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1. OriGIN AND CHARACTERIZATION OF THE PROBLEM

It is perhaps the most fundamental principle of Quantum Mechanics that the
system of states forms a linear manifold,' in which a unitary scalar product is
defined.’ The states are generally represented by wave functions’ in such a way
that ¢ and constant multiples of ¢ represent the same physical state. It is
possible, therefore, to normalize the wave function, i.e., to multiply it by a
constant factor such that its scalar product with itself becomes 1. Then, only a
constant factor of modulus 1, the so-called phase, will be left undetermined
in the wave function. The linear character of the wave function is called the
superposition principle. The square of the modulus of the unitary scalar
product (¥, ¢) of two normalized wave functions ¢ and ¢ is called the transition
probability from the state ¥ into ¢, or conversely. This is supposed to give the
probability that an experiment performed on a system in the state ¢, to see
whether or not the state is ¢, gives the result that it is ¢. If there are two or
more different experiments to decide this (e.g., essentially the same experiment,

* Parts of the present paper were presented at the Pittsburgh Symposium on Group
Theory and Quantum Mechanics. Cf. Bull. Amer. Math. Soc., 41, p. 306, 1935.

' The poasibility of a future non linear character of the quantum mechanics must be
admitted, of course. An indication in this direction is given by the theory of the positron,
asdeveloped by P. A. M. Dirac (Proc. Camb. Phil. Soc. 0, 150, 1934, cf. also W. Heisenberg,
Zeita. . Phys. 90, 209, 1934; 9¢, 623, 1934; W. Heisenberg and H. Euler, ibid. 98, 714, 1936
and R. Serber, Phys. Rev. 48, 49, 1935; 49, 545, 1936) which does not use wave functions
and is a non linear theory.

1 Cf. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford 1935, Chapters I and
1I; J. v. Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin 1932, pages
19-24.

1 The wave functions represent throughout this paper states in the sense of the “Heisen-
berg picture,” i.e. a single wave function represents the state for all past and future. On
the other hand, the operator which refers to a measurement at a certain time ¢ containa
this L as a parameter. (Cf. e.g. Dirac, l.c. ref. 2, pages 115-123). One obtains the wave
function ¢,(t) of the Schrodinger picture from the wave function ¢4 of the Heisenberg
picture by ¢.(t) = exp (—tHt/h)pgz The operator of the Heisenberg picture is Q(t) =
exp(tHt/A) Qexp (—iHi/h), where Qis the operator in the Schrodinger picture which does not
depend on time. Cf. also E. Schrodinger, Sitz.d. Kon. Preuss. Akad. p. 418, 1930.

The wave functions are complex quantities and the undetermined factors in them are
complex also. Recently attempts have been made toward a theory with real wave func-
tions. Cf.E. Majorana, Nuovo Cim. 14,171,1937 and P. A. M. Dirac, in print.
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performed at different times) they are all supposed to give the same result,
i.e.. the transition probability hes an invariant physical sense.

The wave functions form a description of the physical state, not an invariant
however, since the same state will be described in different coordinate systems
by different wave functions. In order to put this into evidence, we shall affix
an index to our wave functions, denoting the Lorentz frame of reference for which
the wave function is given. Thus ¢; and ¢ represent the same state, but they
are different functions. The first is the wave function of the state in the co-
ordinate system [, the second in the coordinate system I'. If o1 = ¥u- the
state ¢ behaves in the coordinate system [ exactly as ¢ behaves in the coordinate
system I’. If ¢ is given, all o, are determined up to a constant factor. Because
of the invariance of the transition probability we have

(1) L, ¥) = 1(er, ¥u) !

and it can be shown' that the aforementioned constants in the ¢, can be chosen
in such a way that the ¢, are obtained from the ¢, by a linear unitary operation,
depending, of course, on land I

2) ev = D', Den .

The unitary operators D are determined by the physical content of the theory
up to s constant factor again, which can depend on l and I’. Apart from this
constant however, the operations D(I’, I) and D(l; , l;) must be identical if I'
arises from I by the same Lorents transformation, by which I| arises from ;.
If this were not true, there would be a real difference between the frames of
reference | and ;. Thus the unitary operator DI, I) = D(L) is in every
Lorentz invariant quantum mechanical theory (apart from the constant factor
which has no physical significance) completely determined by the Lorents
transformation L which carries [ into I’ = LI. One can write, instead of (2)

(2a) eu = D(L)er.

By going over from a first system of reference ! to a second I’ = L,l and then to a
third I' = LyL,l or directly to the third I = .(L,I,)l, one must obtain—apart
from the above mentioned constant—the same set of wave functions. Hence
from

ere = D", I)DW, Den
e = DA, Dn
it follows

@ D@, )DI', ) = D", 1)

*E. Wigner, Gruppentheorie und ihre Anwendungen auf die Quanienmechanik dcr Aloma-
pektren.  Braunschweig 1931, pages 251-254.
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or
(3a) D(L2)D(L)) = wD(L,Ly),

where w is a number of modulus 1 and can depend on L; and L;. Thus the
D(L) form, up to a factor, a representation of the inhomogeneous Lorentz
group by linear, unitary operators.

We sce thus® that there corresponds to every invariant quantum mechanical
system of equations such a representation of the inhomogeneous Lorentz group.
This representation, on the other hand, though not sufficient to replace the
quantum mechanical equations entircly, can replace them to a large extent.
If we knew, e.g., the operator K corresponding to the measurement of a physical
quantity at the time ¢ = 0, we could follow up the change of this quantity
throughout time. In order to obtain its value for the time { = £ , we could
transform the original wave function ¢; by D', I) to a coérdinate system U’
the time scale of which begins a time ¢, later. The measurement of the quantity
in question in this cosrdinate system for the time 0 is given—as in the original
one—by the operator K. This measurement is indentical, however, with the
measurement of the quantity at time ¢, in the original system. One can say that
the representation can replace the equation of motion, it cannot replace, how-
ever, connections holding between operators at one instant of time.

It may be mentioned, finally, that these developments apply not only in
quantum mechanics, but also to all linear theories, e.g., the Maxwell equations
in empty space. The only difference is that there is no arbitrary factor in the
description and the w can be omitted in {3a) and one is led to real representations
instead of representations up to a factor. On the other hand, the unitary char-
acter of the representation is not a consequence of the basic assumptions.

The increase in generality, obtained by the present calculus, as compared
with the usual tensor theory, consists in that no assuniptions regarding the
field nature of the underlying equations are necessary. Thus more general
equations, as far as they exist (e.g., in which the coordinate is quantized, etc.)
are also included in the present treatment. It must be realized, however,
that some assumptions concerning the continuity of space have been made by
assuming Lorentz frames of reference in the classical sense. We should like to
mention, on the other hand, that the previous remarks concerning the ti- -
parameter in the observables, have only an explanatory character, and we do not
make assumptions of the kind that measurements can be performed instan-
taneously.

We shall endeavor, in the ensuing sections, to determine all the continuous’
unitary representations up to a factor of the inhomogeneous Lorentz group.
i.e., all continuous systems of linear, unitary operators satisfying (3a).

5 E. Wigner, ].e. Chapter XX.

¢ The exact definition of the continuous character of a representation up to a factor will
be given in Section 5A. The definition of the inhomogeneous l.orentz group is contained
in Section {A.
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2 CouPARISON WiTH PREVIOUS TREATMENTS AND SOME IMMEDIATE
SIMPLIFICATIONS

A. Previous treatments

The representations of the Lorentz group have been investigated repeatedly.
The first investigation is due to Majorana,” who in fact found all representations
of the elass to be dealt with in the present work excepting two sets of representa-
tions. Dirac® and Proca® gave more elegant derivations of Majorana’s results
and brought them into a form which can be handled more easily. Klein's
work® doex not endeavor to derive irreducible representations and seems to be
in a less close conmection with the present work.

The difference between the present paper and that of Majorana and Dirac
lies—apart from the finding of new representations—mainly in its greater
mathematical rigor. Majorana and Dirac freely use the notion of infinitesimal
operators and a set of functions to all members of which every infinitesimal
operator can be applied. This procedure cannot be mathematically justified
at present, and no such assumption will be used in the present paper. Also the
conditions of reducibility and irreducibility could be, in general, somewhat more
complicated than assumed by Majorana and Dirac. Finally, the previous
treatments assume from the outset that the space and time coordinates will be
continuous variables of the wave function in the usual way. This will not be
done, of eourse, in the present work.

B. Some immediate simplifications .

Two representations are physically equivalent if there is a one to one cor-
respondence between the states of both which is 1. invariant under Lorentz
transformations and 2. of such a character that the transition probabilities
between eorresponding states are the same.

It follows from the second condition® that there either exists a unitary operator
S by which the wave functions ' of the second representation can be obtained
from the corresponding wave functions & of the first representation

(4) ¢(2) - Sq)(l)

or that this is true for the conjugate imaginary of ¢  Although, in the
latter case, the two representations are still equivalent physically, we shall, in
keeping with the mathematical convention, not call them equivalent.

The first condition now means that if the states ", #® = S& correspond
to ecach other in one coordinate system, the states D’ (L)®" and D®(L)e®
correspond to each other also. We have then

(4a) D(z)(L)'q)(z) — SD(”(LN)“) - SD(”(L)S—"PQ).

" E. Majorana, Nuovo Cim. 9, 335, 1932.

5 P. A. M. Dirac, Proc. Roy. Soc. A. 155, 147, 1936; Al. Proca, J. de Phys. Rad. 7, 347,
1936.

* Klein, Arkiv f. Matem. Astr. och Fysik, 254, No. 15, 1936. I am indebted to Mr.
Darling for an interesting conversation on this paper.
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As this shall hold for every &®, the existence of a unitary S which transforms
D' into D is the condition for the equivalence of these two representations.
Equivalent representations are not considered to be really different and it will
be sufficient to find one sample from every infinite class of equivalent repre-
sentations.

If there is a closed linear manifold of states which is invariant under all
Lorentz transformations, i.e. which contains D(L){ if it contains . the linear
manifold perpendicular to this one will be invariant also. In fact. il ¢ belongs
to the second manifold, D(L)¢ will be, on account of the unitary character of
D(L), perpendicular to D(L)¢Y’ if ¢’ belongs to the first manifold. However,
D(L™")¢ belongs to the first manifold if ¢ does and thus D(L)e will he orthogonal
to D(L)D(L_’N = wy 1.e. toall members of the first manifold and belong itself to
the second manifold also. The original representation then ‘“decomposes”
into two representations, correspounding to the two linear manifolds. Tt is
clear that, conversely, one can form a representation, by simply “‘adding”
several other representations together, i.e. by considering as states lincar
combinations of the states of several representations and assume that the states
which originate from different representations are perpendicular to each other.

Representations which are equivalent to sums of already known representa-
tions are not really new and, in order to master all representations, it will be
sufficient to determine those, out of which all others can be obtained by “adding”
a finite or infinite number of them together.

Two simple theorems shall be mentioned here which will be proved later
(Sections 7A and 8C respectively). The first one refers to unitary representa-
tions of any closed group, the second to irreducible unitary representations of
any (closed or open) group.

The representations of a closed group by unitary operators can be transformed
into the sum of unitary representations with matrices of finite dimensions.

Given two non equivalent irreducible unitary representations of an arbitrary
group. If the scalar product between the wave functions is invariant under the
operations of the group, the wave functions belonging®® to the first represeiita-
tion are orthogonal to all wave functions belonging to the second representation.

C. Classification of unitary representations according to von Neumann
and Murray"

Given the operators D(L) of a unitary representations, or a representation
up to a factor, one can consider the algebra of these operators, i.c. all linear
combinations

a,D(Ly) + a:D(L») + a;D(Ls) + - --

of the D(L) and all limits of such linear combinations which are bounded
operators. According to the properties of this representation algebra, three
classes of unitary representations can be distinguished.

1 F_J. Murray and J. v. Neumann, Ann. of Math. 37, 116, 1936; J. v. Neumann, to be
published soon.
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The first class of irreducible representations has a representation algebra
which contains all bounded operators, i.e. if ¢ and ¢ are two arbitrary states,
there is an operator -1 of the representation algebra for which 4¢ = ¢ and
Ay’ = 0if ¢ is orthogonal to . It ix clear that the center of the algebra con-
tains only the unit operator and multiply thereof. In fact, if C is in the center
one can decompose CY = of + ¢’ so that ¢’ shall be orthogonal toy. However,
¢’ must vanish since otherwise C would not commute with the operator which
leaves ¢ invariant and transforms every function orthogonal to it into 0. For
stmilar reasons, a must he the same for all ¢.. For irreducible representations
there is no closed linear manifold of states, (excepting the manifold of all states)
which ix invariant under all Lorentz transformations. In fact, according to the
above definition, a ¢ arbitrarily close to any ¢ can be represented by a finite
lincar c6mbination

a\D(L¥ + asD(La)¥ + - - - + a.D(La)¥.

Hence, a closed linear invariant manifold contains every state if it contains one.
This is, in fact, the more customary definition for irreducible representations
and the one which will be used subsequently. It is well known that all finite
dimensional representations are sums of irreducible representations. This is
not true,' in general, in an infinite number of dimensions.

The second class of representations will be called factorial. For these, the
center of the representation algebra still contains only multiples of the unit
operator. Clearly, the irreducible representations are all factorial, but not
conversely. For .finite dimensions, the factorial representations may contain
one irreducible representation several times. This is also possible in an infinite
number of dimensions, but in addition to this, there are the ‘‘continuous”
representations of Murray and von Neumann.'” These are not irreducible as
there are invariant linear manifolds of states.  On the other hand, it is impossible
to carry the decomposition so far as to obtain as parts only irreducible repre-
<entations. In all the examples known so far, the representations into which
these continuous representations can be decomposed, are equivalent to the
original representation.

