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Abstract

The lifelong efforts of Paul A. M. Dirac were to construct localized quantum systems in
the Lorentz covariant world. In 1927, he noted that the time-energy uncertainty should be
included in the Lorentz-covariant picture. In 1945, he attempted to construct a representation
of the Lorentz group using a normalizable Gaussian function localized both in the space and
time variables. In 1949, he introduced his instant form to exclude time-like oscillations. He
also introduced the light-cone coordinate system for Lorentz boosts. Also in 1949, he stated
the Lie algebra of the inhomogeneous Lorentz group can serve as the uncertainty relations
in the Lorentz-covariant world. It is possible to integrate these three papers to produce the
harmonic oscillator wave function which can be Lorentz-transformed. In addition, Dirac, in
1963, considered two coupled oscillators to derive the Lie algebra for the generators of the
O(3, 2) de Sitter group, which has ten generators. It is proven possible to contract this group
to the inhomogeneous Lorentz group with ten generators, which constitute the fundamental
symmetry of quantum mechanics in Einstein’s Lorentz-covariant world.
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1 Introduction

Since 1973 [1], the present authors have been publishing papers on the harmonic oscillator
wave functions which can be Lorentz-boosted, leading to a number of books [2, 3, 4, 5].
We noticed that the Gaussian form of the wave function undergoes an elliptic space-time
deformation when Lorentz-boosted, leading to the correct proton form factor behavior for
large momentum transfers.

It was then noted that the harmonic oscillator functions exhibit the contraction and
orthogonality properties quite consistent with known rules of special relativity and quantum
mechanics [6, 7].

In 1977, using the Lorentz-covariant wave functions, the present authors showed that Gell-
Mann’s quark model [8] for the hadron at rest and Feynman’s parton model for fast-moving
hadrons [9] are two different manifestations of one Lorentz-covariant entity [10, 11].

In 1979 [12], it was shown that the oscillator system we constructed can be used for a
representation of the Lorentz group, particularly Wigner’s O(3)-like little group for massive
particles [13]. More recently, it was shown that these oscillator wave functions can serve as
squeezed states of light and Gaussian entanglement [14, 15, 16].

In 1983, it became known that, if the speed of a spin-1 particle reaches that of light, the
component of spin in the direction of its momentum remains invariant as its helicity, but the
spin components perpendicular to the momentum become one gauge degree of freedom [17,
18]. Indeed, this result allows us to include our oscillator-based quark-parton picture as
further content of Einstein’s E = mc2 [11], as shown in Table 1.

The purpose of the present paper is to show that the harmonic oscillator wave functions we
have studied since 1973 can serve another purpose. It is possible to obtain this covariant form
of relativistic extended particles by integrating the three papers Dirac wrote, as indicated in
Table 1.

1. In 1927, Dirac pointed out that the time-energy uncertainty should be considered if the
system is to be Lorentz-covariant [19].

2. In 1945, Dirac said the Gaussian form could serve as a representation of the Lorentz
group [20].

3. In 1949, when Dirac introduced both his instant form of quantum mechanics and his
light-cone coordinate system [21], he clearly stated that finding a representation of the
inhomogeneous Lorentz group was the task of Lorentz-covariant quantum mechanics.

4. In 1963, Dirac used the symmetry of two coupled oscillators to construct the O(3, 2)
group [22].

In the fourth paper published in 1963, Dirac considered two coupled oscillators using step-
up and step-down operators. He then constructed the Lie algebra (closed set of commutation
relations for the generators) of the de Sitter group, also known as O(3, 2), using ten quadratic
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Table 1: Lorentz covariance of particles both massive and massless. The little group of Wigner
unifies, for massive and massless particles, the internal space-time symmetries. The challenge for
us is to find another unification: that which unifies, in the physics of the high-energy realm, both
the quark and parton pictures. In this paper, we achieve this purpose by integrating Dirac’s three
papers. A similar table was published in Ref. [11].

Massive, Slow COVARIANCE Massless, Fast

Energy- Einstein’s

Momentum E = p2/2m E =
√
(cp)2 + (mc2)2 E = cp

Internal S3 S3
Space-time Wigner’s Gauge
Symmetry S1, S2 Little Groups Transformation

Relativistic Integration
Extended Quark Model of Dirac’s papers Parton Model
Particles 1927, 1945, 1949

3



forms of those step-up and step-down operators. The harmonic oscillator is a language of
quantum mechanics while the de Sitter group is a language of the Lorentz group or Einstein’s
special relativity. Thus, his 1963 paper [22] provides the first step toward a unified view of
quantum mechanics and special relativity.

In spite of all those impressive aspects, the above-listed papers are largely unknown in the
physics world. The reason is that there are soft spots in those papers. Dirac firmly believed
that one can construct physical theories only by constructing beautiful mathematics [23].
His Dirac equation is a case in point. Indeed, all of his papers are like poems [24]. They are
mathematical poems. However, there are things he did not do.

First, his papers do not contain any graphical illustrations. For instance, his light-cone
coordinate system could be illustrated as a squeeze transformation, but he did not draw a
picture [21]. When he talked about the Gaussian function [20] in the space-time variables,
he could have used a circle in the two-dimensional space of the longitudinal and time-like
variables.

Second, Dirac seldom made reference to his own earlier papers. In his 1945 paper [20],
there is a distribution along the time-like variable, but he did not mention his earlier paper
of 1927 [19] where the time-energy uncertainty was discussed. In his 1949 paper, when he
proposed his instant form, he eliminated all time-like excitations, but he forgot to mention
his c-number time-energy uncertainty relation he formulated in his earlier paper of 1927 [19].

Dirac’s wife was Eugene Wigner’s younger sister. Dirac thus had many occasions to meet
his brother-in-law. Dirac sometimes quoted Wigner’s paper on the inhomogeneous Lorentz
group [13], but without making any serious references, in spite of the fact that Wigner’s
O(3)-like little group is the same as his own instant form mentioned in his 1949 paper [21].

Paul A. M. Dirac is an important person in the history of physics. It is thus important
to examine what conclusions we can draw if we integrate all of those papers by closing up
their soft spots.

In Section 2, we list four important papers Dirac published from 1927 to 1963 [19, 20, 21,
22]. We then point out his original ideas contained therein.

In 1971 [25], Feynman, Kislinger, and Ravndal published a paper saying that although
quantum field theory works for scattering problems with running waves, harmonic oscillators
may be useful for studying bound states in the relativistic world. They then formulated
a Lorentz-invariant differential equation separable into a Klein–Gordon equation for a free
hadron, and a Lorentz-invariant oscillator equation for the bound state of the quarks. How-
ever, their solution of the oscillator equation is not normalizable and is physically meaningless.
In Section 3 we discuss their paper.

In Section 4, we construct normalizable harmonic oscillator wave functions. These wave
functions are not Lorentz-invariant, because the shape of the wave function changes as it
is Lorentz-boosted. However, the wave function is Lorentz-covariant under Lorentz trans-
formations. It is shown further that these Lorentz-covariant wave functions constitute a
representation of Wigner’s O(3)-like little group for massive particles [13].
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In Section 5, the covariant oscillator wave functions are applied to hadrons moving with
relativistic speed. It is noted that the wave function becomes squeezed along Dirac’s light-
cone system [21]. It is shown that this squeeze property is responsible for the dipole cut-off
behavior of the proton form factor [26]. It is shown further that Gell-Mann’s quark model [8]
and Feynman’s parton model [9, 27] are two limiting cases of one Lorentz-covariant entity,
as in the case of Einstein’s E = mc2 [10, 11].

In Section 6, it is shown that the two-variable covariant harmonic oscillator wave function
can serve as the formula for two-photon coherent states commonly called squeezed states of
light [14]. It is then noted that Dirac, in his 1963 paper [22], constructed the Lie algebra of
two-photon states with ten generators. Dirac noted further that these generators satisfy the
Lie algebra of the O(3, 2) de Sitter group.

