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Abstract—In 1905, Einstein formulated his special relativity
for point particles. For those particles, his Lorentz covariance
and energy-momentum relation are by now firmly established.
How about the hydrogen atom? It is possible to perform Lorentz
boosts on the proton assuming that it is a point particle. Then
what happens to the electron orbit? The orbit could go through
an elliptic deformation, but it is not possible to understand
this problem without quantum mechanics, where the orbit is
a standing wave leading to a localized probability distribution.
Is this concept consistent with Einstein’s Lorentz covariance?
Dirac, Wigner, and Feynman contributed important building
blocks for understanding this problem. The remaining problem
is to assemble those blocks to construct a Lorentz-covariant
picture of quantum bound states based on standing waves. It is
shown possible to assemble those building blocks using harmonic
oscillators.
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I. INTRODUCTION

Niels Bohr had a great respect for Einstein, and he adds
“time” whenever he mentions “space” in his philosophical
writings. However, for his hydrogen atom, the proton was
sitting at the center of the absolute frame. Einstein presumably
thought about how the hydrogen atom would look to a moving
observer, but he never raised the issue. The reason is that
the hydrogen atom moving with a relativistic speed was not
conceivable for them.

Things are different these days. Protons can move with a
speed close to the light speed. In addition, like the hydrogen
atom, the proton is a bound state of the more fundamental
particles called the “quarks.” The proton thus has the same
quantum mechanical ingredients as the hydrogen atom has.
We can therefore study the hydrogen atom in Einstein’s world
by studying the proton in high-energy physics. This historical
trend is illustrated in Fig. 1.

Without the quark model, Paul A. M. Dirac devoted much of
research life to the problem of constructing Lorentz-covariant
wave functions. He published four papers on this problem from
1927 to 1963 [1], [2], [3], [4]. We shall construct the bound-
state model by combining these four papers.

In order to do this, we have to understand the symmetry
problems for bound-state problems. In 1939, Eugene Wigner
worked out the internal space-time symmetries of relativistic
particles [5]. In so doing he worked out the symmetries of
bound states in the Lorentz-covariant world [6].

Richard Feynman invented Feynman diagrams, but he said
in 1970 that we should use harmonic oscillators, instead of
Feynman diagrams, for understanding bound state problems in
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Fig. 1. Evolution of the hydrogen atom. It is still not possible to accelerate
the hydrogen atom to a relativistic speed. It is however possible these days
to produce protons moving with a speed close to the light speed. Also these
days, the proton is thought to be a bound state of quarks. It is thus sufficient
to study high-energy protons to study the hydrogen atom in Einstein’s world.

the Lorentz-covariant world cite7. He then published a paper
saying the same with his students in 1971 [8]. The difficulty of
using the S-matrix for boundstates had been noted before [9].

In Sec. II, we list Dirac’s four papers, and point out what
he did and what he could have don in these papers. We do
the same for Feynman’s three papers in Sec. III. In Sec IV, it
was noted first that space-time symmetry of quantum bound
states is simpler than the full-fledged Lorentz group. Unlike
Klein-Gordon waves, the symmetry of standing wave is that of
the three-dimensional rotation group [5]. This point is missing
in Dirac’s papers and Feynman’s 1971 paper [8]. It is noted
also that that the covariant harmonic oscillators satisfy all the
required symmetries.

We then discuss the essential features of the oscillator
formalism which describes the effect of the proton wave
function under Lorentz boot. It is shown that the wave function
becomes “squeezed” when it is boosted.

It is then shown in Sec. V that this squeeze effect manifests
itself in Feynman’s parton picture for the proton moving with
a speed close to that of light. We establish that the quark
model and the parton model are two different manifestations
of one Lorentz-covariant model of quantum bound states. This
is what Einstein’s hydrogen atom is about.

II. DIRAC’S FOUR PAPERS

Paul A, M. Dirac devoted much of his research efforts to
making quantum mechanics consistent with special relativity.



• In his 1927 paper on time-energy uncertainty rela-
tion [1], Dirac noted that there are no quantum excitations
along the time variable, unlike Heisenberg’s position-
momentum relation. He said this space-time asymmetry
makes the problem difficult.

• In 1945 [2], Dirac attempted to construct harmonic oscil-
lator wave functions which can be Lorentz-boosted. He
wrote down the Gaussian form

exp

[
−1

2

(
x2 + y2 + z2 + t2

)]
, (1)

but did not explain the physics of the Gaussian distribu-
tion in the time variable.

