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Abstract

It is shown that the representation of the E(2)-like little group for photons can be re-
duced to the coordinate transformation matrix of the cylindrical group, which describes
movement of a point on a cylindrical surface. The cylindrical group is isomorphic to
the two-dimensional Euclidean group. As in the case of E(2), the cylindrical group can
be regarded as a contraction of the three-dimensional rotation group. It is pointed out
that the E(2)-like little group is the Lorentz-boosted O(3)-like little group for massive
particles in the infinite-momentum/zero-mass limit. This limiting process is shown
to be identical to that of the contraction of O(3) to the cylindrical group. Gauge
transformations for free massless particles can thus be regarded as Lorentz-boosted
rotations.
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1 Introduction

In their 1953 paper [1], Inonu and Wigner discussed the contraction of the three-dimensional
rotation group [or O(3)] to the two-dimensional Euclidean group [or E(2)]. Since the little
groups governing the internal space-time symmetries of massive and massless particles are
locally isomorphic to O(3) and E(2) respectively [2], it is quite natural for us to expect that
the E(2)-like little group is a limiting case of the O(3)-like little group [3].

The kinematics of the O(3)-like little group for a massive particle is well understood.
The identification of this little group with O(3) can best be achieved in the Lorentz frame
in which the particle is at rest [2]. In this frame, we can rotate the direction of the spin
without changing the momentum. Indeed, for a massive particle, the little group is for the
description of the spin orientation in the rest frame.

The kinematics of the E(2)-like little group has been somewhat less transparent, because
there is no Lorentz frame in which the particle is at rest. While the geometry of E(2) can
best be understood in terms of rotations and translations in two-dimensional space, there
is no physical reason to expect that the translation-like degrees of freedom in the E(2)-like
little group represent translations in an observable space. In fact, the translation-like degrees
of freedom in the little group are the gauge degrees of freedom [3]. Therefore, in the past,
the correspondence between the E(2)-like little group and the two-dimensional Euclidean
group has been strictly algebraic.

In this paper, we formulate a group theory of a point moving on the surface of a circular
cylinder. This group is locally isomorphic to the two-dimensional Euclidean group. We
show that the transformation matrix of the little group for photons reduces to that of the
coordinate transformation matrix of the cylindrical group. The cylindrical group therefore
bridges the gap between E(2) and the E(2)-like little group.

As in the case of E(2), we can obtain the cylindrical group by contracting the three-
dimensional rotation group. While the contraction of O(3) to E(2) is a tangent-plane ap-
proximation of a spherical surface with large radius [1], the contraction to the cylindrical
group is a tangent-cylinder approximation. Using this result, together with the fact that the
representation of the E(2)-like little group reduces to that of the cylindrical group, we show
that the gauge degree of freedom for massless particles come from Lorentz-boosted rotations.

In Sec. 2, we discuss the cylindrical group and its isomorphism to the two-dimensional
Euclidean group. Section 3 deals with the E(2)-like little group for photons and its iso-
morphism to the cylindrical group. It is shown in Sec. 4 that the cylindrical group can be
regarded as an equatorial-belt approximation of the three-dimensional rotation group, while
E(2) can be regarded as a north-pole approximation. In Sec. 5, we combine the conclusions
of Sec. 3 and Sec. 4 to show that the gauge degrees of freedom for free massless particles are
Lorentz-boosted rotational degrees of freedom.
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2 Two-dimensional Euclidean Grouip and

Cylindrical group

The two-dimensional Euclidean group, often called E(2), consists of rotations and transla-
tions on a two-dimensional Euclidian plane. The coordinate transformation takes the form

x′ = x cosα− y sinα+ u, y′ = x sinα + y cosα+ v. (1)

This transformation can be written in matrix form asu′

y′

1

 =

 cosα − sinα u
sinα cosα v
0 0 1


u
y
1

 (2)

The three-by-three matrix in the above expression can be exponentiated as

E(u, v, α) = exp (−i(uP1 + vP2)) exp (−iαL3), (3)

where L3 is the generator of rotations, and P1 and P2 generate translations. These generators
take the form

L3 =

 0 −i 0
i 0 0
0 0 0

 , P1 =

 0 0 i
0 0 0
0 0 0

 , P2 =

 0 0 0
0 0 i
0 0 0

 , (4)

and satisfy the commutation relations:

[P1, P2] = 0, [L3, P1] = iP2, [L3, P2] = −iP1, (5)

which form the Lie algebra for E(2).
The above commutation relations are invariant under the sign change in P1 and P2. They

are also invariant under Hermitian conjugation. Since L3 is Hermitian, we can replace P1

and P2 by
Q1 = −P †

1 , Q2 = −P †
2 , (6)

respectively to obtain

[Q1, Q2] = 0, [L3, Q1] = iQ2, [L3, Q2] = −iQ1, (7)

These above commutation relations are identical to those for E(2) given in Eq.(5). However,
Q1 and Q2 are not the generators of Euclidean translations in the two-dimensional space.
Let us write down their matrix forms:

Q1 =

 0 0 0
0 0 0
i 0 0

 , Q2 =

 0 0 0
0 0 0
0 i 0

 , (8)
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while L3 is given in Eq.(4). As in the case of E(2), we can consider the transformation
matrix:

C(u, v, α) = C(0, 0, α)C(u, v, 0), (9)

where C(0, 0, α) is the rotation matrix and takes the form

C(0, 0, α) = exp (−iαL3) =

 cosα − sinα 0
sinα cosα 0
0 0 1

 , (10)

and

C(u, v, 0) = exp [−i(uQ1 + vQ2)] =

 1 0 0
0 1 0
u v 1

 . (11)

The multiplication of the above two matrices results in the most general form of C(u, v, α).
If this matrix is applied to the column vector (x, y, z), the result is cosα − sinα 0

sinα cosα 0
u v 1


u
y
z

 =

x cosα− y sinα
x sinα + y cosα
z + ux+ vy

 . (12)

This transformation leaves (x2 + y2) invariant, while z can vary from −∞ to +∞. For
this reason, it is quite appropriate to call the group of the above linear transformation the
cylindrical group. This group is locally isomorphic to E(2).

If, for convenience, we set the radius of the cylinder to be unity:

x2 + y2 = 1, (13)

then x and y can be written as

x = cosϕ, y = sinϕ, (14)

and the transformation of Eq.(12) takes the form cosα − sinα 0
sinα cosα 0
u v 1


 cosϕ
sinϕ
z

 =

 cos(ϕ+ α)
sin(ϕ+ α)

z + (u cosϕ+ v sinϕ)

 . (15)

We shall see in the following sections how this cylindrical group describes gauge transforma-
tions for massless particles.
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3 E(2)-like Little Group for Photons

Let us consider a single free photon moving along the z direction. Then we can write the
four-potential as

Aµ(x) = Aµeiω(z−t), (16)

with
Aµ = (A1, A2, A3, Ao). (17)

The momentum four-vector is clearly

P µ = (0, 0, ω, ω) . (18)

Then, the little group applicable to the photon four-potential is generated by

J3 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , N1 =


0 0 −i i
0 0 0 0
i 0 0 0
i 0 0 0

 , N2 =


0 0 0 0
0 0 −i i
0 i 0 0
0 i 0 0

 . (19)

These matrices satisfy the commutation relations:

[J3, N1] = iN2, [J3, N2] = −iN1, [N1, N2] = 0, (20)

which are identical to those for E(2). From these generators, we can construct the transfor-
mation matrix:

D(u, v, α) = D(0, 0, α)D(u, v, 0), (21)

where

D(u, v, 0) = exp (−i(uN1 + vN2)), D(0, 0, α) = R(a) = exp (−iαJ3 ) . (22)

We can now expand the above formulas in power series, and the results are

R(α) =


cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

 , (23)

and

D(u, v, 0) =


1 0 −u u
0 1 −v v
u v 1− (u2 + v2)/2 (u2 + v2)/2
u v −(u2 + v2)/2 1 + (u2 + v2)/2

 . (24)
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When applied to the four-potential, the above D matrix performs a gauge transformation,4
while R(α) is the rotation matrix around the momentum.

The D matrices of Eq.(21) have the same algebraic property as that for the E matrices
discussed in Sec. 2. Why, then, do they look so different? In the case of the O(3)-like
little group, the four-by-four matrices of the little group can be reduced to a block diagonal
form consisting of the three-by-three rotation matrix and one-by-one unit matrix [2]. Is it
then possible to reduce the D matrices to the form which can be directly compared with the
three-by-three E matrices of Sec. 2?