The O(3, 2) de Sitter group is a Lorentz group applicable to three space-like dimensions
and two time-like dimensions. There are ten generators for this group. If we restrict ourselves
to one of the time-variables, it becomes the familiar Lorentz group with three rotation and
three boost generators. These six generators lead to the Lorentz group familiar to us. The
remaining four generators are for three Lorentz boosts with respect to the second time variable
and one rotation generator between the two time variables.

In Section 7, we contract these last four generators into four space-time translation gener-
ators. Thus, it is possible to transform Dirac’s O(3, 2) group to the inhomogeneous Lorentz
group [28, 29]. In this way, we show that quantum mechanics and special relativity share the
same symmetry ground. Based on Dirac’s four papers listed in this section, we venture to
say that this was Dirac’s ultimate purpose.

2 Dirac’s Efforts to Make QuantumMechanics Lorentz-

Covariant

Paul A. M. Dirac made it his lifelong effort to formulate quantum mechanics so that it would
be consistent with special relativity. In this section, we review four of his major papers
on this subject. In each of these papers, Dirac points out fundamental difficulties in this
problem.

Dirac noted, in 1927 [19], that the emission of photons from atoms is a manifestation of
the uncertainty relation between the time and energy variables. He also noted that, unlike
the uncertainty relation of Heisenberg which allows quantum excitations, the time or energy
axis has no excitations along it. Hence, when attempting to combine these two uncertainty
relations in the Lorentz-covariant world, there remains the serious difficulty that the space
and time variables are linearly mixed.

Subsequently in 1945 [20], Dirac, using the four-dimensional harmonic oscillator at-
tempted to construct, using the oscillator wave functions, a representation of the Lorentz
group. When he did this, however, the wave functions which resulted did not appear to be
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Lorentz-covariant.
Using the ten generators of the inhomogeneous Lorentz group Dirac in 1949 [21], con-

structed from them three forms of relativistic dynamics. However, after imposing subsidiary
conditions necessitated by the existing form of quantum mechanics, he found inconsistencies
in all three of the forms he considered.

In 1963 [22], Dirac constructed a representation of the O(3, 2) de Sitter group. To accom-
plish this, he used two coupled harmonic oscillators in the form of step-up and step-down
operators. Thus Dirac constructed a beautiful algebra. He did not, however, attempt to
exploit the physical contents of his algebra.

In spite of the shortcomings mentioned above, it is indeed remarkable that Dirac worked so
tirelessly on this important subject. We are interested in combining all of his works to achieve
his goal of making quantum mechanics consistent with special relativity. Let us review the
contents of these papers in detail, by transforming Dirac’s formulae into geometrical figures.

2.1 Dirac’s C-Number Time-Energy Uncertainty Relation

It was Wigner who in 1972 [30] drew attention to the fact that the time-energy uncertainty
relation, known from the transition time and line broadening in atomic spectroscopy, existed
before 1927. This occurred even before the uncertainty principle that Heisenberg formulated
in 1927. Also in 1927 [19], Dirac studied the uncertainty relation which was applicable to
the time and energy variables. When the uncertainty relation was formulated by Heisenberg,
Dirac considered the possibility of whether a Lorentz-covariant uncertainty relation could be
formed out of the two uncertainty relations [19].

Dirac then noted that the time variable is a c-number and thus there are no excitations
along the time-like direction. However, there are excitations along the space-like longitudinal
direction starting from the position-momentum uncertainty. Since the space and time coor-
dinates are mixed up for moving observers, Dirac wondered how this space-time asymmetry
could be made consistent with Lorentz covariance. This was indeed a major difficulty.

Dirac, however, never addressed, even in his later papers, the separation in time variable or
the time interval. On the other hand, the Bohr radius, which measures the distance between
the proton and electron is an example of Heisenberg’s uncertainty relation, applicable to
space separation variables.

In his 1949 paper [21] Dirac discusses his instant form of relativistic dynamics. Thus
Dirac came back to this question of the space-time asymmetry, in his 1949 paper. There
he addresses indirectly the possibility of freezing three of the six parameters of the Lorentz
group, and hence only working with the remaining three parameters. Wigner, in this 1939
paper [13, 2] already presented this idea. He had observed in that paper that his little groups
with three independent parameters dictated the internal space-time symmetries of particles.
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2.2 Dirac’s Four-Dimensional Oscillators

Since the language of special relativity is the Lorentz group, and harmonic oscillators pro-
vide a start for the present form of quantum mechanics, Dirac, during the second World War,
considered the possibility of using harmonic oscillator wave functions to construct represen-
tations of the Lorentz group [20]. He considered that, by constructing representations of
the Lorentz group using harmonic oscillators, he might be able to make quantum mechanics
Lorentz-covariant.

Thus in his 1945 paper [20], Dirac considers the Gaussian form

exp

(
−1

2

[
x2 + y2 + z2 + t2

])
. (1)

The x and y variables can be dropped from this expression, as we are considering a Lorentz
boost only along the z direction. Therefore we can write the above equation as:

exp

(
−1

2

[
z2 + t2

])
. (2)

Since
(
z2 − t2

)
is an invariant quantity, the above expression may seem strange for those who

believe in Lorentz invariance.
In his 1927 paper [19] Dirac proposed the time-energy uncertainty relation, but observed

that. because time is a c-number, there are no excitations along the time axis. Hence the
above expression is consistent with this earlier paper.

If we look carefully at Figure 1, we see that this figure is a pictorial illustration of Dirac’s
Equation (2). There is localization in both space and time coordinates. Dirac’s fundamental
question, illustrated in Figure 2, would then be how to make this figure covariant. Dirac
stops there. However, this is not the end of his story.

2.3 Dirac’s Light-Cone Coordinate System

The Reviews of Modern Physics, in 1949, celebrated Einstein’s 70th birthday by publish-
ing a special issue. In this issue was included Dirac’s paper entitled Forms of Relativistic
Dynamics [21]. Here Dirac introduced his light-cone coordinate system. In this system a
Lorentz boost is seen to be a squeeze transformation, where one axis expands while the other
contracts in such a way that their product remains invariant as shown in Figure 3.

When boosted along the z direction, the system is transformed into the following form:(
z′

t′

)
=

(
cosh(η) sinh(η)
sinh(η) cosh(η)

)(
z
t

)
. (3)

Dirac defined his light-cone variables as [21]

z+ =
z + t√

2
, z− =

z − t√
2
. (4)
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Dirac: Uncertainty 

without Excitations

Heisenberg: Uncertainty

with Excitations

 C-number Uncertainty

t

z

Dirac 1927

Figure 1: Quantum mechanics represented in terms of space-time. As can be seen, there are no
excitations along the time-like direction, but quantum excitations along the space-like longitudinal
direction are allowed.

Figure 2: Dirac’s four-dimensional oscillators localized in a closed space-time region. This is not
a Lorentz-invariant concept. How about Lorentz covariance?
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A=4u'v '

u

v

A=4uv

=2(t2–z2)

z

tDirac 1949

Figure 3: The light-cone coordinate system pictured with a Lorentz boost. Not only does the
boost squeeze the square into a rectangle, but it traces a point along the hyperbola.

Then the form of the boost transformation of Equation (3) becomes(
z′+
z′−

)
=

(
eη 0
0 e−η

)(
z+
z−

)
. (5)

It is then apparent that u variable becomes expanded, but the v variable becomes contracted.
We illustrate this in Figure 3. The product then becomes:

z+z− =
1

2
(z + t)(z − t) =

1

2

(
z2 − t2

)
(6)

which remains invariant. The Lorentz boost is therefore, in Dirac’s picture, a squeeze trans-
formation.

Dirac also introduced his 1949 paper his instant form of relativistic quantum mechanics.
This has the condition

x0 ≈ 0. (7)

What did his approximate equality mean? In this paper, we interpret the nature of the
time-energy uncertainty relation in terms of his c-number. Furthermore, it could mean that
it is, for the massive particle is the three-dimensional rotation group, Wigner’s little group,
without the time-like direction.