• In 1949 [3], he started with the Lorentz transformation(
z′

t′

)
=

(
cosh η sinh η
sinh η cosh η

)(
z
t

)
. (2)

He then introduced the light-cone variables

u =
z + t√

2
, v =

z − t√
2
. (3)

In terms of these variables, the Lorentz boost takes the
form He then diagonalize this equation to

u′ = eηu, v′ = e−ηv. (4)

These light-cone variables serve very useful purposes.
Here one coordinate expands and the other contracts.
Thus, the Lorentz boost is a squeeze transformation [10].
In the same paper, Dirac stated that the problem of
constructing relativistic dynamics is the same as that
of constructing a suitable representation of the Poincaré
group. In his earlier paper [2], Dirac started this work
using harmonic oscillators, but he did not elaborate on
this in his 1949 paper.

• In 1963 [4], Dirac used two harmonic oscillators to
construct the O(3, 2) deSitter group, which is a Lorentz
group applicable to thee space-like and two time-like
coordinates. This representation later became the mathe-
matical basis for two-mode squeezed states in quantum
optics [11], [12], and became a bridge between special
relativity and optical sciences.

In the present paper, we address these soft spots in these
papers according to Dirac’s own suggestion: to construct the
representation of the Poincaré group using harmonic oscilla-
tors [2], [3]. Dirac missed this point again in his 1963 paper [4]
while he was constructing the representation of the O(3, 2)
group which contains the Lorentz group O(3, 1) as a subgroup.

We can remove these soft spots by constructing Wigner’s
little groups [5] of the Poincaré group using harmonic oscil-
lators [6], [13].

III. FEYNMAN’S THREE PAPERS

Richard Feynman made important contributions in many
different branches of physics. In the following three papers,
he left some important questions as home work problems for
younger generations.

• In 1969 [14], [15], Feynman introduced the concept of
partons. If the proton moves with a velocity close to that
of light, it appears like a collection of partons whose
properties are quite different from the quarks which
are constituent particles inside the proton at rest. The
question then is whether the quarks and partons are two
different manifestation of one Lorentz-covariant entity.

• In 1970, Feynman gave a talk at the spring meeting
of the American physical Society held in Washington.
He started with hadrons which are bound states of
quark [16]. He noted that the hadronic spectra could best
be understood in terms of the three-dimensional harmonic
oscillators. As for the Lorentz covariant aspect of his
oscillator formalism, he pointed out that there is the time
separation between the quarks. However, since he did
not know what to do with it, he chose to ignore the
variable. He then published the content of this talk with
his students in 1971 [8]. He did not justify what he did
on this time separation variable.

• In his book on statistical mechanics published in
1972 [17], Feynman discussed density matrices and mea-
surement problems. He stated When we solve a quantum-
mechanical problem, what we really do is divide the
universe into two parts - the system in which we are
interested and the rest of the universe. We then usually act
as if the system in which we are interested comprised the
entire universe. To motivate the use of density matrices,
let us see what happens when we include the part of the
universe outside the system.
Feynman then used one harmonic oscillator to illustrate
his rest of the universe. The question is how one oscillator
can explain both the real world and the rest of the
universe. He could have used two coupled oscillators
to illustrate his his rest of the universe, but he left this
problem as a homework problem for us [18].

In these three papers, Feynman raised very fundamental
issues in physics, but did not provide complete solutions. The
issue on his rest of the universe has been discussed in the
literature in terms of the coupled oscillators [18], and also in
terms of the time-separation variable in the Lorentz-covariant
world [19].

In the present paper, we are interested in addressing the
soft spots in Feynman’s 1969 papers on the parton picture
and those in his 1971 paper on harmonic oscillators. As in the
case of Dirac, it is possible to transform Feynman’s oscillator
formalism into the representation of Wigner’s little group using
harmonic oscillators [6], [13].

IV. COVARIANT HARMONIC OSCILLATORS

In Sec. II and Sec. III, we stated that it is possible to
remove the soft spots in Dirac’s four papers and Feynman’s
three papers by constructing Wigner’s little groups. These
little groups are the subgroups of the Poincaré group whose
transformations leave the four-momentum of a given particle
invariant [5], [6]. For a massive particle, we can consider the



Lorentz frame where this particle is at rest. In this frame, the
space-time symmetry is the three-dimensional rotation group.