The third class contains all possible unitary representations. In a finite
number of dimensions, tliese can be decomposed first into factorial repre-
sentations, and these, in turn, in irreducible ones. Von Neumann'™ has shown
that the first step still is possible in infinite dimensions. We can assume,
therefore, from the outset that we are dealing with factorial representations.

In the theory of representations of finite dimensions, it is sufficient to deter-
mine only the irreducible ongcs, all others are.equivalent to sums of these. Here,
it will be necessary to determine all factorial representations. Having done
that, we shall know from the above theorem of von Neumann, that all repre-
sentations are equivalent to finite or infinite sums of factorial representations.

It will be one of the fesults of the detailed investigation that the inhomo-
gencous Lorentz group has no “continuous” representations, allrepresentations



UNITARY REPRESENTATIONS OF LORENTZ GROUP 155

can be deecomposed into irreducible ones. Thus the work of Majorana and
Dirac appears to be justified from this point of view a posteriori.

D. Classification of unitary representations from the point of view of
infinitesimal operators

The existence of an infiniteximal operator of a continuous one parametric
(cyclic, abelian) unitary group hax heen shown by Stone.!' He proved that the
operators of such a group can be written as exp(iHt) where H is a (bounded or
unbounded) hermitean operator and ¢ is the group parameter. However, the
Lorentz group has many one paramctric subgroups, and the corresponding
infinitesimal operators Hy, H,, -.. are all unbounded. For every II; an
everywhere dense set of functions ¢ can be found such that H.p can be defined.
It is not clear, however, that an everywhere dense set can be found, to all
members of which every I can be applied. In fact, it is not clear that one
such ¢ can be found. :

Indeed, it may be interesting to remark that for an irreducible representation
the existence of one function ¢ to which all infinitesimal operators can be applied,
entails the existence of an everywhere dense set of such functions. This again
has the consequence that onc can operate with infinitesimal operators to a large
extent in the usual way.

Proor: Let Q(¢) be a one parametric subgroup such that Q(1)Q(¢") = Q(t + ).
If the infinitesimal operator of all subgroups can be applied to ¢, the

(5) I,TJ QW — e

exists. It follows, then, that the infinitesimal operators can be applied to Ry
also where R is an arbitrary operator of the representation: Since R™'Q(f) R is
also a one parametric subgroup
lim ' (R'QU)R — 1o = lim R™-¢74(Q(t) — 1Re

=0

te=0
also exists and hence also (R is unitary)

lim £ (Q(t) — DRe.

Every infinitesimal operator can be applied to Ry if they all can be applied to ¢,
and the same holds for sums of the kind

(6) R + a:Rep + - - - + aaRup.

These form, however, an everywhere dense set of functions if the representation
is irreducible.

If the representation is not irreducible, one can consider the set No of such
wave functions to which every infinitesimal operator can be applied. This set is

11 M. H. Stone, Proc. Nat. Acad. 16, 173, 1930, Ann. of Math. 33, 643, 1932, also J. v.
Neumann, ibid, 33, 567, 1932.
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clearly linear and. according to the previous paragraph, invariant under the
operations of the group (i.e. contains every Re if it contains ¢). The same
holds for the closed set N generated by N, and also of the set P of functions
which are perpendicular to all functions of N. In fact, if ¢, is perpendicular to
all ¢, of N, it is perpendicular also to all R, and, for the unitary character of
R, the Ry, is perpendicular to all ¢, , i.e. is also contained in the set P.

We can decompose thus, by a unitary transformation, every unitary repre-
<entation into a “‘normal” and a “pathological’’ part. For the fornier, there is
an everywhere dense set of functions, to which all infinitesimal operators can be
applied. There is no single wave functions to which all infinitesiimal operators
of a “pathological” representation could be applied.

According to Murray and von Neumaun, if the original representation was
factorial, all representations into which it can be decomposed will be factorial
also. Thus every representation is equivalent to a sum of factorial repre-
sentations, part of which is “normal,” the other part “pathological.”

It will turn out again that the inhomogeneous Lorentz group has no path-
ological representations. Thus this assumption of Majorana and Dirac also
will be justified a posteriori. Every unitary representation of the inhomogenous
Lorentz group can be decomposed into normal irreducible representations. It
should be stated, however, that the representations in which the unit operator
corresponds to every translation have not been determined to date (cf. also
section 3, end). Hence, the above statements are not proved for these repre-
sentations, which are, however, more truly representations of the homogeneous
Lorentz group, than of the inhomogeneous group.

While all these points may be of interest to the mathematician only, the new
representation of the Lorentz group which will be described in section 7 nay
interest the physicist also. It describes a particle with a continuous spin.

Acknowledgement. The subject of this paper was suggested to me as early as
1928 by P. A. M. Dirac who realised even at that date the connection of repre-
sentations with quantum mechanical equations. I am greatly indebted to him
also for many fruitful conversations about this subject, especially during the
years 1934/35, the outgrowth of which the present paper is.

I am indebted also to J. v. Neumann for his help and friendly advice.

3. SuMMaRrY oF ENsUING SECTIONS

Section 4 will be devoted to the definition of the inhomogeneous Lorentz
group and the theory of characteristic values and characteristic vectors of a
homogeneous {ordinary) Lorentz transformation. The discussion will follow
very closely the corresponding, well-known theory of the group of motions in
ordinary space and the theory of characteristic values of orthogonal trans-
formations.”” It will contain only a straightforward generalization of the
metliods usually applied in those discussions.

12 Cf. e.g. E. Wigner, Le. Chapter I11.  O.Veblen and J. W. Young, Projective Geomelry,
Boston 1917.  Vol. 2, especially Chapter VII.
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In Section 5, it will be proved that one can determine the physically meaning-
less constants in the D(L) in such a way that instead of (3a) the more special
equation

(7) D(L)D(Ly) = xD(L,Ly)

will be valid.  This means that instead of a representation up to a factor, we
can consider representations up to the sign. For the case that either L, or L.
is a pure translation, Dirac" has given a proof of (7) using infinitesimal operators.
A consideration very similar to his can be carried out, however, also using only
finite transformations.

For representations with a finite number of dimensions (corresponding to an
only finite number of linearly independent states), (7) could be proved also if
both L, and L, are homogeneous Lorentz transformations, by a straightforward
application of the method of Weyl and Schreier.”* However, the Lorentz group
has no finite dimensional representation (apart from the trivial one in which the
unit operation corresponds to every L). Thus the method of Weyl and Schreier
cannot be applied. Its first step is to normalize the indeterminate constants in
every matrix D(L) in such a way that the determinant of D(L) becomes 1.
No determinant can be defined for general unitary operators.

The method to be employed here will be to decompose every L into a product
of two involutions L = MN with M* = N* = 1. Then D(M) and D(N) will be
normalized so that their squares become unity and D(L) = D(M)D(N) set
It will be possible, then, to prove (7) without going back to the topology of the
group.

Sections 6, 7, and 8 will contain the determination of the representations.
The pure translations form an invariant subgroup of the whole inhomogeneous
Lorentz group and Frobenius’ method" will be applied in Section 6 to build
up the representations of the whole group out of representations of the subgroup,
by means of a “little group.”” In Section 6, it will be shown on the basis of an as
yet unpublished work™ of J. v. Neumann that there is a characteristic (in-
variant) set of “‘momentum vectors” for every irreducible representation. The
irreducible representations of the Lorentz group will be divided into four classes.
The momentum vectors of the
1st class are time-like, _
2nd class are null-vectors, but not all their components will be zero,
3rd class vanish (i.c., all their components will be zero),
4th class are space-like.

Only the first two cases will be considered in Section 7, although the last case

13 P. A. M. Dirac, mimeographed notes of lectures delivered at Princeton University,
1934/35, page 5a.

“H. Weyl, Mathem. Zeits. 23, 271; 24, 328, 377, 789, 1925; O. Schreier, Abhandl. Mathem.
Seminar Hamburg, 4, 15, 1926; 5, 233, 1927.

5 (5. Frobenius, Sitz. d. Kon. Preuss. Akad. p. 501, 1898, 1. Schur, ibid, p. 164, 1906,
I. Seitz, Ann. of Math. 37. 17, 1936.
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may be the most interesting from the mathematical point of view. T hope to
return to it in another paper. I did not succeed so far in giving a2 complete
discussion of the 3rd class. (All these restrictions appear in the previous
treatments also.) ) )

In Section.7, we shall find again all known representations of the inhomo-
gencous Lorentz group (i.e., all known Lorentz invariant equations) and two
new sets.

Sections 5, 6, 7 will deal with the “restricted Lorentz group” only, i.c. Lorentz
transformations witlh determinant 1 which do not reverse the direction of the
time axis. In section 8, the representations of the extended Lorentz group will
be considered, the transformations of which are not subject to these conditions.

4. DEscriPTION or THE INHOMOGENEOUS LOrRENTZ Group

A,
An inhomogeneous Lorentz transformation I, = (a, \) is the product of a
translation by a real vector a
® xo= 1+ a (t=1.23,4)
and a homogeneous Lorentz transformation A with real coefficients
(9 T = g Aivxic.

The translation shall be performed after the homogencous transformation.
The coefficients of the homogeneous transformation satisfy three conditions:
(1) They are real and A leaves the indefinite quadratic form —~z} — r3 — z} + =3
invariant:

(10) AFN = F

where the prime denotes the interchange of rows and columns and F is the
diagonal matrix with the diagonal elements — 1, —1, —1, +1.—(2) The deter-
minant | Ai] = 1 and—(3) Ay > 0.

We shall denote the Lorentz-hermitean product of two vectors r and y by

(11) [z, ¥} = —2ih — 1242 — Tays + Taus.

(The star denotes the conjugate imaginary.) If {r, £} < 0 the vector r is
called space-like, if {x, z} = 0, it is a null vector, if {z, z} > 0, it is called time-
like. A real time-like vector lies in the positive light cone if z, > 0; it lies in the
negative light cone if z, < 0. Two vectors x and y are called orthogonal if
[z, y} = 0.

On account of its linear character a homogeneous Lorentz transformation is
cg)mp(l;)atela') defined if Av is given for four linearly independent vectors o,
v, v

14 ?

From (11) and (10) it follows that {v, w} = | Ao, Aw]} for every pair of vectors
v, w. This will be satisfied for every pair if it is satisfied for all pairs v, o™
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of four lincarly independent vectors. The reality condition is satisfied if
(Av™)* = A(W"'*) holds for four such vectors.

The scalar product of two vectors £ and y is positive if both lie in the positive
light cone or both in the negative light cone. It is negative if one lics in the
positive, the other in the negative light cone. Since both r and y are time-like
lel >0l +lonl Hlal Jul >inl + 1yl + 1wl Hence, by
Schwarz’s inequality | z3ys| > | z1y: + z3y2 + 73 ys| and the sign of the scalar
product of two real timec-like vectors is determined by the product of their
time components.

A time-like vector is transformed by a Lorentz transformation into a time-like
vector. Furthermore, on account of the condition A4 > 0, the vector v
with the components 0, 0, 0, 1 remains in the positive light cone, since the fourth
component of Ay is Ay . . If v'" is another vector' in the positive light cone
{v', v} > 0 and hence also { Av"”, Av®} > 0 and Av"" is in the positive light
cone also. The third condition for a Lorentz transformation can be formulated
also as the requirement that every vector in (or on) the positive light cone shall
remain in (or, respectively, on) the positive light cone.

This formulation of the third condition shows that the third condition holds
for the product of two homogeneous Lorentz transformations if it holds for both
factors. The same is evident for the first two conditions.

From AFA’ = F one obtains by multiplying with A™' from the left and
A" = (A7Y from the right F = A7'F(A™')’ so that the reciprocal of a homo-
geneous Lorentz transformation is again such a transformation. The homo-
geneous Lorentz transformations form a group, therefore.

One easily calculates that the product of two inhomogeneous Lorentz trans-
formations (b, M) and (¢, N) is again an inhomogeneous Lorentz transformation
(e, A)

(12) (b, M)(c, N) = (a, A)
where ,
(12a) Ae= 2 MiNy; a=b+ 2 My,

or, somewhat shorter

(12b) A= MN,; a =b+ Mc

B. Theory of characteristic values and characteristic vectors of a homogeneous
Lorentz transformation

Linear homogeneous transformations are most simply described by their
characteristic values and vectors. Before doing this for the homogeneous
Lorentz group, however, we shall need two rules about orthogonat vectors.

16 Wherever a confusion between vectors and vector components appears to be possible,
upper indices will be used for distinguishing different vectors and lower indices for denoting
the components of a vector.
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(1] If (v, w}) = 0and {v, v} > O, then {w, w} < 0;if [v, w} = 0, {v, v} =0,
then w is either space-like, or parallel to v (either {w, w} < 0, or w = cv).
Proor:
(13) viwe = vywy + vauwn + viws.
By Schwarz’s inequality, then
19 fullel = (ol 1ol +luP(lol + 1wl + 1wl

For|v>> |o P4 | v P+ | vs )P it follows that | w, ' < |w, "+ | wa ' + wa |".
Ifjosf = o l” + |os|" + | os | the second inequality still follows if the in-
equality sign holds in (14). The equality sign can hold only, however, if the
first three components of the vectors v and w are proportional. Then, on
account of (13) and both being null vectors, the fourth components are in the
same ratio also.

[2] If four vectors v'", v, v, v are mutually orthogonal and linearly inde-
pendent, one of them is time-like, three are space-like.

Proor: It follows from the previous paragraph that only one of four mutually
orthogonal, linearly independent vectors can be time-like or a null vector. It
remains to be shown therefore only that one of them s time-like. Since they
are linearly independent, it is possible to express by them any time-like vector

4

k

KON an< )
k=1

The scalar product of the left side of this equation with itself is positive and
therefore .