One major problem in bringing the D matrix to the form of the E matrix is that the D
matrix is quadratic in the u and v variables. In order to attack this problem, let us impose
the Lorentz condition on the four-potential:

∂

∂xµ
Aµ(x) = P µAµ(x), (25)

resulting in A3 = Ao. Since the third and fourth components are identical, the N1 and N2

matrices of Eq.(19) can be replaced respectively by

N1 =


0 0 0 0
0 0 0 0
i 0 0 0
i 0 0 0

 , N2 =


0 0 0 0
0 0 0 0
0 i 0 0
0 i 0 0

 . (26)

At the same time, the D(u, v, 0) of Eq.(24) becomes

D(u, v, 0) =


1 0 0 0
0 1 0 0
u v 1 0
u v 0 1

 . (27)

This matrix has some resemblance to the representation of the cylindrical group given in
Eq.(11) [5].

In order to make the above form identical to Eq.(11), we use Dirac’s light cone coordi-
nate system in which the combinations x, y, (z + t), and (z − t) are used as the coordinate
variables [6]. In this system the four-potential of Eq.(16) is written as

Aµ = (A1, A2, (A3 + Ao), (A3 − A0)) . (28)

The linear transformation from the four-vector of Eq.(16) to the above expression is straight-
forward. According to the Lorentz condition, the fourth component of the above expression
vanishes. We are thus left with the first three components.
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During the transformation into the light-cone coordinate system, J3 remains the same.
If we take into account the fact that the fourth component of A now vanishes, N1 and N2

become

N1 =


0 0 0 0
0 0 0 0
i 0 0 0
0 0 0 0

 , N2 =


0 0 0 0
0 0 0 0
0 i 0 0
0 i 0 0

 . (29)

As a consequence, D(u, v) takes the form:

D(u, v, 0) =


1 0 0 0
0 1 0 0
u v 1 0
0 0 0 1

 , (30)

and R(α) remains the same as before. It is now clear that the four-by-four representation of
the little group is reduced to one three-by-three matrix and one trivial one-by-one matrix.
If we use Ĵ3, N̂1 and N̂2 for the three-by-three portion of the four-by four J3, N1 and N2

matrices respectively, then

Ĵ3 = L3, N̂1 = Q1, N̂2 = Q2. (31)

Now the identification of E(2)-like little group with the cylindrical group is complete.

4 The Cylindrical Group as a Contraction of O(3)

The contraction of O(3) to E(2) is well known and discussed widely in the literature.1 The
easiest way to understand this procedure is to consider a sphere with large radius, and a
small area around the north pole. This area would appear like a flat surface. We can then
make Euclidean transformations on this surface, consisting of translations along the x and y
directions and rotations around any point within this area. Strictly speaking, however, these
Euclidean transformations are O(3) rotations around the x axis, y axis, and around the axis
which makes a very small angle with the z axis.

Let us start with the generators of O(3), which satisfy the commutation relations:

[Li, Lj] = iϵijkLk (32)

generates rotations around the north pole, and its matrix form is given in Eq.(4). L1 and
L2 take the form

L1 =

 0 0 0
0 0 −i
0 i 0

 , L1 =

 0 0 i
0 0 0
−i 0 0

 . (33)
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For the present purpose, we can restrict ourselves to a small region near the north pole,
where z is large and is equal to the radius of the sphere R, and x and y are much smaller
than the radius. We can then writex

y
1

 =

 1 0 0
0 1 0
0 0 1/R


x
y
z

 . (34)

The column vectors on the left- and right-hand sides are respectively the coordinate vectors
on which the E(2) and O(3) transformations are applicable. We shall use the notation A for
the three-by-three matrix on the right hand side. In the limit of large R,

P1 =
1

R
AL2A

−1, P2 = − 1

R
AL1A

−1. (35)

This procedure leaves L3 invariant. However, L1 and L2 become the P1 and P2 matrices
discussed in Sec. II. Furthermore, in terms of P1, P2 and L3, the commutation relations for
O(3) given in Eq.(32) become

[L3, P1] = iP2, [L3, P2] = −iP1, [P1, P2] = −i
(
1

R

)2

L3. (36)

In the large−R limit, the commutator [P1, P2] vanishes, and the above set of commutators
becomes the Lie algebra for E(2).

We have so far considered the area near the north pole where z is much larger than√
x2 + y2. Let us next consider the opposite case, in which

√
x2 + y2 is much larger than z.