In dealing with plane waves, we start with the Klein-Gordon
equation. The solutions of this equation are Lorentz-invariant.
The running waves in the Lorentz-covariant world share the
same symmetry property as that of the Klein-Gordon waves.
It contains the full symmetry of the Poincaré group with
ten interdependent paperers. These aspects of the space-time
symmetry is illustrated in Fig. 2. This figure describes the
space-time symmetry of Einstein’s hydrogen atom given in
Fig. 1.
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Fig. 2. Running waves and standing waves in quantum theory. If a particle
is allowed to travel from infinity to infinity, it corresponds to a running wave
according to the wave picture of quantum mechanics. If, on the other hand,
it is trapped in a localized region, we have to use standing waves to interpret
its location in terms of probability distribution.

Since the internal space-time symmetry is like the three-
dimensional rotation group, the standing waves trapped within
a quantum bound state should also satisfy this symmetry. It
is important to note that we are dealing here with space-time
separations. For instance, the Bohr radius is the separation
between the proton and electron. One of the soft spots in
Dirac’s four papers is that Dirac did not clarify this separation
issue. The soft spots in both Dirac’s papers and Feynman’s
1971 paper [8] is that the time-like direction is not required
in Wigner’s three-dimensional space.

Thus, Dirac’s concern about the space-time asymmetry is
not necessary. Feynman et al. said they wanted to drop the
time-like variable because they do not know what to do with
it. They did not know they were right. They did not have to
do anything about what does not exist.

Then, our next problem is to build a model of bound states
satisfying Wigner’s O(3)-like symmetry, which is consistent
with Einstein’s Lorentz covariance. As was noted by Feyn-
man [7], the easiest way is to start with harmonic oscillators.
The oscillator system does not require additional boundary

conditions. Indeed, before the paper of Feynman et al., a
number of authors published their papers on this subject [20],
[22], [23], [24].

According to Gell-Mann [16], the proton is a bound state
of two quarks, but we consider here for simplicity a bound
state of two quarks. As is the case of Feynman et al., we start
with the two quarks whose space-time positions are xa and
xb. Then the standard procedure is to use the variables

X = (xa + xb)/2, x = (xa − xb)/2
√
2. (5)

The four-vector X specifies where the proton is located in
space and time, while the variable x measures the space-
time separation between the quarks. This x variable has
four components, but it has only three degrees of freedom
according to Wigner’s symmetry. This will appear as the
lack of excitations along the time-like direction as noted by
Dirac [1], [3].

Does this time-separation variable exist when the proton
is at rest? Yes, according to Einstein. In the present form of
quantum mechanics, we pretend not to know anything about
this variable. Indeed, this variable belongs to Feynman’s rest
of the universe [19].

Also in the present form of quantum mechanics, there is
an uncertainty relation between the time and energy variables.
However, there are no known time-like excitations. Unlike the
position or momentum variable, the time-separation variable
is c-number, and its uncertainty with the energy separation a
c-number uncertainty relation [1]. With this point in mind, let
us go to the oscillator formalism proposed by Feynman [7],
[8].

Feynman et al. start with the Lorentz-invariant differential
equation [8]

1

2

{
x2µ − ∂2

∂x2µ

}
ψ(x) = λψ(x). (6)

This partial differential equation has many different solutions
depending on the choice of separable variables and boundary
conditions. Feynman et al. insist on Lorentz-invariant solutions
which are not normalizable. On the other hand, if we insist on
normalization, the ground-state wave function takes the form
of Eq.(1), which now can be written as

ψ(z, t) = exp

[
−1

2

(
z2 + t2

)]
, (7)

where we dropped the transverse components of x and y. As
in the case of Eq.(2), we make Lorentz boosts along the z.
We dropped also the normalization constant for simplicity. In
terms of the light-cone variables, this wave function becomes

ψu, v = exp

[
−1

2

(
u2 + v2

)]
. (8)

If the system is boosted, the u and v variables are replaced
by u e−η and v eη respectively. The wave function then



becomes

exp

[
−1

2

(
e−2ηu2 + e2ηv2

)]
= exp

[
−1

4

(
e−2η(z + t)2 + e2η(z − t)2

)]
. (9)

The wave function satisfied the Lorentz-invariant differential
equation of Eq.(6). This wave function is expanded along the
u direction, while it becomes contracted along the v direction.
This aspect of the Lorentz-squeeze is illustrated in Fig. 3.
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Fig. 3. Space-time picture of quantum mechanics. There are quantum
excitations along the space-like longitudinal direction, but there are no
excitations along the time-like direction. The time-energy relation is a c-
number uncertainty relation.