Additionally, Dirac stated that constructing a representation of the inhomogeneous Lorentz
group, was necessary to construct a relativistic quantum mechanics. The inhomogeneous
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Lorentz group has ten generators, four space-time translation generators, three rotation gen-
erators, and three boost generators, which satisfy a closed set of commutation relations.

It is now clear that Dirac was interested in using harmonic oscillators to construct a
representation of the inhomogeneous Lorentz group. In 1979, together with another author,
the present authors published a paper on this oscillator-based representation [12]. We regret
that we did not mention there Dirac’s earlier efforts along this line.

3 Scattering and Bound States

From the three papers written by Dirac [19, 20, 21], let us find out what he really had in
mind. In physical systems, there are scattering and bound states. Throughout his papers,
Dirac did not say he was mainly interested in localized bound systems. Let us clarify this
issue using the formalism of Feynman, Kislinger, and Ravndal [25].

We are quite familiar with the Klein–Gordon equation for a free particle in the Lorentz-
covariant world. We shall use the four-vector notations

xµ = (x, y, z, t), and x2µ = x2 + y2 + z2 − t2. (8)

Then the Klein–Gordon equation becomes− [ ∂

∂xµ

]2
+m2

ϕ(x) = 0. (9)

The solution of this equation takes the familiar form

exp [±i ( p1x+ p2y + p3z ± Et)] . (10)

In 1971, Feynman et al. [25] considered two particles a and b bound together by a harmonic
oscillator potential, and wrote down the equation−

[
∂

∂xaµ

]2
−
[

∂

∂xbµ

]2
+ (xaµ − xbµ)

2 +m2
a +m2

b

ϕ (xaµ, xbµ) = 0. (11)

The bound state of these two particles is one hadron. The constituent particles are called
quarks. We can then define the four-coordinate vector of the hadron as

X =
1

2
(xa + xb) , (12)

and the space-time separation four-vector between the quarks as

x =
1

2
√
2
(xa − xb) . (13)
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Then Equation (11) becomes−
[

∂

∂Xµ

]2
+m2

0 +

− [ ∂

∂xµ

]2
+ x2µ

ϕ(X,x) = 0. (14)

This differential equation can then be separated into− [ ∂

∂Xµ

]2
+m2

0

ϕ(X,x) = −

− [ ∂

∂xµ

]2
+ x2µ

ϕ(X,x), (15)

with
ϕ(X,x) = f(X)ψ(x), (16)

where f(X) and ψ(x) satisfy their own equations:− [ ∂

∂Xµ

]2
+m2

a +m2
b + λ

 f(X) = 0 (17)

and

1

2

− [ ∂

∂xµ

]2
+ x2µ

ψ(x) = λψ(x). (18)

Here, the wave function then takes the form

ϕ(X,x) = ψ(x) exp [±i (PxX + PyY + PzZ ± ET )] , (19)

where Px, Py, Pz are for the hadronic momentum, and

E2 = P 2
x + P 2

y + P 2
z +M2, with M2 = m2

a +m2
b + λ. (20)

Here the hadronic mass M is determined by the parameter λ, which is the eigenvalue of the
differential equation for ψ(x) given in Equation (18).

Considering Feynman diagrams based on the S-matrix formalism, quantum field theory
has been quite successful. It is, however, only useful for physical processes where, after
interaction, one set of free particles becomes another set of free particles. The questions
of localized probability distributions and their covariance under Lorentz transformations is
not addressed by quantum field theory. In order to tackle this problem and address these
questions, Feynman et al. suggested harmonic oscillators [25]. In Figure 4, we illustrate this
idea.

However, for their wave function ψ(x), Feynman et al. uses a Lorentz-invariant exponen-
tial form

exp

(
−1

2

[
x2 + y2 + z2 − t2

])
. (21)
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Figure 4: Feynman, in an effort to combine quantum mechanics with special relativity, gave us this
roadmap. Feynman’s diagrams provide, in Einstein’s world, a satisfactory resolution for scattering
states. Thus they work for running waves. Feynman suggested that harmonic oscillators should
be used as a first step for representing standing waves trapped inside an extended hadron.

This wave function increases as t becomes large. This is not an acceptable wave function.
They overlooked the normalizable exponential form given by Dirac in Equation (1). They
also overlooked the form in the paper of Fujimura et al. [31] which was quoted in their own
paper.

Thus, we are interested in fixing this problem and thus constructing Lorentz-covariant
oscillator wave functions satisfying both the rules of quantum mechanics and the rules of
special relativity.

4 Lorentz-Covariant Picture of Quantum Bound States

In 1939, Wigner considered internal space-time symmetries of particles in the Lorentz-
covariant world [13]. For this purpose, he considered the subgroups of the Lorentz group
for a given four-momentum of the particle. For the massive particle, the internal space-time
symmetry is defined for when the particle is at rest, and its symmetry is dictated by the
three-dimensional rotation group, which allows us to define the particle spin as a dynamical
variable, as indicated in Table 1.

Let us go to the wave function of Equation (19). This wave function ψ(x) is for the
internal coordinates of the hadron, and the exponential form defines the hadron momentum.
Thus, the symmetry of Wigner’s little group is applicable to the wave function ψ(x).

This situation is like the case of the Dirac equation for a free particle. Its solution is a
plane wave times the four-component Dirac spinor describing the spin orientation and its
Lorentz covariance. This separation of variables for the present case of relativistic extended
particles is illustrated in Figure 4. With this understanding let us write the Lorentz-invariant
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differential equation as

1

2

[
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+
∂2

∂t2
+
(
x2 + y2 + z2 − t2

)]
ψ(x, y, z, t) = λψ(x, y, z, t). (22)

Here, the variables x, y, z are for the spatial separation between the quarks, like the Bohr
radius in the hydrogen atom. The time variable t is the time separation between the quarks.
This variable is very strange, because it does not exist in the present forms of quantum
mechanics and quantum field theory. Paul A. M. Dirac did not mention this time separation
in any of his papers quoted here. Yet, it plays the major role in the Lorentz-covariant world,
because the spatial separation (like the Bohr radius) picks up a time-like component when
the system is Lorentz-boosted [34].

In his 1927 paper [19], Dirac mentioned the c-number time-energy uncertainty relation,
and he used t ≈ 0 in his 1949 paper for his instant form of relativistic dynamics. When he
wrote down a Gaussian function with

(
x2 + y2 + z2 + t2

)
as the exponent, he should have

meant x, y and z are for the space separation and t for the time separation, since otherwise
the system becomes zero in the remote future and remote past.

With this understanding, we are dealing here with the solution of the differential equation
of the form

ψ(x) = f(x, y, z) exp

(
−t2

2

)
, (23)

where f(x, y, z) satisfy the oscillator differential equation

1

2

(
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+ x2 + y2 + z2

)
f(x, y, z) =

(
λ− 1

2

)
f(x, y, z). (24)

The form of Equation (23) tells us there are no time-like excitations. This equation is the
Schrödinger equation for the three-dimensional harmonic oscillator and its solutions are well
known.

If we use the three-dimensional spherical coordinate system, the solution will give the
spin or internal angular momentum and the orientation of the bound-state hadron [12]. This
spherical form is for the O(3) symmetry of Wigner’s little group for massive particles. The
Lorentz-invariant Casimir operators are given in Ref. [12].

If we are interested in Lorentz-boosting the wave function, we note that the original wave
equation of Equation (22) is separable in all four variables. If the Lorentz boost is made
along the z direction, the wave functions along the x and y directions remain invariant, and
thus can be separated. We can study only the longitudinal and time-like components. Thus
the differential equation of Equation (22) is reduced to

1

2

[
− ∂2

∂z2
+
∂2

∂t2
+
(
z2 − t2

)]
ψ(z, t) = λψ(z, t). (25)
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The solution of this differential equation takes the form

ψ(z, t) = Hn(z) exp

(
−
[
z2 + t2

2

])
, (26)

whereHn(z) is the Hermite polynomial. There are no excitations in t, therefore it is restricted
to the ground state. For simplicity, we ignore the normalization constant.

