been discussed extensively in the literature [1, 5, 6,
7, 8]. If applied to the photon four-potential, this matrix performs a gauge transformation [6, 7].
The reduction of the above matrix into the three-by-three matrix representing a finite-dimensional
representation of the two-dimensional Euclidean group has also been discussed in the literature [8].

Let us go back to Eq.(9). We have obtained the above gauge transformation by boosting the
rotation matrix W given in Eq.(10). This means that the Lorentz-boosted rotation becomes a gauge
transformation in the infinite-momentum and/or zero-mass limit. This observation was made earlier
in terms of the group contraction of O(3) to E(2) [9, 10], which is a singular transformation. We are
then led to the question of how the method used in this section can be analytic, while the traditional
method is singular.

The answer to this question is very simple. The group contraction is a language of Lie groups
[9, 10]. The parameter α we use in this paper is not a paramter of the Lie group. If we use η as
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the Lie-group parameter for boost along the z direction, it is related to α by sinh η = α/(1−α2)1/2.
However, this expression is singular at α = ±1. Therefore, the continuation in α is not necessarily
singular. We shall continue the discussion of this limiting process in terms of the SL(2, c) spinors in
Sec. 6.

4 O(2,1)-like Little Group for Imaginary-mass Particles

We are now interested in transformations which leave the four-vector of the form

P = im(0, 0, α/(α2 − 1)1/2, 1/(α2 − 1)1/2) (16)

invariant, with α greater than 1. Although particles with imaginary mass are not observed in the
real world, the transformation group which leaves the above four-momentum invariant is locally
isomorphic to O(2, 1) and plays a pivotal role in studying noncompact groups and their applications
in physics. This group has been discussed extensively in the literature [11].

We are interested here in the question of whether the D matrix constructed in Secs. 2 and 3
can be analytically continued to α > 1. Indeed, we can perform the rotation and boost of Fig. 1 to
obtain the D matrix of the form given in Eq.(8), if α is smaller than α0 where

α2
0 =

1 + (tan(θ/2))2

(tan(θ/2))2
. (17)

As α increases, some elements of the D matrix become singular when T vanishes or α = α0. Mathe-
matically, this is a simple pole which can be avoided either clockwise or counterclockwise. However,
the physics of this continuation process requires a more careful investigation.

One way to study the D transformation more effectivley is to boost the space-like four-vector of
Eq.(16) along the z direction to a simpler vector

(0, 0, i, 0), (18)

using the boost matrix of Eq.(13) with the boost parameter β = 1/α. Conesequently, the D matrix
is a Lorentz-boosted form of a simpler matrix F :

D = B(1/α)F (λ)[B(1/α)]−1, (19)

where F is a boost matrix along the x direction:

F (λ) =


coshλ 0 0 sinhλ

0 1 0 0
0 0 1 0

coshλ 0 0 coshλ

 , (20)

where

tanhλ =
−2(α2 − 1)1/2 tan(θ/2)

1 + (α2 − 1)[tan(θ/2)]2
.

coshλ =
1 + (α2 − 1)[tan(θ/2)]2

1− (α2 − 1)[tan(θ/2)]2
. (21)

If we add the rotational degree of freedom around the z axis, the above result is perfectly consis-
tent with Wigner’s original observation that the little group for imaginary-mass particles is locally
isomorphic to O(2, 1) [1].
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We have observed earlier that the D matrix of Eq.(8) can be analytically continued from α = 1
to 1 < α < αo. At α = αo, some of its elements are singular. If α > αo, coshλ in Eqs. (20) and (21)
become negative, and this is not acceptable.

One way to deal with this problem is to take advantage of the fact that the expression for tanhλ
in Eq.(21) is never singular for real α greater than 1. This is possible if we change the signs of both
sinhλ and coshλ when we jump from α < αo to α > αo. Indeed, the continuation is possible if it
is accompanied by the reflection of x and t coordinates. After taking into accounts the reflection of
the x and t coordinates, we can construct the D matrix by boosting F of Eq.(20). The expression
for the D matrix for α > α0 becomes

D =


1− 2/T 0 u/T −αu/T

0 1 0 0
−u/T 0 1 + 2/[(α2 − 1)T ] 2α/[(α2 − 1)T ]
−αu/T 0 −2α/[(α2 − 1)T ] 1− 2α2/[(α2 − 1)T ]

 . (22)

This expression cannot be used for the α → 1 limit, but can be used for the limit. In the limit
α → ∞, P of Eq.(16) becomes identical to Eq.(18), and the above expression becomes an identity
matrix. As for the question of whether D of Eq.(22) is an analytic continuation of Eq.(8), the answer
is ”No,” because the transition from Eq.(22) to Eq.(8) requires the reflection of the x and t axes.