Let us go back to the Gaussian form of Eq.(7). If we
allow excitations along the z direction while keeping the t
component in its ground state, the wave function takes the
form

ψn(z, t) = exp

[
−1

2

(
z2 + t2

)]
Hn(z), (10)

where Hn is a Hermite polynomial. This wave function
satisfies Dirac’s c-number time-energy uncertainty relation. It
can also be Lorentz-boosted in the same manner as the ground-
sate wave function of Eq.(7) becomes its squeezed form of
Eq.(9). This aspect of the Lorentz-covariant c-number time-
energy uncertainty relation is discussed in the literature [31],
[32].

Since the oscillator system is separable in the Cartesian
coordinate system, the Gaussian form of Eq.(7) can be restored
to its dimensional form of Eq.(1). This form can allow
excitations along the transverse directions of x and y. We we
add the Hermite polynomials in along these components, this
wave function can possess the symmetry under rotations in the
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Fig. 4. Coherence between the wavelength and the proton size. As the
momentum transfer increases, the external signal sees Lorentz-contracting
proton distribution. On the other hand, the wavelength of the signal also
decreases. Thus, the cutoff is not as severe as the case where the proton
distribution is not contracted.

three-dimensional space. This is the content of Wigner’s O(3)-
like little group applicable to this system. These transverse
excitation remain invariant when the system is boosted. This
aspect has also been discussed in the literature [13].

This elliptic squeeze is consistent with the Lorentz contrac-
tion along the longintudinal direction according to Einstein’s
special relativity. However, it raises a new wuestion of how
to deal with the the time-separation variable which becomes
more prominet as the proton picks up the speed [10], [19].

As for the experimental side of this Lorentz squeeze, this
problem was studied in connection with the proton form factor
for high momentum transfer in electron-proton scattering. The
early authors attempted to explain the dipole cut-off behavior
using the oscillator formalism presented in this section [22],
[23], [24].

There is still more work to be done. For instance, the effect
of the quark spin should be addressed [25], [26]. Also there are
reports of deviations from the exact dipole cut-off [27]. There
have been attempts to study the form factors based on the
four-dimensional rotation group [28], and also on the lattice
QCD [29]. p Indeed, this form factor behavior is one of the
centrail issues in high-energy physics.

Yet, it is gratifying to note that the effect of Lorentz
squeeze leads to the polynomial decrease in the momentum
transfer, thanks to the Lorentz coherence illustrated in Fig. 4.
This aspect of coherence probem has been discussed in the
literature [6], [10], [30].



V. FEYNMAN’S PARTON PICTURE

It is a widely accepted view that the hadrons are quantum
bound states of quarks with localized probability distributions.
As in all bound-state cases, this localization condition is
responsible for the existence of discrete mass spectra. The
most convincing evidence for this bound-state picture is the
hadronic mass spectra which are observed in high-energy
laboratories [6], [8]. The proton is one of those hadrons.

In 1969, Feynman observed that a fast-moving proton can be
regarded as a collection of many “partons” whose properties
appear to be quite different from those of the quarks [15].
For example, the number of quarks inside a static proton is
three, while the number of partons in a rapidly moving proton
appears to be infinite. The question then is how the proton
looking like a bound state of quarks to one observer can appear
different to an observer in a different Lorentz frame? Feynman
made the following systematic observations.

a. The picture is valid only for protons moving with velocity
close to that of light.

b. The interaction time between the quarks becomes dilated,
and partons behave as free independent particles.

c. The momentum distribution of partons becomes
widespread as the proton moves fast.

d. The number of partons appear to be infinite or much
larger than that of quarks.

Because the proton is believed to be a bound state of two
or three quarks, each of the above phenomena appears as a
paradox, particularly b) and c) together.

In order to resolve this paradox, let us consider the
momentum-energy wave function for this two-quark system.
If we let the quarks have the four-momenta pa and pb,
it is possible to construct two independent four-momentum
variables [8]

P = pa + pb, q =
√
2(pa − pb), (11)

where P is the total four-momentum. It is the proton four-
momentum.

The variable q measures the four-momentum separation
between the quarks. Their light-cone variables are

qu = (q0 + qz)/
√
2, qv = (q0 − qz)/

√
2. (12)

The resulting momentum-energy wave function is

ϕη(qz, q0) = exp

[
−1

2

(
e−2ηq2u + e2ηq2v

)]
. (13)

Because we are using here the harmonic oscillator, the mathe-
matical form of the above momentum-energy wave function is
identical to that of the space-time wave function. The Lorentz
squeeze properties of these wave functions are also the same.
This aspect of the squeeze has been exhaustively discussed in
the literature [6], [33], [34].