If this wave function is Lorentz-boosted along the z direction, the z and t variables in
this expression should be replaced according to

z → (cosh η)z − (sinh η)t, and t→ (cosh η)t− (sinh η)z. (27)

According to the light-cone coordinate system introduced by Dirac in 1949 [20], this trans-
formation can be written as

(z + t) → e−η(z + t), and (z − t) → eη(z − t). (28)

Thus the Lorentz-boosted wave function becomes

ψη(z, t) = Hn

(
1√
2

[
e−η(z + t) + eη(z − t)

])
exp

(
−1

4

[
e−2η(z + t)2 + e2η(z − t)2

])
, (29)

without the normalization constant.
It is possible to write this wave function using the one-dimensional normalized oscillator

functions ϕn(z) and ϕk(t) as

ψη(z, t) =
∑
nk

Ankϕn(z)ϕk(t). (30)

This problem has been extensively discussed in the literature [2, 6, 7, 35].
The most interesting case is the expansion of the ground state. The normalized wave

function is then

ψη(z, t) =

(
1

π

)1/2

exp

(
−1

4

[
e−2η(z + t)2 + e2η(z − t)2

])
. (31)

The Lorentz-boost property of this form is illustrated in Figure 5. The expansion in the
harmonic oscillator wave functions takes the form

ψη(z, t) =
1

cosh η

∑
n

(tanh η)nϕn(z)ϕn(t). (32)

This expression is the key formula for two-photon coherent states or squeezed states of
light [14]. We shall return to this two-photon problem in Section 6.
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As for the wave function ψ(x), this is the localized wave function Dirac was considering
in his papers of 1927 and 1945. If Figures 2 and 3 are combined, we end up with an ellipse
as a squeezed circle as shown in Figure 5.

Indeed, one of the most controversial issues in high-energy physics is explained by this
squeezed circle. The bound-state quantum mechanics of protons, which are known to be
bound states of quarks, are often assumed to be the same as that of the hydrogen atom.
Then how would the proton look to an observer on a train becomes the question. According
to Feynman [9, 27], when the speed of the train becomes close to that of light, the proton
appears like a collection of partons. However, the properties of Feynman’s partons are quite
different from the properties of the quarks. This issue shall be discussed in more detail in
Section 5.

5 Lorentz-Covariant Quark Model

Early successes in the quark model include the calculation of the ratio of the neutron and
proton magnetic moments [32], and the hadronic mass spectra [25, 33]. These are based on
hadrons at rest. We are interested in this paper how the hadrons in the quark model appear
to observers in different Lorentz frames.

These days, modern particle accelerators routinely produce protons moving with speeds
very close to that of light. Thus, the question is therefore whether the covariant wave function
developed in Section 4 can explain the observed phenomena associated with those protons
moving with relativistic speed.

The idea that the proton or neutron has a space-time extension had been developed long
before Gell-Mann’s proposal for the quark model [8]. Yukawa [36] developed this idea as early
as 1953, and his idea was followed up by Markov [37], and by Ginzburg and Man’ko [38].

Since Einstein formulated his special relativity for point particles, it has been and still
is a challenge to formulate a theory for particles with space-time extensions. The most
naive idea would be to study rigid spherical objects, and there were many papers on this
subjects. But we do not know where that story stands these days. We can however replace
these extended rigid bodies by extended wave packets or standing waves, thus by localized
probability entities. Then what are the constituents within those localized waves? The quark
model gives the natural answer to this question.

Hofstadter and McAllister [39], by using electron-proton scattering to measure the charge
distribution inside the proton, made the first experimental discovery of the non-zero size of
the proton. If the proton were a point particle, the scattering amplitude would just be a
Rutherford formula. However, Hofstadter and MacAllister found a tangible departure from
this formula which can only be explained by a spread-out charge distribution inside the
proton.

In this section, we are interested in how well the bound-state picture developed in Section 4
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Dirac 1927

Dirac 1945                                          Dirac 1945

Figure 5: Lorentz covariance of the internal the wave function ψη(z, t) of Equation (31). Syn-
thesizing Figures 2 and 3, we obtain a squeezed circle as shown in this figure. This figure thus
integrates Dirac’s three papers [19, 20, 21].
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works in explaining relativistic phenomena of those protons. In Section 5.1 we study in detail
how the Lorentz squeeze discussed in Section 4 can explain the behavior of electron-proton
scattering as the momentum transfer becomes relativistic.

Second, we note that the proton is regarded as a bound state of the quarks sharing the
same bound-state quantum mechanics with the hydrogen atom. However, it appears as a
collection of Feynman’s partons. Thus, it is a great challenge to see whether one Lorentz-
covariant formula can explain both the static and light-like protons. We shall discuss this
issue in Section 5.2

One hundred years ago, Einstein and Bohr met occasionally to discuss physics. Bohr was
interested in how the election orbit looks and Einstein was worrying about how things look
to moving observers. Did they ever talk about how the hydrogen atom appears to moving
observers? In Section 5.3, we briefly discuss this issue.

It is possible to conclude from the previous discussion that the Lorentz boost might
increase the uncertainty. To deal with this, in Section 5.4, we address the issue of the
uncertainty relation when the oscillator wave functions are Lorentz-boosted.

5.1 Proton Form Factor

Using the Born approximation for non-relativistic scattering, we see what effect the charge
distribution has on the scattering amplitude. When electrons are scattered from a fixed
charge distribution with a density of eρ(r), the scattering amplitude becomes:

f(θ) = −
(
e2m

2π

)∫
d3xd3x′

ρ(r′)

R
exp (−iQ · x). (33)

Here we use r = |x|, R = |r − r′|, and Q = Kf −Ki, which is the momentum transfer. We
can reduce this amplitude to:

f(θ) =
2me2

Q2
F (Q2). (34)

The density function’s Fourier transform is given by F (Q2) which can be written as:

F
(
Q2
)
=

∫
d3xρ(r) exp (−iQ · x). (35)

This above quantity is called the form factor and it describes the charge distribution in terms
of the momentum transfer which can be normalized by:∫

ρ(r)d3x = 1. (36)

Therefore, from Equation (35), F(0) = 1. the scattering amplitude of Equation (33) be-
comes the Rutherford formula for Coulomb scattering if the density function, corresponding
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Figure 6: Electron-proton scattering in the Breit frame. The outgoing momentum of the proton
is opposite in sign but equal in magnitude to that of the incoming proton.

to a point charge, is a delta function, F
(
Q2
)
= 1, for all values of Q2. Increasing values

of Q2, which are deviations from Rutherford scattering, give a measure of the charge distri-
bution. Hofstadter’s experiment, which scattered electrons from a proton target, found this
precisely [39].

When the energy of the incoming electron becomes higher, it is necessary to take into
account the recoil effect of target proton. It then requires that the problem be formulated
in the Lorentz-covariant framework. It is generally agreed that quantum electrodynamics
can describe electrons and their electromagnetic interaction by using Feynman diagrams for
practical calculations. When using perturbation, a power series of the fine structure constant
α. is used to expand the scattering amplitude. Therefore, the lowest order in α, can, using
the diagram given in Figure 6, describe the scattering of an electron by a proton.

Many textbooks on elementary particle physics [40, 41] give the corresponding matrix
element as the form:

Ū (Pf ) Γµ (Pf , Pi)

(
1

Q2

)
Ū (Kf ) γ

µU (Ki) , (37)

where the initial and final four-momenta of the proton and electron, respectively, are given
by Pi, Pf ,Ki and Kf . The Dirac spinor for the initial proton is U (Pi), while the (four-
momentum transfer)2, Q2, is

Q2 = (Pf − Pi)
2 = (Kf −Ki)

2 . (38)

If the proton were a point particle like the electron, the Γµ would be γµ, but for a
particle, like the proton, with space-time extension, it is γµF

(
Q2
)
. The virtual photon being
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exchanged between the electron and the proton produces the
(
1/Q2

)
factor in Equation (37).

For the particles involved in the scattering process this quantity is positive for physical values
of the four-momenta in the metric we use.