{E aw("’, an“)} >0
k k

or
(15) ;lak”[”(k)n v(k), S0
and one {v™*, v*¥’} must be positive. Four mutually orthogonal vectors are not

necessarily linearly independent, because a null vector is perpendicular to itself.
The linear independence follows, however, if none of the four is a null vector.
We go over now to the characteristic values A of A. These make the deter-
minant | A — Al | of the matrix A — Al vanish.
[3] If X i3 a characteristic value, \*, N\ and \*"' are characteristic values also.
Proor: For A* this follows from the fact that A is real. Furthermore, from
|A — X | =0also| A” — Al | = 0 follows, and this multiplied by the deter-
minants of AF and F' gives

JAFL-JA = M| | FIT = AFANF' = 2| =1 =2A| =0,

so that X' is a characteristic value also.
(4] The characteristic vectors v, and vy belonging to two characteristic values \; and
s are orthogonal if AT Ay # 1.
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Proor:
i, n) = {An, A} = v, A} = )\:)\:‘”1 ’ ).

Thus if {v;, o) # 0, Af A = 1.

(5] If thé-modulus of a characteristic value X is|\| = 1, the corresponding
characteristic vector v 13 a null veclor and X tiself real and positive.

From {v, v} = {Av, Av} = |\ |*{v, v} the |v, v} = O follows immediately for
IA]#£ 1. 1f X were complex, \* would be a characteristic value also. The
characteristic vectors of A and A* would be two different null vectors and,
because of [4], orthogonal to each other. This is impossible on account of [1}.
Thus A is real and v a real null vector. Then, on account of the third condition
for a homogeneous Lorentz transformation, A must be positive.

[6] The characteristic value X of a characteristic vector v of length null i3 real and
posilive. .

If X were not real, A* would be a characteristic value also. The corresponding
characteristic vector v* would be different from v, a null vector also, and per-
pendicular to v on account of [4]. This is impossible because of [1].

7} The characieristic vector v of a complex characteristic value X (the modulus of
which i3 1 on account of |5)) ts space-ltke: v, v} < 0.

ProoF: A* is a characteristic value also, the corresponding characteristic
vector is v*. Since (\*)*A = X’ 1, {v*, v} = 0. Since they are different, at
least one is space-like. On account of {v, v} = {v*, v*} both are space-like. If
all four characteristic values were complex and the corresponding characteristic
vectors linearly independent (which is true except if A has elementary divisors)
we should have four space-like, mutually orthogonal vectors. This is impossible,
on account of [2]. Hence

[8} There is not mcre than one pair of conjugate complex characterisiic values,
if A has no elementary divisors. Similarly, under the same condition, there 13
not more than one pair \, \~' of characteristic values whose modulus is differem
from 1. Otherwise their characteristic vectors would be orthogonal, which
they cannot be, being null vectors.

For homogeéneous Lorentz transformations which do not have elementary
divisors, the following possibilities remain:

(a) There is a pair of complex characteristi¢ values, their modulus is 1, on
account of [5] . .

(16) M=M =AY IMl=Nl=1,

and also a pair of characteristic values A;, A,, the modulus of which is not 1
These must be real and positive:

(16a) M=ND O N=N >0

The characteristic vectors of the conjugate complex characteristic values are
conjugate complex, perpendicular to each other and space-like so that they can
be normalized to —1

L ]
nn=u0s; o, = lvg, 0] =0

(17)

for,n) = {0, m} = —1
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those of the real characteristic values are real nuil vectors, their scalar product
can be normalized to 1

*

* .
Vs = V3 N = v {”ayvﬂ =1

(17a)
{!’h v} = (v, v = 0.

Finally, the former pair of characteristic vectors is perpendicular to the latter
kind '
(17b) {oi, o) = o, 00 = (02,0} = [0g, 0} = 0.

It will turn out that all the other cases in which A has no elementary divisor
are special cases of (a).

Ay

4,

Fia. 1. Position of the characteristic values for the general case a) in the complex plane.
In case b), A\, and )\, coincide and are equal 1; in case c), \; and A, coincide and are either
+1lor —1. Incased)both pairshs = Ay = 1and A\, = A; = +1 coincide.

(b) E‘here is a pair of complex characteristic values A\ A=A = AT
MM M| =[N =1. Nopairwith |2, | = 1, however. Then on account:
of [8], still As = \] which gives with [M]= 1,0 = + 1. Since the product
MAsdsAs = 1, on account of the second condition for liomogeneous Lorentz
transformations, also A, = A\; = & 1. The double characteristic value 1 has
two linearly independent characteristic vectors v; and v¢ which can be assumed
to be perpendicular to each other, {vs, n} = 0. According to [2], one of the
four characteristic vectors must be time-like and since those of A\, and A, are
space-like, the time-like one must belong to +1. This must be positive
therefore \; = A\ = 1. Qut of the time-like and space-like vectors {v; , vy} = -—l,
an‘d {ve, v} = 1, one can build two nult vectors v« + vz;and v, — v;. Doing
this, case (b) becomes the special case of (a) in which the real positive char-
acteristic values become equal A\, = A;' = 1.

(c) All characteristic values are real; there is however one pair A, = 2],
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A = A3, the modulus of which is not unity. Then [v;, t3} = {vi, 0} = 0
and A\; > 0 and one can conclude for \; and ), , as before for A; and M\ that A, =
A = 1. This again is a special case of (a); here the two characteristic values
of modulus 1 become equal.

(d) All characteristic values are real and of modulus 1. If all of them are +1,
we have the unit matrix which clearly can be considered as a special case of (a).
The other caseis \; = Ay = —1,A; = Ay = +1. The characteristi¢ vectors of
A and A\, must be space-like, on account of the third condition for a homogeneous
Lorentz transformation; they can be assumed to be orthogonal and normalized
to —1. This is then a special case of (b) and hence of (a) also. The cases
(a), (b), (c), (d) are illustrated in Fig. 1. )

The cases remain to be considered in which A has an elementary divisor.
We set therefore

(18) Ave = Moo Aw, = N\, + v,

It follows from [5] that either |\, | = 1, or {v,,»,} = 0. We have {v,, w,} =
{Aw., Aw.} = |\ 'le., w,) + {v., 2}, From this equation

(19) {”n 0:! =0

follows for | A, | = 1, so that (19) holds in any case. It follows then from
[6] that X, is real, positive and v, , w, can be assumed to be real also. The last
equation now becomes {v, , w,} = A2{v. , w.} so that either \, = 1 or {v,,w,} = 0.
Finally, we have

{w,, w,) = {Aw,, A,w) = ANfw., w,) + 2w, v} + {v., v}
This equation now shows that
(19a) {w, , v =0

even if A, = 1. From (19), (19a) it follows that w, is space-like and can be

normalized to

(19b) {w,, w,} = —1.

Ins;,rting (19a) into the preceding equation we finally obtain
(19¢) A = L.

(9] If A, has an elementary divisor, all ils characteristic rools are 1.

From (19¢) we see that the root of the elementary divisor is 1 and this is alt
least a double root. If A had a pair of characteristic values Ay # 1, As = Ay,
the corresponding characteristic vectors » and v; would be orthogonal to v, and
therefore space-like. On account of [5), then | A1 | = | M| = 1and {on, n} =0
Furthermore, from {w., 0} = [Aa0., A} = Miw., 0} + Mfo., v} and from
{v., 0} = Oalso {w,, »;} = Ofollows. Thusall the four vectors 0, 0, 0., W, would
be mutually orthogonal. This is excluded by [2] and (19).
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Two cases are conceivable now. Either the fourfold characteristic root has
only one characteristic vector, or there is in addition to ». (at least) another
characteristic vector v; . In the former case four lincarly independent veetors
Y., W, 2., z. could be found such that

v, = 0, ’ Aw, = w, + v,
Az, = z. + w. Az, = 2. + z..

However {v,, 2.} = {Aw., Az} = |v., 2.} + {v., 2.} from which {o., 2.} =0
follows. On the other hand

{we, Zc’ = ‘Acwe' A,Z,} = ‘weyh} + [w,, wc, + {vt) ze} + {vty wcl~

This gives with (19a) and (19b) {»., z.} = 1 so that this case must be excluded.
(e) There is thus a vector v; so that in addition to (18)

(18a) Ay = 0
holds. From {w., »,} = {Aw., Aan} = {w., v} + {v., 01} lollows

The equations (18), (18a) will remain unchanged if we add to w, and v, a multiple
of v,. We can achieve in this way that the fourth components of both w, and
v, vanish. Furthermore, v, can be normalized to —1 and added to w. also with
an arbitrary coefficient, to make it orthogonal to v, . Hence, we can assume that

(19e) vy = wu = 0; o, m} = —1; {we, 0} = 0.

We can finally define the null vector z, to be orthogonal to iv,'ahd v; and have a
scalar product 1 with v,

(19f) - {2, 2} = {2z, wi} = {z.,0) =0, (z,, 0 = L.

Then the null vectors v, and z. represent the momenta of two light beams in

opposite directions. Il we set A,z. = av, + bw, + cz. + dv, the conditions

{z,, v} = | Az., Ap} give, if we set for v the vectors v, , w, , 2., v; the conditions
=1;b=1c¢;2c —b —d =0;d =0. Hence

Ay, = v, Aw, = w, + v,
z, + we + dv..

A Lorentz transformation with an elementary divisor can be best characterized
by the null vector v, which is invariant under it and the space part of which
forms with the two other vectors w, and v; three mutually orthogonal vectors in
ordinary space. The two vectors w, and v, are normalized, », is invariant under
A, while the vector v, is added to w, upon application of A,. The result of the
application of A, to a vector which is linearly independent of v, , w, and v, is,
as we saw, already determined by the expressions for Aw,, A, and A, .

The A,(y) which have the invariant null vector v, and also w, (and hence also

(20)

An = v Az,
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n) in common and differ only by adding to w, different multiples yv, of v, ,
form a cyclic group with y = 0, the unit transformation as unity:

LMALG) = Ay + 7).

The Lorentz transformation M(a) which leaves », and w, invariant but re-
places v, by av, (and z, by a”'2,) has the property of transforming Ay) into

M(@)A M@ = A o). (+)

An example of A.(y) and M(a) is

1 0 0 0
0 1 Y v
nb) = lo -y 1= =)
o~ o1+ h’l:
11 0 0 o |
0 1 0 0
MO =10 0 Jata™ ba-a
10 0 Ha—a) Hat+a™)

These Lorentz transformations play an important réle in the representaiions
with space like momentum vectors.

A behavior like (4) is impossible for finite unitary matrices because the
characteristic values of M(a) 'A.(y)M(a) and A.(y) are the same'—those of
Adya) = Aly)” the at™ powers of those of A.{y). This shows very simply that
the Lorentz group has no true unitary representation in a finite number of
dimensions.

C. Decomposition of a homogeneous Lorentz transformation into rotations and
an acceleration in a given direction

The homogeneous Lorentz transformation is, from t}}e point of view of .tl.le
physicist, a transformation to a uniformly moving cot'_irdmatfa system, the origin
of which coincided at { = 0 with the origin of the first coérdinate system.. One
can, therefore, first perform a rotation which brings the 'direction of FnOthI.l of
the second system into a given direction—say the di'rech(_)n 0!' the third axis—
and impart it a velocity in this direction, which will bl:mg it tq rest. After
this, the two coordinate systems can differ only in a rotation. Thls means tbat
every homogeneous Lorentz transformation can be decomposed in the following
way" )

1) A = RZS

17 Cf. e.g. L. Silberstein, The Theory of Relativity, London 1924, p. 142.
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where R and S are pure rotations, (ie. Ry = R,; = S, = Sii =0forz = 4
and Ry = Sy = Lalso R = R, § = S™" and Z is an acceleration in the
direction of the third axis, i.e.

i1 00 0
o 1 0 ol
Z = il i
:I' 0 a bf[
!lo 0 b a

witha® ~ b = 1,a>b> 0 The decomposition (21) is clearly not unique.
It will be shown, however, that Z is uniquely determined, i.e. the same in every
decomposition of the form (21).

In order to prove this mathematically, we chose R so that in R™A = I the
first two components in the fourth column I, = I = 0 become zero: R™
shall bring the vector with the components Ay, As, Ay into the third axis.
Then we take Iy = (A}, + AL + A and I, = Ay for b and a to form Z;
they satisfy the equation If, — I2, = 1. Hence, the first three components of the
fourth columnof J = Z™'J = Z7'R™" A will become zeroand Jy = 1, because of
Ju = Ji— JL ~ Ju = 1. Furthermore, the first three components of the
fourth row of J will vanish also, on account of J§, — Ji, — J2, — Ja = 1, ie.
J=8=Z"R'Aisa pure rotation. This proves the possibility of the de-
composition (21).

The trace of AL’ = RZ’R™ is equal to the trace of Z%, i.e. equal to 2a® +
26' + 2 = 4a’ = 4b” + 4 which shows that the a and b of Z are uniquely deter-
mined. In particular ¢ = 1, b = 0 and Z the unit matrix if AA’ = l,ie. Aa
pure rotation.

It is easy to show now that the group space of the homogeneous Lorentz
transformations is only doubly connected. If a continuous series A(t) of
homogeneous Lorentz transformations is given, which is unity both for ¢t = 0
and fort¢ = 1, we can decompose it according to 21

(21a) A() = R(OZOS().

It is also clear from the foregoing, that R(f) can be assumed to be continuous
in ¢, except for values of ¢, for which A = Ay = Ay = 0, i.e. for which Aisa
pure rotation. Similarly, Z(#) will be continuous in ¢ and this will hold even
where A(f) is a pure rotation. Finally, S = Z7'R7'A will be continuous also,
except where A(t) is a pure rotation.