When the proton is at rest with η = 0, both wave functions
behave like those for the static bound state of quarks. As η
increases, the wave functions become continuously squeezed
until they become concentrated along their respective positive
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Fig. 5. Lorentz-squeezed space-time and momentum-energy wave functions.
As the proton’s speed approaches that of light, both wave functions become
concentrated along their respective positive light-cone axes. These light-cone
concentrations lead to Feynman’s parton picture.

light-cone axes. Let us look at the z-axis projection of the
space-time wave function. Indeed, the width of the quark
distribution increases as the proton’s speed approaches that
of the speed of light. The position of each quark appears
widespread to the observer in the laboratory frame, and the
quarks appear like free particles.

The momentum-energy wave function is just like the space-
time wave function, as is shown in Fig. 5. The longitudinal
momentum distribution becomes wide-spread as the proton’s
speed approaches the velocity of light. This is in contradiction
with our expectation from non-relativistic quantum mechanics
that the width of the momentum distribution is inversely pro-
portional to that of the position wave function. Our expectation
is that if the quarks are free, they must have their sharply
defined momenta, not a wide-spread distribution.

However, according to our Lorentz-squeezed space-time and
momentum-energy wave functions, the space-time width and
the momentum-energy width increase in the same direction as
the proton is boosted. This is of course an effect of Lorentz
covariance. This indeed is the key to the resolution of the
quark-parton paradox [6], [33], [34].

Feynman’s parton picture is one of the most controversial
physical models proposed in the 20th century. The original
model is valid only in Lorentz frames where the initial proton
moves with infinite momentum. It is gratifying to note that
this model can be produced as a limiting case of one covariant



model which produces the quark model in the frame where the
proton is at rest. We need Feynman’s parton model to complete
the third row of Table I.

TABLE I
MASSIVE AND MASSLESS PARTICLES IN ONE PACKAGE. EINSTEIN UNIFIED

THE ENERGY-MOMENTUM RELATION FOR SLOW (MASSIVE) AND FAST
(MASSLESS) PARTICLES WITH ONE LORENTZ-COVARIANT FORMULA.

LIKEWISE, CAN THE QUARK MODEL AND THE PARTON MODEL CAN BE
COMBINED INTO ONE LORENTZ-COVARIANT? THE ANSWER IS YES.

Massive Lorentz Massless
Slow Covariance Fast

Energy- E = Einstein’s
Momentum p2/2m E = [p2 +m2]1/2 E = p

Relativistic One
Extended Quark Model Covariant Parton Model
Particles Theory

CONCLUDING REMARKS

Since 1973 [30], mostly with Marilyn Noz, I have been
publishing papers on constructing a model of quantum bound
states in Einstein’s Lorentz-covariant world. In 1986 [6], we
published a book on this subject. Of course, we were not the
first ones to study this problem.

It was noted first that Dirac and Feynman made pivotal
contributions. However, they looked at the same problem
differently in their papers. It was seen in the present report that
their results can become much stronger if they are combined
into one paper. During this process, Wigner’s 1939 paper [5]
plays the essential role.

Here, the key word is “harmony.” The works of those great
physicists can be put together in harmony. I am very happy
to mention this point in China, where the concept of harmony
was formulated many centuries ago through the philosophy of
”Taoism.”

As for Einstein, let us go to Table I. This is a table on
harmony. Observers in different Lorentz frames see things
differently, but they are in harmony. Then, did Einstein study
the oriental philosophy of Taoism? I do not know.

However, it is well known that he studied the philosophy
of Immanuel Kant in his early years. It is also known that his
formulation of relativity was influenced by Kant’s view of the
world. Different observers can see differently one thing which
is called “Ding an Sich” by Kant.

What is Ding an Sich?. A Coca-Cola can looks like a
rectable to an observer who looks at its side. It is a circle
viewed from the top. Here, the Coke can is the Ding an Sich.

Thus, according to Kant, Einstein’s special relativity re-
quires an absolute frame (Ding an Sich). This is not what
Einstein wanted. In Table I, there are no places for Kant’s
Ding an Sich.

If not Kantianism, where is Einstein’s philosophical base?
How can the observers in two different Lorentz frames rec-
oncile their differences? The answer to this question seems to
lie within the framework of Taoism. We have to study more
along this direction [35].

So far, the question of harmony has been restricted to
Einstein’s world of relativity. Our ultimate question is how
quantum mechanics and relativity will be combined together
in harmony.
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