From the definition of the form factor given in Equation (35), we can make a relativistic
calculation of the form factor. The density function, which depends only on the target
particle, is proportional to ψ(x)†ψ(x). The wave function for quarks inside the proton is
ψ(x). This expression is a special case of the more general form

ρ(x) = ψ†
f (x)ψi(x), (39)

where the initial and final wave function of the target atom is given by ψi and ψf . The form
factor of Equation (35) can then be written as

F
(
Q2
)
=
(
ψf (x), e

−iQ·rψi(x)
)
. (40)

The required Lorentz generalization, starting from this expression, can be made using the
relativistic wave functions for hadrons.

By replacing each quantity in the expression of Equation (35) by its relativistic counter-
part we should be able to see the details of the transition to relativistic physics. If we go
back to the Lorentz frame in which the momenta of the incoming and outgoing nucleons have
equal magnitude but opposite signs, we obtain

pi + pf = 0. (41)

This kinematical condition is illustrated in Figure 6.
We call the Lorentz frame in which the above condition holds the Breit frame. As illus-

trated in Figure 6, there is no loss of generality if the proton comes in along the z direction
before the collision and goes out along the negative z direction after the scattering process.
The four vector, Q = (Kf −Ki) = (Pi −Pf ), n this frame, has no time-like component. The
Lorentz-invariant form, Q · x, can thus replace the exponential factor Q · r. The covariant
harmonic oscillator wave functions discussed in this paper can be used for the wave func-
tions for the protons, assuming that the nucleons are in the ground state. Then the integral
in the evaluation of Equation (35), which includes the time-like direction and is thus four-
dimensional, is the only difference between the non-relativistic and relativistic cases. The
exponential factor, which does not depend on the time-separation variable, therefore, is not
affected by the integral in the time-separation variable.

We can now consider the integral:

g
(
Q2
)
=

∫
d4xψ†

−η(x)ψη(x) exp (−iQ · x), (42)

where tanh η is the velocity parameter (tanh η = v/c) for the incoming proton, and the wave
function ψη, from Equation (31), takes the form:

ψη(x) =
1√
π
exp

(
−1

4

[
e−2η(z + t)2 + e2η(z − t)2

])
. (43)
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We can, now, after the above decomposition of the wave functions, perform the integra-
tions in the x and y variables trivially. We can, after dropping these trivial factors, write the
product of the two wave functions as

ψ†
−η(x)ψη(x) =

1

π
exp

(
−[cosh(2η)]

[
t2 + z2

])
. (44)

Now the z and t variables are separated. Since the t integral in Equation (42), as the
exponential factor in Equation (35), does not depend on t, it can also be trivially performed.
Then integral of Equation (42) can be written as

g
(
Q2
)
=

1√
π cosh(2η)

∫
e−2iPz exp

(
− cosh(2η)z2

)
dz. (45)

Here the z component of the momentum of the incoming proton is P . The variable Q2, which
is the (momentum transfer)2, now become 4P 2. The hadronic material, which is distributed
along the longitudinal direction, has indeed became contracted [42].

We note that tanh η can be written as

(tanh η)2 =
Q2

Q2 + 4M2
, (46)

whereM is the proton mass. This equation tells us that β = 0 when Q2 = 0, while it becomes
one as Q2 becomes infinity.

The evaluation of the above integral for g
(
Q2
)
in Equation (45) leads to

g
(
Q2
)
=

(
2M2

Q2 + 2M2

)
exp

(
−Q2

2(Q2 + 2M2)

)
. (47)

For Q2 = 0, the above expression becomes 1. It decreases as

g
(
Q2
)
∼ 1

Q2
(48)

as Q2 assumes large values.
So far the calculation has been performed for an oscillator bound state of two quarks.

The proton, however, consists of three quarks. As shown in the paper of Feynman et al. [25],
the problem becomes a product of two oscillator modes. Thus, the three-quark system is a
straightforward generalization of the above calculation. As a result, the form factor F

(
Q2
)

becomes;

F
(
Q2
)
=

(
2M2

Q2 + 2M2

)2

exp

(
−Q2

Q2 + 2M2

)
, (49)
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which is 1 at Q2 = 0, and decreases as

F
(
Q2
)
∼
[
1

Q2

]2
(50)

as Q2 assumes large values. This form factor function has the required dipole-cut-off behavior,
which has been observed in high-energy laboratories. This calculation was carried first by
Fujimura et al. in 1970 [31].

Let us re-examine the above calculation. If we replace β by zero in Equation (45) and
ignore the elliptic deformation of the wave functions, g

(
Q2
)
will become

g
(
Q2
)
= exp

(
−Q2/4

)
, (51)

which will lead to an exponential cut-off of the form factor. This is not what we observe in
laboratories.

In order to gain a deeper understanding of the above-mentioned correlation, let us study
the case using the momentum-energy wave functions:

ϕη(q) =

(
1

2π

)2 ∫
d4xe−iq·xψη(x). (52)

If we ignore, as before, the transverse components, we can write g
(
Q2
)
as [2]∫

dq0dqzϕ
∗
η (q0, qz − P )ϕη (q0, qz + P ) . (53)

The above overlap integral has been sketched in Figure 7. The two wave functions overlap
completely in the qz q0 plane if Q

2 = 0 or P = 0. The wave functions become separated when
P increases. Because of the elliptic or squeeze deformation, seen in Figure 7, they maintain a
small overlapping region. In the non-relativistic case, there is no overlapping region, because
the deformation is not taken into account, as seen in Figure 7. The slower decrease in Q2

is, therefore, more precisely given in the relativistic calculation than in the non-relativistic
calculation.

Although our interest has been in the space-time behavior of the hadronic wave function, it
must be noted that quarks are spin-1/2 particles. This fact must be taken into consideration.
This spin effect manifests itself prominently in the baryonic mass spectra. Here we are
concerned with the relativistic effects, therefore, it is necessary to construct a relativistic spin
wave function for the quarks. The result of this relativistic spin wave function construction
for the quark wave function should be a hadronic spin wave function. In the case of nucleons,
the quark spins should be combined in a manner to generate the form factor of Equation (44).

Naively we could use free Dirac spinors for the quarks. However, it was shown by Lipes [43]
that using free-particle Dirac spinors leads to a wrong behavior of the form factor. Lipes’
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Figure 7: The momentum-energy wave functions are Lorentz squeezed in the form factor calcula-
tion. The two wave functions become separated as the momentum transfer increases. However,
in the relativistic case, the wave functions maintain an overlapping region. In the non-relativistic
calculation, the wave functions become completely separated. The unacceptable behavior of the
form factor is caused by this lack of overlapping region.
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result, however, does not cause us any worry, as quarks in a hadron are not free particles.
Thus we have to find suitable mechanism in which quark spins, coupled to orbital motion,
are taken into account. This is a difficult problem and is a nontrivial research problem, and
further study is needed along this direction [44].

In 1960, Frazer and Fulco calculated the form factor using the technique of dispersion
relations [26]. In so doing they had to assume the existence of the so-called ρmeson, which was
later found experimentally, and which subsequently played a pivotal role in the development
of the quark model.

Even these days, the form factor calculation occupies a very important place in recent
theoretical models, such as quantum chromodynamics (QCD) lattice theory [45] and the
Faddeev equation [46]. However, it is still noteworthy that Dirac’s form of Lorentz-covariant
bound states leads to the essential dipole cut-off behavior of the proton form factor.

5.2 Feynman’S Parton Picture

As we did in Section 5.1, we continue using the Gaussian form for the wave function of the
proton. If the proton is at rest, the z and t variables are separable, and the time-separation
can be ignored, as we do in non-relativistic quantum mechanics. If the proton moves with a
relativistic speed, the wave function is squeezed as described in Figure 5. If the speed reaches
that of light, the wave function becomes concentrated along positive light cone with t = z.
The question then is whether this property can explain the parton picture of Feynman when
a proton moves with a speed close to that of light.