Let us consider now the series of Lorentz transformations

(21b) M) = R(OZ(1) S(1)

where the b of Z(t)* is s times the b of Z(t). By decreasing s from 1 to 0 we
continuously deform the set Ai(®) = A(t) of Lorentz transformations into a set of
rotations Ao(f) = R({)S(f). Both the beginning A¢(0) = 1 and the end A(D) =1
of the set remain the unit matrix and the sets A,(t) remain continuous in ¢ for
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all values of s. This last fact is evident for such ¢ for which A(f) is not a rota-
tion: for such ¢ all factors of (21b) are continuous. But it is true also for 4
for which A(L) is a rotation, and for which, hence Z(f) = 1 and A,(k) = Ai(t) =
A(ts). As Z(t) is everywhere continuous, there will be a neighborhood of ¢
in which Z(¢) and hence also Z(f)' is arbitrarily close to the unit matrix. In
this neighborhood A.() = A(f). S()7'Z(®7'Z(t)" S(t) is arbitrarily close to
A(t); and, if the neighborhood is small enough, this is arbitrarily close to
Al) = Aub).

Thus (21b) replaces the continuous set A() of Lorentz transformations by a
continuous set of rotations. Since these form an only doubly connected mani-
fold, the manifold of Lorentz transformations ean not be more than doubly
connected. The existence of a two valued representation”™ shows that it is
actually doubly and not simply connected.

We can form a new group" from the Lorentz group, the elements of which are
the elements of the Lorentz group, together with a way A(t), connecting A(1)
= A with the unity A(0) = E. However, two ways which can be continuously
deformed into each other are not considered different. The product of the
element *‘ A with the way A(f)”" with the element "I with the way I(t)”’ is the
element Al with the way which goes from E along A(!) to A and hence along
AI(t) to AI. Clearly, the Lorentz group is isomorphic with this group and two
elements (corresponding to the two essentially different ways to A) of this group
correspond to one element of the Lorentz group. It is well known,” that this
group is holomorphic with the group of unimodular complex two dimensional
transformations.

Every continuous representation of the Lorentz group “up to the sign” is a
singlevalued, continuous representation of this group. The transformation which
corresponds to ‘A with the way A(f)” is that d(A) which is obtained by going
over {from d(E) = d(A(0)) = 1 continuously along d(A()) to d(A(1)) = d(A).

D. The homogeneous Lorentz group is simple

1t will be shown, first, that an invariant subgroup of the homogeneous Loren{z
group contains a rotation (i.e. a transformation which leaves z, invariant).—
We can write an arbitrary element of the invariant subgroup in the form Ii’ZSl
of (21). From its presence in the invariant subgroup follows that of S-RZS- S_l
= SRZ = TZ. If X, is the rotation by = about the first axis, X,ZX, = Z~
and X,TZX,”" = X,TX.X.ZX. = X,TX.,Z"' is contained in the invariant
subgroup also and thus the transform of this with Z, i.e. Z'X,TX, also. The
product of this with TZ is TX,TX, which leaves z,invariant. If TX.TX, =1
we can take TY,TY, . If this is the unity also, TX,TX, = TY,TY ., and T
commutes with X,Y, , i.e. is a rotation about the third axis. In this case the

'* Cf. H. Weyl, Gruppentheorie und Quantenmechanik, 1st. ed. Leipzig 1928, pages-l 10-114,
2nd ed. Leipzig 1931, pages 130-133. It may be interesting to remark that essentially the
" same isomorphism has been recognized already by L. Silberstein, l.c. pages 148-157.
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space like (complex) characteristic vectors of TZ lie in the plane of the first two
coordinate axes. Transforming TZ by an acceleration in the direction of the
first codrdinate axis we obtain a new element of the invariant subgroup for
which the space like characteristic vector will have a not vanishing fourth
component. Taking this for RZS we can transform it with S again to obtain a
new SRZ = TZ. However, since S leaves z, invariant, the fourth component
of the space like characteristic vectors of this TZ will not vanish and we can
obtain from it by the procedure just described a rotation which must be con-
tained in the invariant subgroup.

It remains to be shown that an invariant subgroup which contains a rotation,
contains the whole homogeneous Lorentz group. Since the three-dimensional
rotation group is simple, all rotations must be contained in the invariant sub-
group. Thus the rotation by = around the first axis X, and also its transform
with Z and also

ZX.2''X,=2.X.2'X, = 1"

is contained in the invariant subgroup. However, the general acceleration in
the direction of the third axis can be written in this form. As all rotations are
contained in the invariant subgroup also, (21) shows that this holds for all
elements of the homogeneous Lorentz group.

It follows from this that the homogeneous Lorentz group has apart from the
representation with unit matrices only true representations. It follows then
from the remark at the end of part B, that these have all infinite dimensions.
This holds even for the two-valued representations to which we shall be led in
Section 5 equ. (52D), as the group elements to which the positive or negative
unit matrix corresponds must form an invariant subgroup also, and because the
argument at the end of part B holds for two-valued representations also. One
easily sees furthermore from the equations (52B), (52C) that it holds for the
inhomogeneous Lorentz group equally well.

5. Rebuction oF REPRESENTATIONS Ur To A Factor To Two-VaLuEp
REPRESENTATIONS

The reduction will be effected by giving each unitary transformation, which is
defined by the physical content of the theory and the consideration of reference
only up to a factor of modulus unity, a “phase,” which will leave only the sign
of the representation operators undetermined. The unitary operator cor-
responding to the translation a will be denoted by T(a), that to the homogeneous
Lorentz transformation A by d(A). To the general inhomogeneous Lorentz
transformation then D(a, A) = T(a)d(A) will correspond. Instead of the
relations (12), we shall use the following ones.

(22B) T(@)T(®) = wla, B)T(a + b)
(22C) d(A)T(a) = w(A, a)T(Aa)d(A)
(22D) d(A)d(I) = w(A, Id(AI).
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The w are numbers of modulus 1. They enter because the multiplication
rules (12) hold for the representatives only up to a factor. Otherwise, the
eclations (22) are consequences of (12) and can in their return replace (12).
Ve shall replace the T(a), d(A) by @(a)T(a) and Q(A)d(A) respectively, for
which equations similar to (22) hold, however with

22") w(a, b) =1; (A, a) =1;
A.

1t is necessary, first, to show that the undetermined factors in the representa-
don D(L) can be assumed in such a way that the w(a, b), w(A, a), (A, I) become
—apart from regions of lower dimensionality—continuous functions of their
wrguments. This is a consequence of the continuous character of the representa-
ion and shall be discussed first.

(a) From the point of view of the physicist, the natural definition of the
sontinuity of a representation up to a factor is as follows. The neighborhood &
f a Lorentz transformation Ly = (b, I) shall contain all the transformations
I, = (a, A) for which |a, — b, | < dand | Au — Ia| < 8. The representation
up to a factor D(L) is continuous if there is to every positive number ¢, every
wormalized wave function ¢ and every Lorentz transformation Ly such a neigh-
vorhood & of Ly that for every L of this neighborhood one can find an @ of
modulus 1 (the © depending on L and ¢) such that (u,, u,) < ¢ where

(23) u, = (D(Lo) — 2D(L))e.

Let us now take a point Lo in the group space and find a normalized wave
function ¢ for which | (¢, D(Lo)p) | > 1/6. There always exists a ¢ with this
property, if |(¢, D(Lo)¢)| < 1/6 then ¢ = ap + BD(Ls)e with suitably chosen
a and 8 will be normalized and | (¢, D(Lo)¥) | > 1/6. We consider then such
a neighborhood M of s for all L of which | (¢, D(L)p) | > 1/12. It is well
known' that the whole group space can be covered with such neighborhoods.
We want to show now that the D(L)e can be multiplied with such phase factors
(depending on L) of modulus unity that it becomes strongly continuous in the
region M.

We shall chose that phase factor so that (¢, D(L)e) becomes real and positive.
Denoting then

(239 (D(L) - D(L)e = U,,

the (U,, U,) can be made arbitrarily small by letting L approach sufficiently
near to Ly, if L, is in 9. Indeed, on account of the continuity, as defined
above, there is an @ = ¢ such that (u, u) < e if L is sufficiently near to L,
where

w(A, I) = +1.

u = (D(Ly) — €"D(L))e.
1% This condition is the “‘separability’’ of the group. Cf. e.g. A. Haar, Ann. of Math.,
34, 147, 1933.
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Taking the absolute value of the scalar product of u with ¢ one obtains
| (o, D(Lx)e) — cosx(p, D(L)¢) — isinxle, D(L)e) | = |, w) | £ Ve,

because of Schwartz’s inequality. If only v/¢ < 1/12, the x must be smaller
than =/2 because the absolute value is certainly greater than the real part, and
both (¢, D(L;)e¢) and (p, D(L)e) are real and greater than 1/12.

As the absolute value is also greater than the imaginary part, we

sin x < 124/
On the other hand,
Uy = u+ (¢* — 1)D(L)e,
and thus
(U, , UM = (u, u) + |e" — 1] Ve + 25sin /2
Uy, Uy) = 625 ¢

(b) It shall be shown next that if D(L)e is strongly continuous in a region
and D(L) is continuous in the sense defined at the beginning of this section,
then D(L)¢ with an arbitrary ¢ is (strongly) continuous in that region also.
We shall see, hence, that the D(L), with any normalization which makes a
D(L)¢ strongly continuous, is continuous in the ordinary sense: There is to
every L, , eand every ¢ a § so that (U, , U;) < e where

Uy = (D(Ly) — D(L)¥

if L is in the neighborhood é of L, . ’

It is sufficient to show the continuity of D(L)y where ¢ is orthogonal to ¢.
Indeed, every ¥’ can be decomposed into two terms, ¢’ = ap + 8¢ the one of
which is parallel, the other perpendicular to ¢. Since D(L)¢ is continuous,
according to supposition, D(L)Y' = aD(L)¢ + BD(L)Y will be continuous also if
D(L)y is continuous.

The continuity of the representation up to a factor requires that it is possible
to achieve that (uy , uy) < eand (uyy,, uys,) < € where

(23a) uy = (D(Ly) — 9D(L))Y,
(23b) Uyt = (D(L1) — Qo DIL) W + o),

with suitably chosen @'s. According to the foregoing, 1t also is possible to
choose L and L, so close that (U, , U,) < e
Subtracting (23’) and (23a) from (23b) and applying D(L) ™" on both sides gives

(R — iV + (1 = D)o = DL upsy — uy — U,p)
The scalar product of the right side with itself is less than 9¢. Hence both
|2y — @, | < 3dand|1 — @4, | <3dor|1 — Q,| < 6. Because of

U& = Uy — (1 - Q*)D(L)W, the (U*, U*)’ < (u;. , u‘,)‘ + ll bt Q,land thus
Uy, Uy) < 49e.
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"This completes the proof of the theorem stated under (). l_t also shows that
not only the continnity of D(L)e has been achieved in the nelglll)orhoqd of Lo
by the normalization used in (a) but also that of D(L)¢ with every ¢, i.e., the
continuity of D(L). .

It is clczlr also that every finite part of the gronp space can be covered by a
finite number of neighborhoods in which D(L) can be made continuous. It s
easy to sce that the w of (22) will be also continuous in these ncighbnrho(?ds S0
that is is possible to make them continuous, apart from regions of 10\\:er dimen-
sionality than their variables have. In the following only the fact will be used
that thc‘!y can be made coutinunous in the neighborhood of any a. b and \.

B.
(a) We want to show next that all 7'(a) commute. From (22B) we have
(24) T(@)T®)T(a)" = cla, B)T®)
where ca, ) = w(a, b)/w(b, a) and hence
(24a) c(a, b) = c(b, a)™".

Transforming (24) with T'(a’) one obtains
T(@)T(@)T®)T() ' T(@) " = cla, VT (@)T®)T ()™
or ol a)T(a + &) T®(a’, 8) ' T@ + a)" = cla, b)e(a’, H)T(b)
or
(25) c(a, b)e(a’, b) = cla + a', b).
It follows™ from (25) and the partial continuity of c(a, b) that

(26) c(a, b) = exp (21ri > a,f,(b))

el
and, since this is equal to ¢(b, a) = exp(—2ni Z b.f.(a))

4

@7 3 (a.f.(b) + b.f.(a)) = n(a,b)

[}

where n(a, b) is an integer. Setting in (27)xfor b the vector e™ the A component
of which is 1, all the others zero and for (¢ Y= —fa

fk(a) = n(a, 6(”) + -Z Qjer,

and putting this back into (27) we obtain

‘ ‘ :
x) wy _
28) 3 falarb, + bra) + 2 an(b, e”) + binla, e) = na, b).
£ A=1 =1
20 G. Hamel, Math. Ann. 60, 460, 1905, quote'd from H. Hahn, Thearie der reellen Funk-
{ionen. Berlin 1921, pages 581-583.
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Assuming for the components of a and b such values which are transcendental
both with respect to each other and the f, (which are fixed numbers), one sees
that (28) cannot hold except if the coefficient of every one vanishes

(29) Jo + S = 0;  n(b, ) =0,
so that (26) becomes
(30) c(a, b) = exp (2:12 ; »f.,axb.>.