This is the equatorial belt of the sphere. Around this belt, x and y can be written as

x = R cosϕ, y = R sinϕ. (37)

We can now write  cosϕ
sinϕ
z

 =

 1/R 0 0
0 1/R 0
0 0 1


x
y
z

 , (38)

to obtain the vector space for the cylindrical group dicussed in Sec. 2. The three-by-three
matrix on the right-hand side of the above expression is proportional to the inverse of the
matrix A given in Eq.(34). Thus in the limit of large R,

L1 = A−1L1A, P1 = ( 1
R
)A−1L2A,P2 = − ( 1

R
)A−1L1A. (39)

In terms of L3, Q1 and Q2, the commutation relations for O(3) given in Eq.(32) become

[L3, Q1] = iQ2, [L3, Q2] = −iQ1, [Q1, Q2] = −i
(
1

R

)2

L3. (40)
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which become the Lie algebra for E(2). The contraction of O(3) to E(2) and to the cylindrical
group is illustrated in Fig. 1.

5 E(2)-like Little Group as an

Infinite-momentum/zero-mass Limit of the O(3)-like

Little Group for Massive Particles

If a massive particle is at rest, the symmetry group is generated by the angular momentum
operators J1, J2 and J3. If this particle moves along the z direction, J3 remains invariant,
and its eigenvalue is the helicity. However, what happens to J1 and J2, particularly in the
infinite-momentum limit?

In order to tackle this problem, let us summarize the results of the preceding sections.
The generators of the E(2)-like little group can be reduced to those of the cylindrical group.
The cylindrical group can be obtained from the three-dimensional rotation group through
a large-radius approximation. Therefore, if the boost matrix takes a diagonal form as in
the case of Eq.(34) or (38), we should be able to obtain N1 and N2 by boosting J2 and J1
respectively along the z direction [7].

Indeed, in the light-cone coordinate system, the boost matrix takes the form

R(P ) =


1 0 0 0
0 1 0 0
0 0 R 0
0 0 0 1/R

 , (41)

with

R =

√
1 + β

1− β
, (42)

where β is the velocity parameter of the particle. Under this boost, J3 remains invariant:

J ′
3 = BJ3B

−1 = J3. (43)

J1 and J2 in the light-cone coordinate system take the form

J1 =


0 0 0 0
0 0 −i i
0 i 0 0
0 −i 0 0

 , J1 =


0 0 0 0
0 0 −i i
0 i 0 0
0 −i 0 0

 . (44)
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Figure 1: Contraction of the three-dimensional rotation group to the two-dimensional Eu-
clidean group and to the cylindrical group. The rotation around the z axis remains unchanged
as the radius becomes large. In the case of E(2), rotations around the y and x axes become
translations in the x and −y directions respectively within a flat area near the north pole. In
the case of the cylindricalgroup, the rotations around the y and x axes result in translations
in the negative and positive z directions respectively within a cylindrical belt around the
equator.
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Figure 2: E(2), the E(2)-like little group for massless particles, and the cylindrical group.
The correspondence between E(2) and the E(2)-like little group is isomorphic but not iden-
tical. The cylindrical group is identical to the E(2)-like little group. Both E(2) and the
cylindrical group can be regarded as contractions of O(3) in the large-radius limit. The
Lorentz boost of the O(3)-like little group for a massive particle at rest to the E(2)-like little
group for a massless particle is exactly the same as the contraction of O(3) to the cylindrical

group. The radius of the sphere in this case can be identified as
√
(1 + β)/(1− β).
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If we boost this massive particle along the z direction, the boosted J1 and J2 become

J ′
1 = BJ1B

−1 =
1√
2


0 0 0 0
0 0 −i/R i/R
0 iR 0 0
0 −iR 0 0

 ,

J ′
2 = BJ2B

−1 =
1√
2


0 0 −i/R i/R
0 0 0 0
iR 0 0 0
−iR 0 0 0

 . (45)

Because of the Lorentz condition, the iR terms in the fourth column of the above matrices
can be dropped. Therefore, in the large-R limit which is the limit of large momentum,

N1 = − 1

R
J ′
2, N2 =

1

R
J ′
1. (46)

where N1 and N2 are given in Eq.(30). This completes the proof that the gauge degrees
of freedom in the E(2)-like little group for photons are Lorentz-boosted rotational degrees
of freedom. The limiting process is the same as the contraction of the three-dimensional
rotation group to the cylindrical group.

Concluding Remarks

The isomorphism between the two-dimensional Euclidean group and the little group for
massless particles is well known and well understood. However, the isomorphism in this case
does not mean that they are identical. We have shown in this paper that the E(2)-like little
group can be reduced to the identity group and the cylindrical group which is isomorphic
to E(2). As in the case of E(2), we can obtain the cylindrical group by contracting the
three-dimensional rotation group. This contraction procedure is identical to the Lorentz
boost of the O(3)-like little group for a massive particle at rest to the E(2)-like little group
for a massless particle. The result of the present paper is summarized in Fig. 2.
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