It was Feynman who, in 1969, observed that a fast-moving proton can be regarded as
a collection of many partons. The properties of these partons appear to be quite different
from those of the quarks [9, 27, 2]. For example, while the number of quarks inside a static
proton is three, the number of partons appears to be infinite in a rapidly moving proton.
The following systematic observations were made by Feynman:

a. When protons move with velocity close to that of light, the parton picture is valid.

b. Partons behave as free independent particles when the interaction time between the
quarks becomes dilated.

c. Partons have a widespread distribution of momentum as the proton moves quickly.

d. There seems to be an infinite number of partons or a number much larger than that of
quarks.

The question is whether the Lorentz-squeezed wave function produced in Figure 5 can explain
all of these peculiarities.

Each of the above phenomena appears as a paradox, when the proton is believed to be a
bound state of the quarks. This is especially true of (b) and (c) together. We can ask how a
free particle can have a wide-spread momentum distribution.
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To resolve this paradox, we construct the momentum-energy wave function corresponding
to Equation (31). We can construct two independent four-momentum variables [25] if the
quarks have the four-momenta pa and pb.

P = pa + pb, q =
√
2(pa − pb). (54)

Since P is the total four-momentum, it is the four-momentum of the proton. The four-
momentum separation between the quarks is measured by q. We can then write the light-cone
variables as

q+ = (q0 + qz)/
√
2, q− = (q0 − qz)/

√
2. (55)

This results in the momentum-energy wave function

ϕη(qz, q0) =

(
1

π

)1/2

exp

{
−1

2

[
e−2ηq2+ + e2ηq2−

]}
. (56)

Since the harmonic oscillator is being used here, it is easily seen that the above momentum-
energy wave function has the identical mathematical form to that of the space-time wave
function of Equation (31) and that these wave functions also have the same Lorentz squeeze
properties. Though discussed extensively in the literature [2, 10, 11], these mathematical
forms and Lorentz squeeze properties are illustrated again in Figure 8 of the present paper.

We can see from the figure, that both wave functions behave like those for the static
bound state of quarks when the proton is at rest with η = 0. However, it can also be seen
that as η increases, the wave functions become concentrated along their respective positive
light-cone axes as they become continuously squeezed. If we look at the z-axis projection
of the space-time wave function, we see that, as the proton speed approaches that of the
speed of light, the width of the quark distribution increases. Thus, to the observer in the
laboratory, the position of each quark appears widespread. Thus the quarks appear like free
particles.

If we look at the momentum-energy wave function we see that it is just like the space-time
wave function. As the proton speed approaches that of light, the longitudinal momentum
distribution becomes wide-spread. In non-relativistic quantum mechanics we expect that
the width of the momentum distribution is inversely proportional to that of the position
wave function. This wide-spread longitudinal momentum distribution thus contradicts our
expectation from non-relativistic quantum mechanics. Our expectation is that free quarks
must have a sharply defined momenta, not a wide-spread momentum distribution.

However, as the proton is boosted, the space-time width and the momentum-energy
width increase in the same direction. This is because of our Lorentz-squeezed space-time and
momentum-energy wave functions. If we look at Figures 5 and 8 we see that is the effect
of Lorentz covariance described in these figures. One of the quark-parton puzzles is thus
resolved [2, 10, 11].
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Figure 8: Lorentz-squeezed wave functions in space-time and in momentum-energy variables.
Both wave functions become concentrated along their respective positive light-cone axes as the
speed of the proton approaches that of light. All the peculiarities of Feynman’s parton picture are
presented in these light-cone concentrations.
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Another puzzling problem is that quarks are coherent when the proton is at rest but the
partons appear as incoherent particles. We could ask whether this means that Lorentz boost
coherence is destroyed. Obviously, the answer to this question is NO. The resolution to this
puzzle is given below.

When the proton is boosted, its matter becomes squeezed. The result is that the wave
function for the proton becomes, along the positive light-cone axis, concentrated in the elliptic
region. The major axis is expanded in length by exp(η), and, as a consequence, the minor
axis is contracted by exp(−η).

Therefore we see that, among themselves, the interaction time of the quarks becomes
dilated. As the wave function becomes wide-spread, the ends of the harmonic oscillator well
increase in distance from each other. Universally observed in high-energy experiments, it
was Feynman [9] who first observed this effect. The oscillation period thus increase like
eη [27, 47].

Since the external signal, on the other hand, is moving in the direction opposite to the
direction of the proton, it travels along the negative light-cone axis with t = −z. As the
proton contracts along the negative light-cone axis, the interaction time decreases by exp(−η).
Then the ratio of the interaction time to the oscillator period becomes exp(−2η). Each
proton, produced by the Fermilab accelerator, used to have an energy of 900 GeV. This then
means the ratio is 10−6. Because this is such small number, the external signal cannot sense,
inside the proton, the interaction of the quarks among themselves.

5.3 Historical Note

The hydrogen atom played a pivotal role in the development of quantum mechanics. Niels
Bohr devoted much of his life to understanding the electron orbit of the hydrogen atom.
Bohr met Einstein occasionally to talk about physics. Einstein’s main interest was how
things look to moving observers. Then, did they discuss how the hydrogen atom looks to a
moving observer?

If they discussed this problem, there are no records. If they did not, they are excused. At
their time, the hydrogen atom moving with a relativistic speed was not observable, and thus
beyond the limit of their scope. Even these days, this atom with total charge zero cannot be
accelerated.

After 1950, high-energy accelerators started producing protons moving with relativistic
speeds. However, the proton is not a hydrogen atom. On the other hand, Hofstadter’s
experiment [39] showed that the proton is not a point particle. In 1964, Gell-Mann produced
the idea that the proton is a bound-state of more fundamental particles called quarks. It is
assumed that the proton and the hydrogen share the same quantum mechanics in binding
their constituent particles. Thus, we can study the moving hydrogen atom by studying the
moving proton. This historical approach is illustrated in Figure 9.

Paul A. M. Dirac was interested in constructing localized wave functions that can be

26



Figure 9: Bohr and Einstein, and then Gell-Mann and Feynman. There are no records indicat-
ing that Bohr and Einstein discussed how the hydrogen looks to moving observers. After 1950,
with particle accelerators, the physics world started producing protons with relativistic speeds.
Furthermore, the proton became a bound state sharing the same quantum mechanics with the
hydrogen atom. The problem of fast-moving hydrogen became that of the proton. How would the
proton appear when it moves with a speed close to that of light? This is the quark-parton puzzle.
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Figure 10: Scattering and bound states. These days, Feynman diagrams are used for scattering
problems. For bound-state problems, it is possible to construct Lorentz-covariant harmonic oscil-
lators by integrating the papers written by Dirac. Feynman diagrams and the covariant oscillators
are both two different representations of the inhomogeneous Lorentz group. Then is it possible
to derive Einstein’s special relativity from the Heisenberg brackets? This problem is addressed in
Sections 6 and 7.

Lorentz boosted. He wrote three papers [19, 20, 21]. If we integrate his ideas, it is possible
to construct the covariant oscillator wave function discussed in this paper. Figure 10 tells
where this integration stands in the history of physics.

In constructing quantum mechanics in the Lorentz-covariant world, the present form of
quantum field theory is quite successful in scattering problems where all participating parti-
cles are free in the remote past and the remote future. The bound states are different, and
Feynman suggested Lorentz-covariant harmonic oscillators for studying this problem [25].
Yes, quantum field theory and the covariant harmonic oscillators use quite different math-
ematical forms. Yet, they share the same set of physical principles [56]. They are both
the representations of the inhomogeneous Lorentz group. We note that Dirac in his 1949
paper [21] said that we can build relativistic dynamics by constructing representations of
the inhomogeneous Lorentz group. In Figure 10, both Feynman diagrams and the covariant
oscillator (integration of Dirac’s papers) share the Lie algebra of the inhomogeneous Lorentz
group. This figure leads to the idea of whether the Lie algebra of quantum mechanics can
lead to that of the inhomogeneous Lorentz group. We shall discuss this question in Section 7.