It is necessary now to cousider the existence of an operator d(A) satisfying (22C).
Transforming this equation with the similar equation containing b instead of a

d(A)TB)(A)'d(A)T(a)d(A) 'd(A)TB) 'd(A) "
= w(A, b)T(Ab)w(A, a)T(Aa)w(A, b)'T(Ab) ™" = w(A, a)c(Ab, Aa)T(Aa),

while the first line is clearly 4(A)c(b, a)T(a)d(A) ™" = w(A, a)c(b, a)T(Aa)
whence

(31) ¢(b, @) = c(Ab, Aa)
]
holds for every Lorentz transformation A. Combined with (20) this gives

A ; (f.m.b, - ?:f..A..A.xa.bx) = n'(a, b),

where n'(a, b) is again an integer. As this equation holds for every a, b

fo = gf..A..A.a; S =ANfA

must hold also, for every Lorentz transformation. However, the only form
invariant under all Lorentz transformations are multiples of the F' of (10).
Actually, because of (29), f must vanish and c(a, b) = 1, all the operators
corresponding to translations commute

(32) T(a)T(b) = T(b)T(a).

It is well to remember that it was necessary for obtaining this result to use the
existence of d(A) satisfying (22C).

(b) Equation (32) is clearly independent of the normalization of the T(a).
If we could fix the translation operators in four linearly independent directions
W e® e e s0 that for cach of these directions

e, e e e

(33) C T@")T®e) = T((a + b)e®)

be valid for every pair of numbers a, b, then the normalization

(332) T(ae + awe'® + a,e® + ae’) = T(ale(”)T(a,em)T(a,cm)T(a.e“’)
and (32) would ensure the general validity of |

(34) T(a)T(b) = T(a + b).
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As the four linearly independent directions ¢, ... | ¢! we shall take four
null vectors. If eis a null vector, there is, according to section 3, a homogeneous
Lorentz transformation” A, such that A.e = 2e.
We normalize T'(e) so that

(35) d(A)T'(e)d(A)™" = T(e)

This is clearly independent of the normalization of d(A.). We further normalize
for all (positive and negative) integers n

(35a) d(A)"T(e)d(A)™" = T(2%).

It follows from this equation also that - ,
(36) T(2%)" = d(A.)"T(e)’d(A.) " = d(A.)"d(A)T(e)d(A.) 'd(A) " = T(2™*e).
This allows us to normalize for every positive integer k

(35b) T(k-2 ") = T(2 "e)*

in such a way that the normalization remains the same if we replace k by 2™k
and n by n + m. This ensures, together with (36), the validity of

T(ve)T(ue) = T((v + u)e)
d(A)T(ve)d(A) ™" = T(2ve)

for all dyadic fractions v and u.

It must be shown that if »,, va, v, .- - is a sequence of dyadic fractions,
converging to 0, lim T'(vie) = 1. From T(a)- T(0) = w(a, 0)T(a) it follows that
T(0) is a constant. According to the theorem of part (A)(b), the T(ve), if
multiplied by proper constants @, will converge to 1, i.e., by choosing an arbi-
trary ¢, it is possible to make both (1 — QT(ve))e = u and (1 — Q,T(ve))-
d(A) "¢ = u’ arbitrarily small, by making v small. Applying d(A.) to the
second expression, one obtains, for (36a), that (1 — @, T(2ve))p = d(A)u' is
also small. On the other hand, applying T'(ve) to the first expression one sees
that (T'(ve) — 2,T(2ve))p = T(ve)u approaches zero also. Hence, the difference
of these two quantities (1 — T(ve))y goes to zero, i.e. T'(vie)p converges ta‘
if v, »,v, --- isasequence of dyadic fractions approaching 0.

Now »;, vs, v, - - - be a sequence of dyadic fractions converging to an arbi-
trary number a. It will be shown then that T'(v.e) converges to a multiple of
T'(ae) and this multiple of T'(ae) will be the normalized T'(ae). Again, it follows
from the continuity that there are such $; that 9.7(v:e)p converges to T(ae)e.
The 97'T(v;e) ' T(vie)e will converge to o, therefore, as both i and j tend to
infinity. However, according to the previous paragraph, T((v: — v,)e)e tends
to ¢ and thus Q;'Q, tends to 1. It follows that Q' converges to a definite
number . Hence Q‘-_'-Q;T(v;e)qp converges to Q7T (ae)e which will be denoted,
henceforth, by T'(ae). For the T(ae), normalized in this way, (33) will hold,

(36a)

1 The index e denotes here the vector e for which A, e = 2¢; this A, has no elementary
divisor.
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since if wy, g . u3. - - - are dyadie fractions converging to b, we obtain, with the

help (36a)
T(ac)T(be)p = lim T((vi + w)e)p = T((a + b)e)e.

1,j=am

This argument not only shows that it is possible to normalize the T(ac™') and
hence by (33a) the T(a) so that (34) holds for them but, in addition to this,
that these T'(a) will be continuous in the ordinary sense.

C.

[t is clear that (34) will remain valid if one replaces T'(a) by exp (2xt{a, ¢})T(a)
where ¢ is an arbitrary vector. This remaining freedom in the normalization of
T(a) will be used to eliminate the w( A, a) from (22C).

Transforming (22C) d(A)T(a)d(A)™' = w(A, a)T(Aa) with d(M) one obtains
on the left side w(M, VAM N T(@w(M, M) dMN)™" = o(MA. a)T(M Aa)
while the right side becomes w(\, a)w(M, Aa)T(M Aa). Hence

(37) w(M A, a) = w(M, Ad)w(A, a).

On the other hand, the product of two equations (22C) with the same A but
with a and b respeetively, instead of a yields with the help of (34)

w(A, a)w(A, b) = w(A(a 4+ b)).
Henee
w(A, @)= exp (2xtla, f(N)}),

where f(A) ix a vector which can depend on A.  Inserting this back into (37)
one obtains

ta, (M)} = [Aa, f(M)} + la, (M)} + n,
ia, [(MA) — ATf(M) — f(A)} = n,
where nis an integer which must vanish since it is a linear function of a.  Hence
(38) JMA) = ATA(M) + f(A).
I we can show that the most general solution of the equation is
(30) J(A) = (A7 = Dn,

where v is a vector independent of A, the w(A, a) will become w(A, @) = exp
2z} (A — Da, un}). Thenw(A, a) in (22C) will disappear if we replace 7'(a) by
exp (2xila, vo)) 7T (a).
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The proof that (39) 1= a consequenee of (38) is xomewhat laborious.  One ean
first consider the following homogeneous Lorentz transformations

Cl 0 0 Sl Cy 0 — 82 0
\_( ) 0 Cy S 0 )'( ) 0 (,"_‘ 0 Sz
- y YY) = ; , =
o ' 0 —& O 0 R 8o 0 Cy 0
S 0 0 C 0o S o0 C.
(40)
C3 S3 0 0
—8 C3 0 0
Z(a~17) =
"o 0 6 S
Lo 0 8 ¢

where ¢; = ¢0s a;; 8; = sin a; ; C; = Chyy; Si = Shy:. Al the X(a, v) com-
mute. Let us choose, therefore, two angles & , v for which 1 — X(ay, vi)™'
has a reciprocal. 1t follows then from (38)

X(a, v) (X (a1, 7)) + f(X(a, 7)) = X(a, 7)) f(X(2, 7)) + f(X(ai.71))

(A1) or f(X(a,7) = [1 = X(ar, 7)) T'[1 = X{&, V)" Y (X(ar, 7))
f(x(av 7)) (1 -X (ay 7) )"\ ’
where vy 1= independent of a, y.  Similar equations hold for the f(Y(a, v)) and
J(Z(a,v)). Letusdenote now X(x, 0) = X; Y(x,0) = Y;Z(x,0) = Z. These
anticommute in the following sense with the transformations (40):
(42) YX(a, 7)Y = ZX(a, V)Z = X(a, 7).
From (38) one casily calculates

J(YX(a,V)¥) = (YX(a, v)™ + DAY) + V(X(a, 7)),
or, because of (41) and (42), after some trivial transformations
(43) (1 = X{a, V)1 = V)(vx — or) =
As a, vy can be taken arbitrarily, the first factor can be dropped. This leaves
(1 — Y)wx — vv) = 0, or that the first and third components of vy and vy are
equal. One similarly concludes, however, that (1 — X)(oy — vx) = 0 and’ thus
that the first three components of ve , vy and also of vz are equal.

For vy = v2 = 73 = 0 the transformations (40) are the generators of all
rotations, i.e. all Lorentz transformations R nqt affecting the fourth comdmnto
As the 4-4 matrix element of these transformations is 1, the expression (1 — ¢~ Yo
is independent of the fourth component of v and (1 — R e =(0—-R "y =
(1 — R™ez. 1t follows from (38) that if f(R) = (1 — R ")vx and f(S) =
(1 — 8oy, then f(SR) = (1 — RS Yox. Thus f(R) = (1 — R vy is
valid with the same vy for all rotations.

Now

f(X (@R = R — X(a, ) ox + (1 = B oe = (1 = (X(a, V)R) ox
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Onc easily concludes from (38) that the f(E) correspouding to the unit operation
vanishes and f(A™") = — Af(A). Hence f(R"'X(a,v) ™) = (1 — X(a, Y)R)vy ;
and one concludes further that for all Lorentz transformations A = RX(a, v)8S,
(39) holds with vo = —uvx if R and S are rotations. However, every homogene-
ous Lorentz transformation can be brought into this form (Section 4C). This
completes the proof of (39) and thus of w(A, @) =

D.

The quantities w(a, b) and w(A, @) for which it has just been shown that they
can be assumed to be 1, are independent from the normalization of d(A). We
can affix thercfore an arbitrary factor of modulus 1 to all the d(A), without
interfering with the normalizations so far accomplished. In consequence
hereof, the ensuing discussion will be simply a discussion of the normalization

Fic. 2

of the operators for the homogeneous Lorentz group and the result to be obtained
will be valid for that group also.

Partly because the representations up to a factor of the three dimensional
rotation group may be interesting in themselves, but more particularly because
the procedure to be followed for the Lorentz group can be especially simply
demonstrated for this group, the three dimensional rotation group shall be taken
up first.

It is well known that the normalization cannot be carried so far thatw( 4, I) =1
in (22D) and there arc well known representations for which w(A, I) = =+1.
We shall allow this ambiguity therefore from the outset.

One can observe, first, that the operator corresponding to the unity of the
group is a constant. This follows simply from d(A)d(E) = w(A, E)d(A).
The square of an operator corresponding to an involution is a constant, therefore.
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The operator corresponding to the rotation about the axis e by the ur]gle T,
normalized so that its square be actually 1, will be denoted by &; & = 1. The
¢ are-—apart from the sign- uniquely defined.

A rotation R about » by the angle « is the product of two rotations by r
about e; and e; where ¢, and ¢ are perpendicular to v and e, arises from ¢, by
rotation about v with «/2. Choosing for every v an arbitrary ¢; perpendicular to
v, we can normalize, therefore

(44) d(R) = éé.

Now d(R) commutes with every d(S) if S is also a rotation about ». This is
proved in equations (24)-(30). The fy; in (30) must vanish on account of (29).

Fia. 3

(Also, both B and S can be arbitrarily accurately represented as powers of a
very small rotation about v). Hence, transforming (44) by d(S) one obtains
(44a) d(R) = +d(8)&d(S)™"-d(S)éd(S)™".

Now d(8)&d(8S)™" corresponds to a rotation by = about an axis, perp?ndicular
to v and enclosing an angle 8 with ¢, , where 8 is the angle of rotation (?f. S.
Since the square of d(S)éd(S) ™' is also 1, (44a) is simply another way of wnthg
d(R) = &é, as a product of two é and we see that the normalization (44) i«
independent of the choice of the axis e (Cf. Fig. 2). '

For computing d(R)d(T) we can draw the planes perpendicular to the axes of
rotation of £ and T and use for d(R) = éréc such a development that the axis ec
of the sccond involution coincide with the intersection line of the above-men-
tioned planes, while for d(T) = é:.ér we choose the first involution to be a rota-
tion about this interscction line (Fig. 3).. Then, the product

(45) A(R)A(T) = +Enbcbcdr = +éxér
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will antomatically have the normalization corresponding to (44). This shows
that the operators normalized in (44) give a representation up to the sign.

For the Lorventz group. the proof ean be performed along the same line, only
the underlying geometrical facts are less obvious. Let A he a Lorentz trans-
formation without clementary divisors with the characteristic values ¢, ¢ 7
PT“, ¢ “*and the characteristic vectors ¢y, v, = py . v3, 24, ax deseribed in seetion
4B.

We want'to make A = MN with M* = N° = . For AN = M. we have
ANAN = [and thus ANN = V. Setting Nv, = E ayve, we obtain AN \p, =

k

E A A = E aare . Beeause of the linear independence of the vy this
amonnts to Adeai = a,: all aq are zero, except those for which A, = 1. A<
i none of the cases (a), (b), (), (d) of section 4B is A; or A, reciprocal to once of
the last two X, the vectors ¢y and v, will be transformed by N into a linear com-
hination of v; and v, again, and the same holds for v;and oy . This means that N
can be considered as the product of two transformations N = NN, , the first
in the sz plane, the sceond in the vy plane. (Instead of vy, plane one really
should say vy + vy, (v, — iy plane, as ¢, and v, are complex themselves.  This
will be meant always by »yo, plane, ete.).  The same holds for M also.

Both ¥, and N, must satisfly the first and third condition for Lorentz trans-
formations (cf. 4A) and both determinants must he either I, or —1. Further-
more, the square of both of them must he unity.

If both determinants were 41, the N, had to be unity itself, while N, could
be the unity or a rotation by = iu the v, plane. Thus v, v, v;, 5 would be
characteristie veetars of N itself. :

If both determinants are — 1} (this will turn out to be the case), N, is a re-
flection on a line in the oy, plane and N, a reflection in the vsvy plane, inter-
changing v; and vy . Tn this case v, , ta, v3, v would not all be characteristic
vectors of N.