5 Particles with Spin 1/2

The purpose of this section is to study the D kinematics of spin-1/2 particles within the framework
of SL(2, c). Let us study the Lie algebra of SL(2, c) [2, 3]:

[Si, Sj ] = iϵijkSk, [Si,Kj ] = iϵijkKk, [Ki,Kj ] = −iϵijkSk. (23)

where Si and Ki are the generators of rotations and boosts respectively. The above commutation
relations are not invariant under the sign change in Si, but they remain invariant under the sign
change in Ki. For this reason, while the generators of rotations are Si =

1
2σi, the boost generators

can take two different signs: Ki = (±) i2σi.
Let us start with a massive particle at rest, and the usual normalized Pauli spinors χ+ and χ− for

the spin in the positive and negative z directions respectively. If we take into account Lorentz boosts,
there are four spinors. We shall use the notation χ± to which the boost generators Ki = (+) i2σi are
applicable, and χ̇± to which Ki = Ki = (−) i2σi are applicable. There are therefore four independent
SL(2, c) spinors [12, 13]. In the conventional four-component Dirac equation, only two of them
are independent, because Dirac equation relates the dotted spinors to the undotted counterparts.
However, the recent development in supersymmetric theories [14], as well as some of more traditional
approaches [15] indicates that both physics and mathematics become richer in the world where all
four of SL(2, c) spinors are independent. In the Appendix, we examine the nature of the restriction
the Dirac equation imposes on the four SL(2, c) spinors.

As Wigner did in 1957 [2], we start with a massive particles whose spin is initially along the
direction of the momentum. The boost matrix which brings the SL(2, c) spinors from the zero-
momentum state to that of p is

A(±)(α) =

(
[(1± α)/(1∓ α)]1/4 0

0 [(1∓ α)/(1± α)]1/4

)
. (24)

where the superscripts (+) and (-) are applicable to the undotted and dotted spinors respectively.
In the Lorentz frame in which the particle is at rest, there is only one rotation applicable to both
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sets of spinors. The rotation matrix corresponding to W of Eq.(10) is

W (θ∗) =

(
cos(θ∗/2) − sin(θ∗/2)
sin(θ∗/2) cos(θ∗/2)

)
. (25)

where the rotation angle θ∗ is given in Eq.(11).
Using the formula of Eq.(9), we can calculate the D matrix for the SL(2, c) spinors. The D

matrix applicable to the undotted spinors is

D(+)(α, θ) =

(
1/

√
T (1 + α)u/2

√
T

−(1− α)u/2
√
T 1/

√
T

)
. (26)

where T and u are given in Eq.(8). The D matrix applicable to the dotted spinors is

D(−)(α, θ) =

(
1/

√
T (1− α)u/2

√
T

−(1 + α)u/2
√
T 1/

√
T

)
. (27)

We can obtain D(−) from D(+) by changing the sign of α. Both D(+) and D(−) become W of Eq.(25)
when α = 0.

If the D transformation is applied to the χ± and χ̇± spinors:

χ′
± = D(+)χ±, χ̇′

± = D(−)χ̇±, (28)

the angle between the momentum and the directions of the spins represented by χ+ and χ̇− is

θ′ = tan−1 {(1− α) tan(θ/2)} , (29)

which becomes zero as α→ 1. On the other hand, in the case of χ− and χ̇+, the angle becomes

θ′′ = tan−1 {(1 + α) tan(θ/2)} , (30)

In the limit of α→ 1, this angle becomes θ1, where

θ1 = tan−1 {2 tan(θ/2)} . (31)

Indeed, the spins represensted by χ− and χ̇+ refuse to align themselves with the momentum. This
result is illustrated in Fig. 3.

There are D transformations for the α > 1 case. In the special Lorentz frame in which the
four-momentum takes the form of Eq.(18), the D transformation becomes that of a pure boost along
the x axis:

F (±)(λ) =

(
cosh(λ/2) ± sinh(λ/2)
± sinh(λ/2) cosh(λ/2)

)
. (32)

where λ is given in Eq.(21).
For α < α0, we can continue to use D(+) and D(−) given in Eq.(26) and Eq.(27) respectively.