Since the time of Bohr and Einstein, attempts have been made to construct Lorentz-
covariant bound states within the framework of quantum mechanics and special relativity.
In recent years, there have been laudable efforts to construct a non-perturbative approach
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to quantum field theory, where particles are in a bound state and thus are not free in the
remote past and remote future [48]. If and when this approach produces localized probability
distributions which can Lorentz-boosted, it should explain both the quark model (at rest)
and its parton picture in the limit of large speed.

In recent years, there have been efforts to represent the observation of movements inside
materials using Dirac electric states [49] as well as to use relativistic methods to under-
stand atomic and molecular structure [50]. There have also been efforts to provide covariant
formulation of the electrodynamics of nonlinear media [51].

5.4 Lorentz-Invariant Uncertainty Products

In the harmonic oscillator regime, the energy-momentum wave functions take the same math-
ematical form, and the uncertainty relation in terms of the uncertainty products is well un-
derstood. However, in the present case, the oscillator wave functions are deformed when
Lorentz-boosted, as shown in Figure 8. According to this figure, both the space-time and
momentum-energy wave functions become spread along their longitudinal directions. Does
this mean that the Lorentz boost increases the uncertainty?

In order to address this question, let us write the momentum-energy wave function as a
Fourier transformation of the space-time wave function:

ϕ (qz, q0) =
1

2π

∫
ψ(z, t) exp (i [qzz − q0t]) dt dz. (57)

The transverse x and y components are not included in this expression. The exponent of this
expression can be written as

qzz − q0t = q+z− + q−z+, (58)

with

q± =
1√
2
(qz ± q0) , z± =

1√
2
(z ± t) , (59)

as given earlier in Equations (4) and (55).
In terms of these variables, the Fourier integral takes the form

1

2π

∫
ψ(z, t) exp (i [q+z− + q−z+]) dt dz. (60)

In this case, the variable q+ is conjugate to z−, and q− to z+. Let us go back to Figure 8.
The major (minor) axis of the space-time ellipse is conjugate to the minor (major) axis of
the momentum-energy ellipse. Thus the uncertainty products⟨

z2+

⟩⟨
q2−

⟩
and

⟨
z2−

⟩⟨
q2+

⟩
(61)

remain invariant under the Lorentz boost.
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6 O(3,2) Symmetry Derivable from Two-Photon States

In this section we start with the paper Dirac published in 1963 on the symmetries from two
harmonic oscillators [22]. Since the step-up and step-down operators in the oscillator system
are equivalent to the creation and annihilation operators in the system of photons, Dirac was
working with the system of two photons which is of current interest [5, 52, 53, 54].

In the oscillator system the step-up and step-down operators are:

a1 =
1√
2
(x1 + iP1) , a†1 =

1√
2
(x1 − iP1) ,

a2 =
1√
2
(x2 + iP2) , a†2 =

1√
2
(x2 − iP2) , (62)

with

iPi =
∂

∂xi
. (63)

In terms of these operators, Heisenberg’s uncertainty relations can be written as[
ai, a

†
j

]
= δij , (64)

with

xi =
1√
2

(
ai + a†i

)
, Pi =

i√
2

(
a†i − ai

)
. (65)

With these sets of operators, Dirac constructed three generators of the form

J1 =
1

2

(
a†1a2 + a†2a1

)
, J2 =

1

2i

(
a†1a2 − a†2a1

)
, J3 =

1

2

(
a†1a1 − a†2a2

)
, (66)

and three more of the form

K1 = −1

4

(
a†1a

†
1 + a1a1 − a†2a

†
2 − a2a2

)
,

K2 = +
i

4

(
a†1a

†
1 − a1a1 + a†2a

†
2 − a2a2

)
, (67)

K3 =
1

2

(
a†1a

†
2 + a1a2

)
.

These Ji and Ki operators satisfy the commutation relations

[Ji, Jj ] = iϵijkJk, [Ji,Kj ] = iϵijkKk, [Ki,Kj ] = −iϵijkJk. (68)

This set of commutation relations is identical to the Lie algebra of the Lorentz group
where Ji and Ki are three rotation and three boost generators respectively. This set of

30



commutators is the Lie algebra of the Lorentz group with three rotation and three boost
generators.

In addition, with the harmonic oscillators, Dirac constructed another set consisting of

Q1 = − i

4

(
a†1a

†
1 − a1a1 − a†2a

†
2 + a2a2

)
,

Q2 = −1

4

(
a†1a

†
1 + a1a1 + a†2a

†
2 + a2a2

)
, (69)

Q3 =
i

2

(
a†1a

†
2 − a1a2

)
.

They then satisfy the commutation relations

[Ji, Qj ] = iϵijkQk, [Qi, Qj ] = −iϵijkJk. (70)

Together with the relation [Ji, Jj ] = iϵijkJk given in Equation (68), Ji and Qi produce
another Lie algebra of the Lorentz group. Like Ki, the Qi operators act as boost generators.

In order to construct a closed set of commutation relations for all the generators, Dirac
introduced an additional operator

S0 =
1

2

(
a†1a1 + a2a

†
2

)
. (71)

Then the commutation relations are

[Ki, Qj ] = −iδijS0, [Ji, S0] = 0, [Ki, S0] = −iQi, [Qi, S0] = iKi. (72)

It was then noted by Dirac that the three sets of commutation relations given in Equa-
tions (68), (70) and (72) form the Lie algebra for the O(3, 2) de Sitter group. This group
applies to space of (x, y, z, t, s), which is five-dimensional. In this space, the three space-like
coordinates are x, y, z, and the time-like variables are given by t and s. Therefore, these
generators are five-by-five matrices. The three rotation generators for the (x, y, z) space-like
coordinates are given in Table 2. The three boost generators with respect to the time variable
t are given in Table 3. Table 4 contains three boost operators with respect to the second
time variable s and the rotation generator between the two time variables t and s.

It is indeed remarkable, as Dirac stated in his paper [22], that the space-time symmetry
of the (3 + 2) de Sitter group is the result of this two-oscillator system. What is even more
remarkable is that we can derive, from quantum optics, this two-oscillator system. In the
two-photon system in optics, where i can be 1 or 2, ai and a†i act as the annihilation and
creation operators.
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Table 2: Three generators of the rotations in the five-dimensional space of (x, y, z, t, s). The
time-like s and t coordinates are not affected by the rotations in the three-dimensional space of
(x, y, z).

Generators Differential Matrix

J1 −i
(
y ∂
∂z

− z ∂
∂y

)

0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0



J2 −i
(
z ∂
∂x

− x ∂
∂z

)


0 0 i 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0



J3 −i
(
x ∂
∂y

− y ∂
∂x

)


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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Table 3: Three generators of Lorentz boosts with respect the time variable t. The s coordinate is
not affected by these boosts.

Generators Differential Matrix

K1 −i
(
x ∂
∂t
+ t ∂

∂x

)

0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0



K2 −i
(
y ∂
∂t
+ t ∂

∂y

)

0 0 0 0 0
0 0 0 i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0



K3 −i
(
z ∂
∂t
+ t ∂

∂z

)

0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 i 0 0
0 0 0 0 0


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Table 4: The O(3, 2) group has four additional generators. Note that the generators in this table
have non-zero elements only in the fifth row and the fifth column. This is unlike those given in
Tables 2 and 3. Here the s variable is contained in every differential operator.

Generators Differential Matrix

Q1 −i
(
x ∂
∂s

+ s ∂
∂x

)

0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0



Q2 −i
(
y ∂
∂s

+ s ∂
∂y

)

0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0



Q3 −i
(
z ∂
∂s

+ s ∂
∂z

)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 i 0 0



S0 −i
(
t ∂
∂s

− s ∂
∂t

)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0


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It is possible to construct, with these two sets of operators, two-photon states [5]. Yuen,
as early as 1976 [14], used the two-photon state generated by

Q3 =
i

2

(
a†1a

†
2 − a1a2

)
. (73)

This leads to the two-mode coherent state. This is also known as the squeezed state.
It was later that Yurke, McCall, and Klauder, in 1986 [55], investigated two-mode inter-

ferometers. In their study of two-mode states, they started with Q3 given in Equation (73).
Then they considered that the following two additional operators,

K3 =
1

2

(
a†1a

†
2 + a1a2

)
, S0 =

1

2

(
a†1a1 + a2a

†
2

)
, (74)

were needed in one of their interferometers. These three Hermitian operators from Equa-
tions (73) and (74) have the following commutation relations

[K3, Q3] = −iS0, [Q3, S0] = iK3, [S0,K3] = iQ3. (75)

Yurke et al. called this device the SU(1, 1) interferometer. The group SU(1, 1) is isomorphic
to the O(2, 1) group or the Lorentz group applicable to two space-like and one time-like
dimensions.