Il o0, 22, w5, v are characteristic veetors of N, they are characteristic vectors
of M = AN also.  Then hoth M and N would be cither unity, or a rotation by =
i the vy plane.  If hoth of them were rotations in the v plane, their produet .\
would be the unity which we want to exclude for the present.  We canexclude
the remaining cases in which the determinants of N, and N, are +1 by further
stipulating that neither M nor N shall be the unity in the decomposition A =
MN.

Hence N is the product of a reflection in the vy plane

(46“.) AVS: = s: .

*

Ns, = —5,

’ . .
where s, and s, are two perpendicular real veetors in the e plane

(46h) 5 = oy ey s = i(e"p — g,
and of a reflection in the py, plane
(46¢) Nt =t,; Ni, = —y,
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.

. ’ . -
where again i, , £, are real vectors in the v, plane, perpendicular to each other,
. . ’ . .
t, being space-like, ¢, time-like:

(46d) t; = 'v; + ¢ "u, ;

Thus N becomes a rotation by = in the purely space like s, planc.
can be caleulated from M = AN

Ms, = ANs, = Asp = ¢ "o, + ¢ ¥y,

= 1e™(si — 4s,) + 4 (s, + is,) = cos 2y-s, + sin 2y-s,
Ms, = sin 2y-s, — cos 2y-8,
Mt = ANt = Al = s + e,

= 3e™(L + 4) + fe (6 — ) = Ch 2x-t, + Sh 2x-L,
Mt, = —Sh 2x-t, — Ch 2x-,.
Thus M also becomes a ;ﬁoduct of two reflections, one in the vws = s.s, the
other in the vy = L, plane. This completes the decomposition of A into two
involutions. One of the involutions can be taken to be a rotation by = in an
arbitrary space like plane, intersecting both the vw; and the v;v, planes, as the
freedom in choosing v and u allows us to fix the lines s, and ¢, arbitrarily in
those planes. The involution characterized by (46) will be called N,, hence-
forth. The other involution M is then a similar rotation, in a plane, however,
which is completely determined once the s,t, plane is fixed. It will be denoted
by M,, (it is, in fact M,, = N,4y s1x)- One sees the complete analogy to the
three dimensional case if one remembers that vy and x are the half angles of

rotation.
The d(M) and d(N) so normalized that their squares be 1 shall be denoted by
dy(M,,) and di(N,,). We must show that the normalization for

(47) d(A) = +d(Mo)dr(N)
is independent of » and u.  For this purpose, we transform
(47a) d(A) = +di(Mw)di(Ne)

with d(A;) where A; has the same characteristic vectors as A but. different
characteristic values, namely e”, ¢, ¢* and ¢ ™ Since AAMwA7' = M,, and
AMNwAT' = N,, we have d(A)di(Mw)d(A)™' = wdi(M,,) where w = 1, as
the squares of both sides are 1. Hence, (47a) becomes if transformed with

d(Ay) just

(47b) d(A)d(A)d(A) ™' = +di(M,)di(N.,,).

The normalization (47) would be cléarly independent of v and u if d(A;) com-
muted with d(A).

Again, the argument contained in equations (24)-(30) can be applied and
shows that

(48) d(A)d(A)d(A) ™" = exp (2xif(2yu — 2xv))d(A)

L, =€vy— e .
"

The M

(46€)
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holds for every v, x, v, n. However, the exponential in (48) must be 1 if y = 0;
v = 2x/n; x = bnu since in this case A = A7. Thus exp (—4="ifu) = 1 for
every x and f = 0 and the left side of (47b) can be replaced by d(A); the normali-
zation in (47) is independent of » and p. )

In order to have the analogue of (45), we must show that, having two Lorentz
transformations A = M,,N,, and I = P,Q.s we can chose v, x and «, 8 s0
that N,, = P.i.e. that the plane of rotation s, of N,, coincide with the plane
of rotation of P.s. As the latter plane can be made to an arbitrary space-
like plane intersecting both the ww, and the wyw, planes (where wy, ws, w,, w,
are the characteristic vectors of I), we must show the existence of a space like
plane, intersecting all four planes wws, vi,, ww., wyw,. Both the first and
the second pair of planes are orthogonal.

One can show™ that if A and I have no common null vector as characteristic

12 We first suppose the existence of a real plane p intersecting all four planes v,y , vsv, ,
wiw, , waw, . If p intersects v v, the plane g perpendicular to p will intersect the plane vy,
perpendicular to n,r, . Indeed, the line which is perpendicular to both # wad v,v, (there is
such a line as p and v, interscet) is contained in both ¢ and vev. . Thiss..4ws that if there
isa plane intersecting all four planes, the plane perpendicular to this wiil have this property
also.

g

5%

Fig. 4 gives a projection of all lines into the z,z, plane. One sees that there are, in
general, two intersecting planes, only in exceptional cases is there only ome.

If the plane p—the existence of which we suppose for the time being —contains a time-like
vector, ¢ will be space-like (Section 4B, [1]). Both in this case and if p contains only
space-like vectors, the theorem in the text is valid. There is a last possibility, that p is
tangent to the light cone, i.e. contains only space like vectors and a null vect:)r v. The
space-like vectors of p are all orthogonal to v, otherwise p would contain time-l ke vectors
also. In this case the plane g, perpendicular to p will contain v also. The line in which
vipy intersects p is space-like and orthogonal to the vector in which vsvq intersects p. The
latter intersection must coincide with », therefore, as no other vector of p is orthogonal to



UNITARY REPRESENTATIONS OF LORENTZ GROUP 181

vector, there are always two planes, perpendicular to each other which intersect
four such planes. One of these is always space like. It is possible to assume,
therefore, that both N., and P, are the rotation by = in this plane.  Thus

d(N)d(I) = £dy(M,)d\(N ) (Pos)di(Qas)
:tdl(l‘{ru)dl(QvS)y

and d(A)d(I) has the normalization corresponding to the product of two involu-
tions, neither of whieh is unity. This is, however, also the normalization
adopted for d(Al). Hence

(49a) d(A)d(I) = xd(AD)

holds if A, I and Al are Lorentz transformations corresponding to one of the
cases (a), (b), (c) or (d) of section 4B and if A and I have no common character-
istic null vector. In addition to this (492) holds also, assuming d(E) = =1,
if any of the transformations A, I, AT is unity, or if both characteristie null
vectors of A and I are equal,as in this case the planes v, and waw, and also
viwe and wiw, coincide and there are many space like planes interseeting all.

If Aand I have one common characteristic null vector, v3 = w;, the others, v;and
1, respectively, being different, one can use an aritifice to prove (49a) which will
be used in later parts of this section extensively. One can find a Lorentz
transformation J so that none of the pairs I — J; A — IJ; AIJ — J 'hasa
common characteristic null vector. This will be true, e.g. if the charaeteristic
null vectors of J are v, and another null vector, different from vs, w, and the
characteristic vectors of AI. Then (49a) will hold for all the above pairs and

d(A)d(I) = xd(A)dI)d)AJ ") = +d(A)dIJ)d( ™)
= +d(AINYJ ") = £d(AD).

(49)

il

]

any spa.e-like vector in it. Hence, v is the intersection of p and vyvs and is either ryor e, .
One can conclude in the same way that v coincides with either w, or 1, also and we see that
if pis tangent to the light cone the two transformations A and 7 have a common null vector
as characteristic vector. Thus the theorem in the text is correct if we can show the exist-
ence of an arbitrary real plane p intersecting all four planes v , vave, wywy , wyw, .

Let us draw a cobrdinate system in our four dimensional apace, the z,z, planc of whi’ch is
the v,v, plane, the x; and z, axes having the directions of the vectors v; — siand 5 + vy,
respectively. The three dimensional manifold M characterized by z, = 1 intersects all
planes in a line, the v,v, plane in the line at infinity of the z,z, plane, the vy, plane in the z,
axis. Theintersection of M with the w,w, and wyw, planes will be linesin M with directions
perpendicular to each other. Thcy will have a common normal through the origin of M,
intersecting it at reciprocal distances. This follows from their orthogonality in the four
dimensional space.

A plane intersecting vr, and vy, will be a line parallel to z,z; through the z; axis.  If we
draw such lines through all points of the line corresponding to wyw, , the direction of this
line will turn by  if we go from one end of thisline to the other. Similarly, the lines going
through the line corresponding to wyw, will turn by = in the opposite direction. Thus the
first set of lines will have at least one line in common with the second set and this line will
correspond to a real plane intersecting all four planes vy, , w20y, w1, , wsws . This com-
pletes the proof of the theorem referred to in the text.

182 E. WIGNER

This completes the proof of (49a) for all cases in which A, I and Af have no
elementary divisors. It is evident also that we can replace in the normalization
(47) thedi by d.  One also concludes easily that d(M)°is in the <ame representa-
tion either +1 for all involutions M, or —1 for every involution. The former
ones will give real representations, the latter ones representations up to the
sign.

If A has an elementary divisor, it can be expressed in the v, |, w, . 2, , v, scheme
as the matrix (Cf. cqu. (20)) ‘

<

-

-

L]
S O O =
O O =t

s A
-0 O @

0

and can be written, in the same scheme, as the product of two Lorentz trans-
formations with the square 1

|i1 -1 4% 0 !llll 0 0 o
10 —1 1 - i
A= MoNo— | 00 —1 0 OI“
100 1 o ‘ 0 0 1 0 f
lo o o —1ffo o o -1

We can normalize therefore d(A;) = £d(Mo)d(Ny). If A cia be written as the
Rroduct of two other involutions also A, = M,N, the corresponding normaliza-
tfon will be identical with the original onc. In order to prove this, let us con-
s!der a Lorentz transformation J such that neither of the Lorentz transforma-
tions'J, NoJ, N\J, Aud = MNoJ = M N,J have an elementary divisor. Since
the number of free parameters is only 4 in casc (e), while 6 for case (a), this is
always possible. Then, for (45a) ' \

d(Mo)d(No)d(J) = +d(Mo)d(NoJ) = :Ed(ﬁ{oNoJ)
= xd(M\N\J) = +d(M)d(NJ) = +d(M)d(N,)d(J)

and thus d(My)d(Ny) = +d(M)d(Ny). This shows also that even if Al is in
case (e), w(A, I) = %1, since (49) leads to the correct normalization.

If A.= .MN has an elementary divisor, I not, d(A)d(I) still will have the
nor{nahzatlon corresponding to the product of two involutions. One can find
again a J such that neither of the transformations J. J7\, 1J, NIJ, MNI1J
have an elementary divisor. Then ’ ’ ,

d(M)d(N)d(I) = +d(M)d(N)d(I)d(J)d(J)™"
+d(M)d(N)d(1J)d(J)™" = +d(M)d(N1J)d(J)™"
d(AL)d(J7Y).

'I:he last product has, however, the normalization corresponding to two involu-
tions, as was shown in (49a), since neither ALJ, nor J7" is in case (e).

]

I
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Lastly, we must consider the case when both A and I may have an clementary
divisor. In this ease, we need a J such that neither of J, J™!, IJ have one.
Then, because of the generalization of (49a) just proved, in which the first
factor is in,case (e) '

d(A)d(I) = 2d(A)dDd()d(J Y =
+d(AIS)d(J ™)

which has the right normalization.
This completes the proof of

(50) w(A, ) = +1

+d(NdTS)d(J ™

for all possible cases, and the normalization of all D(L) of a representation of the
inhomogeneous Lorentz group up to a factor, is carried out in such a way that the
normalized operators give a representation up to the sign. It is even carried
so far that in the first two of equations (22) w = 1 can be set. We shall consider
henceforth systems of operators satisfying (7), or, more specifically, (22B) and
(22C) with w(a, b) = w(A, a) = 1 and (22D) withw(A, I) =

E.

Lastly, it shall be shown that the renormalization not only did not spoil the
partly continuous character of the representation, attained at the first normali-
zation in part (A) of this section, but that the same holds now everywhere,
in the ordinary sense for T(a) and, apart from the ambiguity of sign, also for
d(A). For T(a) this was proved in part (B)(b) of this section, for d(A) it means
that toevery Ay, eand ¢ there is such a § that one of the two quantities

(51) ((d(A) F d(A))e, (d(A1) F d(A))e) < e

if A is in the neighborhood & of A The inequality (51) is equivalent to

(51a) ‘ (1 F d(Ao))e, (1 F d(Ao))e) < ¢

where A = A7'A now can be assumed to be in the neighborhood of the unity.

Thus, the continuity of d(A) at A = E entails the continuity everywhere.”™
In fact, it would be sufficient to show that the #(X), d(Y) and d(Z) correspond-
ing to the transformations (40) converge to +1, as «a, ¥ approach 0, since one
can write every transformation in the neighborhood of the unit element as a
product A = Z(0, v3)Y (0, v2) X(0, v1) X (a1, 0)Y(az, 0)Z(a;, 0) and the param-
eters ay , -, vs will converge to 0 as A converges to 1. However, we shall
carry out the proof for an arbitrary A without an elementary divisor.

Ford(A), equations (46) show that as A approaches E (i.e.,as vy and x apprbach
zero) both Mg and Ne approach the same involution, which we shall call K.
Let us now consider a wave function ¥ = ¢ + d,(K)g or, if this vanishes ¢ =
¢ — di(K)p. We have d\(K)y = +¢. If A is sufficiently near to unity,

1 J, von Neumann, Sitz. d. kén. Preuss. Akad. p. 76, 1927,
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di(N)y will be sufficiently near to Qd(K)¢ = 0 and all we have to show
is that @ approaches 1. The same thing will hold for d,(M). Indeed from
di(No)¥ — @ = u it follows by applying di(Ne) on both sides y — 'y =
(di(Nw) + Qu. As (x, u) goes to zero, € must go to +1, and consequently,
also di(Nw)y goes to ¢ or to —¢. Applying di(Mw) to this, one sees that
di(Moo)d\(Neo)y = d(A)Y goes to +-¢ as A goes to unity. The argument given in
(A)(b) shows that thix holds not only for ¢ but for every other function also,
i.e. d(A) converges to 1 = d(E) as A approaches E. "Thus d(A) i continuous
in the neighborhood of E and hence everywhere.