However, for α > α0, the D matrix is

D(±)(α, θ) =

(
(α2 − 1)1/2[tan(θ/2)]/

√
−T ±[(α± 1)/(α∓ 1)]1/2/

√
−T

±[α∓ 1)/(1± α)]1/2/
√
−T (α2 − 1)1/2[tan(θ/2)]/

√
−T

)
. (33)

The above expression becomes an identity matrix when α→ ∞, as is expected from the result of Sec.
4. The D matrices of Eq.(33) are not analytic continuations of their conterparts given in Eq.(26)
and Eq.(27), because the contitnuation procedure which we adopted in Sec. 4 and which we used in
this section involves reflections in the x and t coordinates.

10



Figure 3: Lorentz-boosted rotations of the four SL(2, c) spinors. If the particle velecity is zero, all
the spinors rotate like the Pauli spinors. As the particle speed approaches that of light, two of the
spins line up with the momentum, while the remaining two refuse to do so. Those spinors which line
up are gauge invariant spinors. Those which do not are not gauge-ivariant, and they form the origin
of the gauge degrees of freedom for photon four-potentials.
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6 Gauge Transformations in terms of Rotations of Spinors

It is clear from the discussions of Secs. 3 – 5 that the limit α→ 1 can be defined from both directions,
namely from α < 1 and from α > 1. In the limit α → 1, D(+) and D(−) of Eq.(26) and Eq.(27)
become

D(+) =

(
1 u
0 1

)
, D(−) =

(
1 0
−u 1

)
. (34)

After going through the procedure same as that from Eq.(12) to Eq.(15), we arrive at the gauge
transformation matrices [8]:

D(+)(u, v) =

(
1 u− iv
0 1

)
, D(−)(u, v) =

(
1 0

−u− iv 1

)
. (35)

applicable to the SL(2, c) spinors, where D(±) are applicable to undotted and dotted spinors respec-
tively.

The SL(2, c) spinors are gauge-invariant in the sense that

D(+)(u, v)χ+ = χ+, D(−)(u, v)χ− = χ−. (36)

On the other hand, the SL(2, c) spinors are gauge-dependent in the sense that

D(+)(u, v)χ− = χ− + (u− iv)χ+, D(−)(u, v)χ+ = χ+ − (u+ iv)χ−. (37)

The gauge-invariant spinors of Eq.(36) appear as polarized neutrinos in the real world. However,
where do the above gauge-dependent spinors stand in the physics of spin-1/2 particles? Are they
really responsible for the gauge dependence of electromagnetic four-potentials when we construct a
four-vector by taking a bilinear combination of spinors?

The relation between the SL(2, c) spinors and the four-vectors has been discussed for massive
particles. However, it is not yet known whether the same holds true for the massless case. The
central issue is again the gauge transformation. The four-potentials are gauge dependent, while the
spinors allowed in the Dirac equation are gauge invariant. Therefore, it is not possible to construct
four-potentials from the Dirac spinors.

On the other hand, there are gauge-dependent SL(2, c) spinors which are given in Eq.(37). They
disappear from the Dirac spinors because N− vanishes in the α → 1 limit. However, these spinors
can still play an important role if they are multiplied by N+ which neutralizes N−. Indeed, we
can construct unit vectors in the Minkowskian space by taking the direct products of two SL(2, c)
spinors:

−χ+χ̇+ = (1, i, 0, 0), χ−χ̇− = (1,−i, 0, 0),
χ+χ̇− = (0, 0, 1, 1), χ−χ̇+ = (0, 0, 1,−1). (38)

These unit vectors in one Lorentz frame are not the unit vectors in other frames. For instance, if
we boost a massive particle initially at rest along the z direction, |χ+χ̇+ > and χ− ˙chi− > remain
invariant. However, χ+χ̇− > and χ−χ̇+ > acquire the constant factors [(1+α)/(1−α)]1/2 and [(1−
α)/(1+α)]1/2 respectively. We can therefore drop |χ−χ̇+ > when we go through the renormalization
process of replacing the coefficient

√
(1 + α)/(1− α)by 1 for particles moving with the speed of light.