In addition, in the same paper [55], Yurke et al. discussed the possibility of constructing
another interferometer exhibiting the symmetry generated by

J1 =
1

2

(
a†1a2 + a†2a1

)
, J2 =

1

2i

(
a†1a2 − a†2a1

)
, J3 =

1

2

(
a†1a1 − a†2a2

)
. (76)

These generators satisfy the closed set of commutation relations

[Ji, Jj ] = iϵijkJk, (77)

given in Equation (66). This is the Lie algebra for the three-dimensional rotation group.
Yurke et al. called this optical device the SU(2) interferometer.

We are then led to ask whether it is possible to construct a closed set of commutation
relations with the six Hermitian operators from Equations (75) and (76). It is not possible.
We have to add four additional operators, namely

K1 = −1

4

(
a†1a

†
1 + a1a1 − a†2a

†
2 − a2a2

)
,

K2 = +
i

4

(
a†1a

†
1 − a1a1 + a†2a

†
2 − a2a2

)
, (78)

Q1 = − i

4

(
a†1a

†
1 − a1a1 − a†2a

†
2 + a2a2

)
,

Q2 = −1

4

(
a†1a

†
1 + a1a1 + a†2a

†
2 + a2a2

)
.
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There are now ten operators. They are precisely those ten Dirac constructed in his paper
of 1963 [22].

It is indeed remarkable that Dirac’s O(3, 2) algebra is produced by modern optics. This
algebra produces the Lorentz group applicable to three space-like and two time-like dimen-
sions.

The algebra of harmonic oscillators given in Equation (64) is Heisenberg’s uncertainty
relations in a two-dimensional space. The de Sitter group O(3, 2) is basically a language of
special relativity. Does this mean that Einstein’s special relativity can be derived from the
Heisenberg brackets? We shall examine this problem in Section 7.

7 Contraction of O(3, 2) to the Inhomogeneous

Lorentz Group

According to Section 6, the group O(3, 2) has an O(3, 1) subgroup with six generators plus
four additional generators. The inhomogeneous Lorentz group also contains one Lorentz
group O(3, 1) as its subgroup plus four space-time translation generators. The question
arises whether the four generators in Table 4 can be converted into the four translation
generators. The purpose of this section is to prove this is possible according to the group
contraction procedure introduced first by Inönü and Wigner [57].

In their paper Inönü and Wigner introduced the procedure for transforming the Lorentz
group into the Galilei group. This procedure is known as group contraction [57]. In this
section, we use the same procedure to contract the O(3, 2) group into the inhomogeneous
Lorentz group which is the group O(3, 1) plus four translations.

Let us introduce the contraction matrix

C =


1/ϵ 0 0 0 0
0 1/ϵ 0 0 0
0 0 1/ϵ 0 0
0 0 0 1/ϵ 0
0 0 0 0 ϵ

 . (79)

This matrix expands the z, y, z, t axes, and contracts s axis as ϵ becomes small. Yet, the
Ji and Ki matrices given in Tables 2 and 3 remain invariant:

CJiC
−1 = Ji, and CKiC

−1 = Ki. (80)

These matrices have zero elements in the fifth row and fifth column.
On the other hand, the matrices in Table 4 are different. Let us choose Q3. The same
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Table 5: Here the generators of translations are given in the four-dimensional Minkowski space.
It is of interest to convert the four generators in the O(3, 2) group in Table 4 into the four
translation generators.

Generators Differential Matrix

Q1 → P1 −i ∂
∂x


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Q2 → P2 −i ∂
∂y


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Q3 → P3 −i ∂
∂z


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0



S0 → P0 i ∂
∂t


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0


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algebra leads to the elements ϵ2 and its inverse, as shown in this equation:

CQ3C
−1 =


1/ϵ 0 0 0 0
0 1/ϵ 0 0 0
0 0 1/ϵ 0 0
0 0 0 1/ϵ 0
0 0 0 0 ϵ




0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 i 0 0




ϵ 0 0 0 0
0 ϵ 0 0 0
0 0 ϵ 0 0
0 0 0 ϵ 0
0 0 0 0 1/ϵ

(81)

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i/ϵ2

0 0 0 0 0
0 0 0 iϵ2 0

→ P3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0

 . (82)

The second line of this equation tells us that ϵ2 becomes zero in the limit of small ϵ. If
we make the inverse transformation, result is P3. We can perform the same algebra to arrive
at the the results given in Table 5. According to this table, Qi and S0 become contracted
to the generators of the space-time translations. In other words, the de Sitter group O(3, 2)
can be contracted to the inhomogeneous Lorentz group.

If this matrix is applied to the five-vector of (x, y, z, t, s), it becomes (x/ϵ, y/ϵ, z/ϵ, t/ϵ, sϵ).
If ϵ becomes very small, the s axis contracts while the four others expand. As ϵ becomes
very small, ϵs approaches zero and can be replaced by ϵ, since both of them are zero. We are
replacing zero by another zero, as shown here:

x/ϵ
y/ϵ
z/ϵ
t/ϵ
ϵs

→


x/ϵ
y/ϵ
z/ϵ
t/ϵ
ϵ

 , and


ϵ 0 0 0 0
0 ϵ 0 0 0
0 0 ϵ 0 0
0 0 0 ϵ 0
0 0 0 0 1/ϵ




x/ϵ
y/ϵ
z/ϵ
t/ϵ
ϵ

 =


x
y
z
t
1

 . (83)

This contraction procedure is indicated in Figure 11.
Indeed, the five-vector (x, y, z, t, 1) serves as the space-time five-vector of the inhomo-

geneous Lorentz group. The transformation matrix applicable to this five-vector consists of
that of the Lorentz group in its first four row and columns. Let us see how the generators Pi

and S0 generate translations. First of all, in terms of these generators, the transformation
matrix takes the form

exp (−i [aPx + bPy + zPz + dPt]) =


1 0 0 0 a
0 1 0 0 b
0 0 1 0 c
0 0 0 1 d
0 0 0 0 1

 . (84)
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Figure 11: Contraction of O(3, 2) to the inhomogeneous Lorentz group. The extra time variable
s becomes a constant, as shown by a flat line in this figure.
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If this matrix is applied to the five-vector (x, y, z, t, 1), the result is the translation:
1 0 0 0 a
0 1 0 0 b
0 0 1 0 c
0 0 0 1 d
0 0 0 0 1




x
y
z
t
1

 =


x+ a
y + b
z + c
t+ d
1

 . (85)

The five-by-five matrix of Equation (84) indeed performs the translations.
Let us go to Table 5 again. The four differential forms of the translation generators

correspond to the four-momentum satisfying the equation E2 = p2x + p2y + p2z +m2. This is
of course Einstein’s E = mc2.

8 Concluding Remarks

Since 1973, the present authors have been publishing papers on the harmonic oscillator wave
functions which can be Lorentz-boosted. The covariant harmonic oscillator plays roles in
understanding some of the properties in high-energy particle physics. This covariant oscillator
can also be used as a representation of Wigner’s little group for massive particles.

More recently, the oscillator wave function was shown to provide basic mathematical tools
for two-photon coherent states known as the squeezed state of light [5].

In this paper, we have provided a review of our past efforts, with the purpose of integrat-
ing the papers Paul A. M. Dirac wrote in his lifelong efforts to make quantum mechanics
compatible with Einstein’s special relativity which produced the Lorentz-covariant energy-
momentum relation. It is interesting to note that Einstein’s special relativity is derivable
from Heisenberg’s expression of the uncertainty relation.
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