According to the last remark in part 4, the operators %d(A) form a single
valued representation of the group of complex unimodular two dimensional
matrices C. Let us denote the homogeneous Lorentz transformation which
corresponds in the isomorphismi to C by €. Our task of solving the equs.
(22) has been reduced to finding all single valued unitary representation of the
group with the elements [e, C} = [a, 1} [0, C], the multiplication rule of which is
la, Ci) b, C3) = [a + Cib, C,Cy).  For the representations of this group Dja, C] =
T(a)d[C] we had

T(@)T®) = T(a + b)
(52a) d[C]T(a) = T(Ca)d[C]
d[Ci]d[Cs] = d[CiCy).

It would be more natural, perhaps, from the mathematical point of view, to use
henceforth this new notation for the representations and let the d depend on the
C rather than on the C or A. However, in order to be reminded on the geometri-
cal significance of the group elements, it appeared to me to be better to keep the
old notation. Instead of the equations (22B), (22C), (22D) we have, then

It

(52B) T(@)T(b) = T(a + b)
(52C) d(A)T(a) = T(Aa)d(A)
(52D) d(A) d(I) = +d(AI).

6. REpbUCTION OF THE REPRESENTATIONS OF THE INHOMOGENEOUS LOREN"Z
GROUP To REPRESENTATIONS OF A “LiTTLE GrOUP”

This section, unlike the other ones, will often make use of methods, which
though commonly accepted in physics, must be further justified from a rigorous
mathematical point of view. This has been done, in the meanwhile, by J.
von Neumann in an as yet unpublished article and I am much indebted to him -
for hi- cooperation in this respect and for his readiness in communicating his
results to me. A reference to his paper™ will be made whenever his work is
necessary for making inexact considerations of this section rigorous.

* J. von Neumann, Ann. of Math. to appear shortly.
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A.

Since the translation operators all commute, it is possible™ to introduce such a
coordinate system in Hilbert space that the wave functions ¢(p, {) contain
momentum variables p; , p., ps, ps and a discrete variable { so that

(53) T(a)e(p, §) = ¢'""e(p, 7).

p will stand for the four variables p., pa, pa, pu .

Of course, the fact that the Lorcntzian scalar product enters in the exponent,
rather than the ordinary, is entirely arbitrary and could be changed by changing
the signs of p1, p2, Ps - ‘

The unitary scalar product of two wave functions is not yet completely defined
by the requirements so far made on the coordinate system. It can be a sum-
mation over { and an arbitrary Stieltjes integral over the components of p:

(54) o) = T f W, )% o(p, ) dfp, ).

The importance of introducing a weight factor, depending on p, for the scalar
product lies not so much in the possibility of giving finite but different weights to
different regions in p space. Such a weight distribution g(p, {) always could be
absorbed into the wave functions, replacing all ¢(p, {) by v9(p, ) -e(p, t). The
necessity of introducing the f(p, ) lies rather in the possibility of some regions
of p having zero weight while, on the other hand, at other places points may have
finite weights. On account of the definite metric in Hilbert space, the integral
[ df(p, t) over any region r, for any ¢, is either positive, or zero, since it is the
scalar product of that function with itself, which is 1 in the region r of p and the
value { of the discrete variable, zero otherwise.
Let us now define the operators

(55) P(A)e(p, }) = o(A'p, }).

This equation defines the function P(A)e, which is, at the point p, {, as great, as
the function ¢ at the point A™'p, {. The operator P(A) is not necessarily uni-
tary, on account of the weight factor in (54). We can easily calculate

P(M)T(@)e(p, {) = T(@)e(A'p, §) = €7 "o(A™"p, 1),
T(Aa)P(A)e(p, 1) = €'™*' P(A)e(p, {) = ¢'™**'o(A7'p, 1),
so that, for {A”'p, a} = {p, Aa}, we have
(56) P(A)T(a) = T(Aa)P(A).

This, together with (52C), shows that d(A)P(A)™" = Q(A) commutes with all
T(a) and, therefore, with the multiplication with every function of p, since the
exponentials form a complete set of functions of p1, ps, ps, p«. Thus

(67 d(4) = Q(A)P(A),
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. . . 2 .
where Q(A) is an operator in the <pace of the ¢ alone™ which can depend, how-
ever, on the particular value of p in the underlying space:

(57a) Q(\e(p. ©) = >; Qp, Miae(p, ).

Here, Q(p, A);, are the components of an ordinary (finite or infinite) matrix,
depending on p and A.  From (57), we obtain

d(A)e(p, £) = 2 Q(p, At P(A)e(p, )

(57b)
° 3 Qp, Mrneld™'p, 0).

As the exponentials form a complete set of functions, we can approximate the
operation of multiplication with any function of pi, p,, ps, ps by a lincar
combination

(58) P = 2_ eaT(ane.

If we choose f(p) to be such a funetion that

(582) J(p) = f(Ap)

the operation of multiplication with f(p) will commute with all operations of
the group. It commutes evidently with the T(a) and the Q(p, A), and on
account of (56) and (58), (58a) also with P(A). Thus the operation of (58)
belongs to the centrum of the algebra of our representation. Since, however,
we assume that the representation is factorial (cf. 2), the centrum contains only
multiples of the unity and

(58b) Ie(p, §) = celp, ).

This can be true only if ¢ is different from zero only for such momenta p which
can be obtained from each other by homogencous Lorentz transformations,
because f(p) needs to he equal to f(p’) only if there is a A which brings them
into each other.

It will be sufficient, henceforth, to consider only such representations, the
wave functions of which vanish except for such momenta which can be obtained
from one by homogencous Lorentz transformations. One can restrict, then,
the definition domain of the ¢ to these momenta.

These representations can now naturally be divided into the four classes
enumerated in section 3, and two classes contain two subclasses. There will be
representations, the wave functions of which are defined for such p that

Q) {p,pl =P >0 @) p=0
@ {ppl =P=0;p#0 (4 [p,p} =P <0.

The classes 1 and 2 contain two sub-classes ecach. 1In the positive subclasses
P, and 0, the time components of all momenta are ps+ > 0, in the negative
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subelasses P and 0_ the fourth components of the momenta arc negative.
Class 3 will be denoted by 0, . If P is negative, it has no index.

From the condition that d(A) shall be a unitary operator, it is possible to
infer® that one ean introduce a coordinate system in Hilbert space in such a
way that

(59) fdf(P, 9] =A df(p, n)

if Q(p, A);y # O for the p of the domain r.  Otherwise, r is an arbitrary domain
in the spacc of p1, 2, Ps, pa and Ar is the domain which contains Ap if r con-
tains p. Equation (59) holds for all ¢, », except for such pairs for which
Q(p, M)y = 0. It is possible, hence, to decompose the original representation
in such a way that (59) holds within every reduced part. Neither T(a) nor
d(A) can have matrix elemerits hetween such 5 and ¢ for which (59) does not hold.

In the third class of representations, the variable p can bé dropped entirely,
and T(a)e(t) = #({), i.e., all wave functions are invariant under the operations
of the invariant subgroup, formed by the translations. The equation T'(a)e(})
= ¢({) is an invariant characterization of the representations of the third class,
i.e., a characterization which i« not affected by a similarity transformation.
Hence, the reduced parts of a representation of class 3 also belong to this class.

Since no wave function of the other classes can remain invariant under all
translations, no representation of the third class can be contained in any repre-

sentation of one of the other classes. In the other classes, the variability

domain of p remains three dimensional. It is possible, therefore, to introduce
instcad of p1, p2, ps, p« three independent variables. In the cases 1 and 2 with
which we shall be concerned most, p; , p2, ps can be kept for these three variables.
On account of (59), the Stieltjes integral can be replaced by an ordinary integral®
over these variables, the weight factor being |p|™ = (P + p} + pi + p})~*

G Wl = T / / [ 4, 0% o0, ) | pu[ dpdmd.

In fact, with the weight factor | p«|™" the weight of the domain r i.e., W, =
/ / / | p4 |7 dpy dpadps is equal to the weight of the domain W, as required”

by (59). Having the scalar product fixed in this way, P(A) becomes a unitary
operator and, hence, Q(A) will be unitary also.

We want to give next a characterization of the representations with a given P,
which is independent of the coordinate system in Hilbert space. It follows from

% The invariance of integrals of the character of (59a) is frequently made use of in

relativity theory. One can prove it by calculating the Jacobian of the transformation
Py = Aapi + Aapr + Aaps + (P 4+ p] + pi + P (1=1,2,3)

which comes out to be (P 4 p! 4 p? 4+ pH¥(P + p* + p¥ + p) ). Equ. (592) will not be
used in later paris of this paper.
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(53), that in a representation with a given P the wave functions ¢, ¢2, -
which are different from zero only in a finite domain of p, form an everywhere
dense set, to all elements of which the infinitesimal operators of translation can
be applied arbitrarily often

lim A " (T(he) — D™ = lim A" (™™ — )"y
(60) h=0 A=0
{p, e]"Y,

where ¢ will be a unit vector in the direction of a codrdinate axis or oppositely
directed to it. Hence for all members ¢ of this everywhere dense set

(61) lim Z; + h7(T(2her) — 2T (he) + DY = (pi + pi + pi — py = — Py,

where e, is a unit vector in (or opposite) the k*" coérdinate axis and the + is +
fork =4,and — fork = 1,2, 3.
On the other hand, there is no ¢ for which

(61a) lim 2 & h™(T(2hex) — 2T(her) + Do

A=0 Kk

if it exists, would be different from ~Pyp. Suppose the limit in (61a) exists and
is'—Pp + ¢'. Let us choose then a normalized ¢, from the above set, such that
(¥, ¢') = & with & > 0 and an h so that the expression after the lim sign in
(61a) assumes the value — Py + ¢’ + u with (u, u) < §/3 and also the expression
after the lim sign in (61), with oppositely directed e; becomes — Py + u’ with
(u’, u') < 8/3. Then, on account of the unitary character of T'(a) and because
of T(—a) = T

(w, Zh: + h7}(T(2her) — 2T (her) + 1)¢,),
= (z\; + h(T(—2hes) — 2T(—~hey) + 1)¢, «:),

or

— P, o) + (4, ¢) + (b, ) = =P, ¢) + (v, 0),

which is clearly impossible.

Thus if the lim in (61a) exists, it is — Py and this constitutes a characterization
of the representation which is independent of similarity transformations.
Since, according to the foregoing, it is always possible to find wave functions
for a representation, to which (61a) can be applied, every reduced part of a
representation with a given P must, have this same P and no representation
with one P can be contained in a representation with an other P. The same
argument can be applied evidently to the positive and negative sub-classes of
class 1 and 2.
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B.

livery automorphism L — L° of the group allows us to construct from one
representation D(L) another representation

(62) D°(L) = D(L°).

This principle will allow us to restrict oursélves, for representations with finite,
positive or negative P, to one value of P which'can be taken respectively, to be
+1,and —1. It will also allow in eascs 1 and 2 to construct the representations
ot the negative sub-classes out of representations of the positive sub-classes.

The first automorphismisa® = aa, A° = A. Evidently Equs. (12) are invari-
ant under this transformation. If we set, however,

T°(a)e = T(aa)e;  d°(A)e = d(A)e,
then the occurring p

T°(a)e = T(aa)p = eil».aul¢ — eilap,a|‘p

will be the p occurring for the unprimed representation, multiplied by «. This
allows, with a recal positive a, to construct all representations with all possible
numerical values of P, from all representation with one numerical value of P.
If we take a negative, the representations of the negative sub-classes are obtained
from the representations of the positive sub-class.

In case P = 0, evidently all representations go over into themselves by the
transformation (62). In case P = 0, and P = 0_ it will turn out that for
positive a, (62) carries every representation into an equivalent one.

C.

On account of (53) and (56), (57), the equs. (52B) and (52C) are automatically
satisfied and the Q(p, A);, must be determined by (52D). This gives

(63) E" Q(py A)(’!Q(A—lp; I)m’ V’(I—IA_‘py t’) =+ ; Q(pv AI)(’I"P(I—l A_lp) t’)-

Since this must hold for every ¢, one would conclude
(63a) 2 Qp, D1 QU 'p, Dy = % Qp, Ao

Actually, this conclusion is not justified, since two wave functions must be
considered to be equal even if they are different on a set of measure zero. Thus
one cannot conclude, without further consideration, that the two sides of (63a)
are equal at every point p.  On the other hand,™ the value of Q(p, A);, can be
changed on a set of measure zero and one can make it continuous in the neighbor-
hood of every point, if the representation is continuous. This allows then, to
justify (63a). It follows from (63a) that Q(p, 1), = &, .
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Let us choose' now a basic po arbitrarily. We can consider then the subgroup
of all homogeneous Lorentz transformations which leave this p, unchanged.
For all elements A, ¢ of this “little group,” we have

E Q(Do, N4Q(Po, Vo = £ Q(po, Ao

g(Ng(0)

]

(64)
+ Q(k‘)y

where g(A) is the matrix ¢(A);, = Q(po, N);y. Because of the unitary character of
Q(A), the Q(ps, A);, is unitary matrix and ¢(A) is unitary also.