The D(u, v) matrix for the above spinor combinations should take the form:

D(u, v) = D(+)(u, v)D(−)(u, v), (39)
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Figure 4: Significance of the concept of Wigner’s little groups. One of the beauty of Einstein’s
special relativity is that the energy-momentum relation for massive and slow particles and that for
massless particles can be unified. Wigner’s concept of the little groups unifies the internal space-time
symmetries of massive and massless particles.

where D(+) and D(−) are applicable to the first and second spinors of Eq.(38) respectively. Then

D(u, v)| − χ+χ̇+ > = |χ+χ̇+ > +(u+ iv)|χ+χ̇− >,
D(u, v)| − χ−χ̇− > = |χ−χ̇− > +(u− iv)|χ+χ̇− >,
D(u, v)|χ+χ̇− > = |χ+χ̇− > . (40)

The first two equations of the above expression correspond to the gauge transformations on the
photon polarization vectors. The third equation describes the effect of the D transformation on
the four-momentum, confirming the fact that D(u, v) is an element of the little group. The above
operation is identical to that of the four-by-four D matrix of Eq.(15) on photon polarization vectors.

Concluding Remarks

We studied in this paper Wigner’s little groups by constructing a Lorentz kinematics which leaves
the four-momentum of a particle invariant. This kinematics consists of one rotation followed by one
boost. Although the net transformation leaves the four-momentum invariant, the particle spin does
not remain unchanged. The departure from the original spin orientation is studied in detail.

For a massive particle, this departure can be interpreted as a rotation in the Lorentz frame
in which the particle is at rest. For massless particles with spin one, the net result is a gauge
transformation. For a spin 1/2 particle, there are four independent spinors as the Dirac equation
indicates. As the particle mass approaches zero, the spin orientations of two of the spinors remain
invariant. However, the remaining two spinors do not. It is shown that this non-invariance is the
cause of the gauge degree of freedom massless particles with spin 1.

In 1957, Wigner considered the possibility of unifying the internal space-time symmetries of
massive and massless particles by noting the difference between rotations and boosts [2]. Wigner
considered the scheme of obtaining the internal symmetry by taking the massless limit of the internal
space-time symmetry group for massive particles. In the present paper, we have added the gauge
degrees of freedom and spinors which refuse to align themselves to the momentum in the massless
limit. The result of the present paper can be summarized in Fig. 4. While Einstein’s special
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relativity unifies the energy-momentum relation for massive and massless particles, Wigner’s little
group unifies the internal space-time symmetry of massive and massless particles.
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SL(2,c) Spinors and the Dirac Spinors

We pointed out in Sec. 5 that the four-component Dirac equation puts a restriction on the SL(2, c)
spinors. Let us see how this restriction manifests itself in the limit procedure of α→ 1. In the Weyl
representation of the Dirac equation, the rotation and boost generators take the form:

Si =
1

2

(
σi 0
0 σi

)
, Ki =

i

2

(
σi 0
0 −σi

)
. (41)

These generators accommodate both signs of the boost generators for the SL(2, c) spinors. In this
representation, γ5 is diagonal, and its eigenvalue determines the sign of the boost generators.

In the Weyl representation, the D matrix should take the form:

D(u, v) =

(
D(+)(u, v) 0

0 D(−)(u, v)

)
, (42)

applicable to the Dirac spinors which, for the particle moving along the z direction with four-
momentum p, are

U(p) =

(
N+χ+

±N−χ̇+

)
, V (p) =

(
±N−χ−
N+χ̇−

)
, (43)

where the + and - signs in the above expression specify positive and negative energy states respec-
tively. N+ and N− are the normalization constants, and

N± =

{
1± α

1∓ α

}1/4

. (44)

As the momentum/mass becomes very large, N−/N+ becomes very small. From Eqs. (36) and (37),
we can see that the large components are gauge-invariant while the small components are gauge-
dependent. The gauge dependent component of the Dirac spinor disappears in the α→ 1 limit, the
Dirac equation becomes a pair of the Weyl equations. If we renormalize the Dirac spinors of Eq.(43)
by dividing them by N+, they become

U(p) =

(
χ+

0

)
, V (p) =

(
0
χ̇−

)
, (45)

for γ5 = ±1 respectively. The gauge-dependent spinors disappear in the large-momentum/zero-
mass limit. This is precisely why we do not talk about gauge transformations on neutrinos in the
two-component neutrino theory.

The important point is that we can obtain the above decoupled form of spinors immediately from
the most general form of spinors by imposing the gauge invariance. This means that the requirement
of gauge invariance is equivalent to γ5 = 1, as was suspected in Ref. 8.
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