If we consider, according to the last paragraph of Section 5, the group formed
out of the translations and unimodular two-dimensional matrices, rather than
Lorentz transformations, the 4 sign in (64} can be replaced by a + sign. In
this case, A and ¢ are unimodular two-dimensional matrices and the little group
is formed by those matrices, the corresponding Lorentz transformations X, i to
which leave py unchanged Ap, = ipo = o .

Adopting this interpretation of (64), one can also sce, conversely, that the
representation g(A\} of the little group, together with the class and P of the
representation of the whole group, determines the latter representation, apart
from a similarity transformation. In order to prove this, let us define for every
p a two-dimensional unimodular matrix a(p) in such a way that the correspond-
ing Lorentz transformation

(65) alp)po = p

brings po into p. The a(p) can be quite arbitrary except of being an almost
everywhere continuous function of p, especially continuous for p = p, and ‘
a(po) = 1. Then, we can set

d(a(P) e(p, §) = #(p, 1),
d(a(p))e(p, §) = o(m, ©).
This is equivalent to setting in (58)

(66a) Qp, alp)) =1

and can be achieved by a similarity transformation which replaces o(p, t) by
3. Qpo, a(p) iwolp, n). As the matrix Q(po, a(p)™") is unitary, this is a
unitary transformation. It does not affect, furthermore, (53)since it containsp
only as a parameter.

As.uming this transformation to be carried out, (66) will be valid and will
define, together with the d(X), all the remaining Q(p, A) uniquely. In faet,
calculating d(A)e(p, ), we can decompose A into three factors

(67) A =a(p). alp)'Aa(A7'p).

(66)

a(R'p)”
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'j‘hnﬁstl‘cond factor B = g(p)_'Aa(;\_lp) belongs into the little group: a(p)™
Afx(;\’ PIpa = &(p)‘lA-A"'p = a(p)'p = po. We ean write, therefore
(Ap = p)

d(Ne(p, £) = d(a(p))dB)d(a(p’)) 'o(p, t)
d(B)d(a(p")) "e(po , ¢)
; 181, d(a(P) Ne(pa, 1) = 2 ¢(B)ree(p’, ).

(67a)

]

i

This shows that all representations of the whole inhomogenecous Lorentz group
are equivalent which have the same P and the same representation of the little
group. Further than this, the same holds even if the representations of the
little group are not the same for the two representations but only equivalent
to each other. Let us assime qi1(A) = sq;(A)s™'. Then by replacing o(p, ¢) by
D+ 8(&, n)e(p, n) we obtain a new form of the representation for which (53) still
holds but g¢.(8) for the little group is replaced by ¢,(8). Then, by the trais-
formation just described (Eq. (66)), we can bring d(A) for both into the form
(67a). The equivalence of two representations of the little group must be
defined as the existence of a unitary transformation which transforms them mmto
each other. (Only unitary transformations are used for the whole group, also).

On the other hand, if the representations of the whole group are equivalent,
the representations of the little group arc equivalent also: the representation
of the whole group determines the representation of the little group up to a
similarity transformation uniquely.

The representation of the little group was defined as the set of matrices
Qo , N, il the representation is so transformed that (53) and (66a) hold.
Having two cquivalent representations D and SDS™' = D° for both of which (53)
and (66a) holds, the unitary transformation S bringing the first into the second
must leave all displacement operators invariant. Henee, it must have the form
(57a), i.e., operate on the { only and depend on p only as on a paramecter.

(68) Se(p, £) = 2_ S(P)rye(p, n).

Denoting the matrix Q for the two representations by @ and @°, the condition
SD(A) = D°(A)S gives that

(68a) 2 801D, N = 20 Q°(p, A)1,S(A7' p) o

L]
holds, for every A, for almost every p.  Setting A = a(p;) we can let p approach
py in such a way that (68a) remains valid. Since @ is a continuous function of p

both Q(p, A) and Q°(p, A) will approach their limiting value 1 [t follows that
there is no domain in which

(69) S(py) = S(G(Pl)_lpl) = S(po)

would not hold, i.c., that (69) holds for almost every p; . Since all our equations
must hold only for almost every p, the S(p);, can be assunied to be independent
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of p and (68a) then to hold for every p also. It then follows that the representa-
tions of the little group in D and D° are transformed into each other by St, .

The definition of the little group involved an arbitrarily chosen momentum
veetor py. It is clear, however, that the little groups corresponding to two
different momentum vectors p, and p are holomorphic. In fact they can be
transforméd into cach other by a(p): If A is an element of the little group
leaving p invariant then a(p) ' Aa(p) = Bis an element of the little group which
leaves po invariant.  We can see furthermore from (67a) that if A is in the little
group corresponding to p, i.e. Ap = p then the representation matrix ¢(g) of
the little group of po, corresponding to B, is identical with the representation
matrix of the little group of p, corresponding to A = a(p)Ba(p)™'. Thus when
characterizing a representation of the whole inhomogeneous Lorentz group by P
and the representation of the little group, it is not necessary to say which po is
left invariant by the little group.

D.

Lastly we shall determine the constitution of the little group in the different
cases.

1,. In case 1, we can take for po the vector with the components 0, 0, 0, 1.
The little group which leaves this invariant obviously contains all rotations
in the space of the first three coordinates. This holds for the little group of all
representations of the hrst class.

0o. In case Oy |, the little group is the whole homogeneous Lorentz group.

—1. Incase P = —1 the py can be assumed to have the components 1, 0, 0, 0.
The little group then containsall transformations wlhich leave the formn —z} -1
+ r&invariant, i.e., is the 2 + 1 dimensional homogencous Lorentz group.  The
same holds for all representations with P < 0. .

0,. The determination of the little group for » = 0, is somewhat more
complicated. It can be done, however, rather simply, for the group of uni-
modular two dimensional matrices. The Lorentz transformation corresponding

b .
to the matrix d with ad — be = 1 brings the vector with the components
Ty, X2, %3, Iy, into the vector with the components z1 , 27, 23 , x , where'
la b I o+ 1 1+ il [la* c* | z¢ + 23 21 + iz
70 | . L il RO,
ie d |xl—1x, I, — 13 ] lb‘ d* Iy —1xy Iy — I3 |

The condition that a null-vector po , say with the components 0, 0, 1, 1 be invari-
ant is easily found tobe | a | = 1,¢ = 0. Hence the most general element of the
little group can be written

e—-’dﬂ (I+ l-y)eiBI?‘

@) 0 o2

’
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with real z, y, 8 and 0 <8< 4x.
i(z, y) 6(8) where

The general element (71) can be written as

1

o)
o 1
The multiplication rules for these are
(71b) i@, YU, y) = Uz + 2y + ),

(71¢) §(B)t(x, y) {(rcosf + ysin B, — rsin B + y cos B)8(8),
(71d) 3(B)8(B’) = (B + ).

One could restrict the variability domain of 8 in §(8) from 0 to 2x. As 6(2#)
commutes with all elements of the little group, it will be a constant and from
8(2x)" = 5(4x) = 1 it can be §(2x) = +1. Hence 6(8 + 2x) = +4(8) and
inserting a = into equation (71d) one could restrict 8t00 < 8 < 2~.

These equations are analogous to the equations (52)-(52D) and show that the
little group is, in this case, isomorphic with the inhomogeneous rotation group of
two dimensions, i.e. the two dimensional Euclidean group.

It may be mentioned that the lorentz transformations corresponding to
t(z, y) have elementary divisors, and constitute all transformations of class e)
in 4B, for which v, = p,. The transformations §(8) can be considered to be
rotations in the ordinary three dimensional space, about the direction of the
space partof the vectorp,. Itispossible, then,to proveequations (71) also directly.

e—-’BIz 0 ,

(71a) (z, y) = o8) = |

clBI? I

It

7. Tue REPRESENTATIONS oF THE LITTLE GROUPS

A. Representations of the three dimensional rotation group by unitary
transformations.

The representations of the three dimensional rotation group in a space with a
finite member of dimensions are well known. There is one irreducible representa-
tion with the dimensions 1, 2, 3, 4, - .. each, the representations with an odd
number of dimensions are single valued, those with an even number of dimen-
sions are two-valued. These representations will be denoted by D*’(R) where
the dimension is 2§ + 1. Thus for single valued representations j is an integer,
for double valued representations a half integer. Every finite dimensional
representation can be decomposed into these irreducible representations.
Consequently those representations of the Lorentz group with positive P in
which the representation of the little group—as defined by (64)—has a finite
number of dimensions, can be decomposed into such representations in which
the representation of the little group is one of the well known irreducible repre-
sentations of the rotation group. This result will hold for all representations
of the inhomogeneous Lorentz group with positive P, since we shall show that
even the infinite dimensional representations of the rotation group can be
decomposed into the same, finite, irreducible representations.
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In the following, it is more appropriate to consider the subgroup of the two
dimensional unimodular group which corresponds to rotations, than the rotation
group itsell, as we can restrict ourselves to single valued representations in this
case (cf. equations (52)). From (70), one easily sees' that the condition for
a

d [ to leave the vector with the components 0, 0, 0, 1 invariant is that it

shall be unitary. It is, therefore, the two dimensional unimodular unitary
group the representations of which we shall consider, instead of the representa-
tions of the rotation group.

Let us introduce a discrete coordinate system in the representation space
and denote the coefficients of the unitary representation by ¢(R). where R is a
two dimensional unitary transformation. The condition for the unitary
character of the representation q(R) gives

(72) Z; qR)5GR)s = 5rs;

(722) 2 leR)al = 1;

; g(R)Hq(R) . = 8.,
; lg(R)a | =

This show also that | ¢(R). | <
square integrable:

1 and the g(R). are therefore, as functions of R,

flgR)a [’ dR

exists if { ... dRis the well known invariant integral in group space. Since
this is finite for the rotation group (or the unimodular umtary group), it can be
normalized to 1. We then have

(73) 2 f1gB)al*dR = ‘; f1gR)a|"dR =

The (25 + 1))D"{(R)x form,” a complete set of normalized orthogonal functions
for R. We set

(74) q(R)o = Z Ciui DV (R)u.

We shall calculate now the integral over group space of the product of DY (R)s
and

(75) 9(RS) . = ; 2(R)rg(S)x.

The sum on the right converges uniformly, as for (72a)

© o © $ 0 )
3 1aBaq®0 < (Z FENSHPEN |’) < (Z ron l’)

can be made arbitrarily small by choosing an N, independent of R, making the
last expression small. Hence, (75) can be integrated term by term and gives

(76) f DY(R)51q(RS)umdR = Z; I DY (R)51a(R) aq(S)rdR.

® H. Weyl and F. Peter, Math. Annal. 97, 737, 1927.
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Substituting Z DY (RS) i D (8 Yt for DV (IR)xs one obtains
(77) DS [ DV (RS) mq(RS)wdR = Y a(S)h [ D (R)ia(R)ad k.
m A

In the invariant integral on the left of (77), K can be substituted for RS and
we obfain, for (74) and the unitary character

(78) 2 DV(S) i (S = Z‘I(S)xu

Multiplying (78) by D™ (8)!, . the integration on the right side ean be cariied
out term by term again, since the sum over M eonverges uniformly

3 10t = (S 10t S 100nr) < (Zionr).
Thix can be made arbitrarily small, as even Z }: (27 + 1) Cou [P converges,
for (74) and (72a).
(79) 2 il = 6p6u .

The integration of (18) yl(‘]l‘l‘i thus

From ¢(R)q(E) = q(R) follows q(E) = 1 and then q(R N =
"This, with the similar equation for DV'(R) gives

S CADV R = q(R D = ¢(R)N

g = q(R)"

111
®0)
= 2 O DR = Z Chir DV (R M,
ki
or
(81) Cin = Chii.
On the other band q(E)a = éa yields
(82) > Ciix = dar.
1k

These formulas suffice for the reduction of g(R). Let us choose for every
finite irreducible representation D" anindex k, say k. = 0. We define then, in
the original space of the representation g(K) vectors v with the components

C;i’: C;Z’! C;ily et
The veetors v for different j or [ are orthogonal, the scalar product of those
with the same j and I is independent of 1. This follows from {79) and (81)

(?’3) (U(l‘j'l')’ v(l.fl)) E Cu\* (‘;tl — Z C:kl g l p o= 6" 6“ C;kk

The o™ for all x, j, I, form a complete set of vectors. In order to show this,
it is sufficient to form, for every », a lincar combination from them, the » com-
ponent of which is 1, all other components 0. This hnecar combination is

(84) 2 Chier™?.
14
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In faet, the A component of (84) is, on account of (79) and (82)
(85) Z ChieCiu = Zz Ciit = dan.

ajl

However, two # with the same j and I but different first indices x are not

orthogonal. We can choose for every janl, say I = 0 and go through the voctors
v, v ... and, following Schmidt’s method, orthogonalize and normalize
them. The vectors obtained in this way shall be denoted by

86 ™ = it

(86) XZ an

. . . T
Then, since according to (83) the scalar products (™", ™"

the vectors

(863) 'lL‘("j“ - Z a:'.xv(”“

A

) do not depend on {,

will be mutually orthogonal and normalized also and the vectors w'"™ for all
n, 3, L will form a complete set of orthonormal vectors.  The same holds for the
set of the conjugate complex vectors w'™*. Using these vectors as cobr-
dinate axes for the original representation g(R), we shall find that ¢(R) is com-
pletely reduced. The » component of the vector g(R)r*"’* obtained by applying
g(R) on v is

(87) T R, = X (), Chix

The right side is uniformly convergent.
D™

Hence, its product with (2h + 1)
(R):» can be integrated term by term giving

(88) Z: [ (2h + )D®(R)!, q(R),,CiedR = Z CraClie = 80;jdinClive
Thus we have for almost all R

(8%a) Z 1R ")y = X CHD (R)a = 30 DV (R)u(™™),,
or

{88h) ()™ = 3 DYV(R)yo™*.

Since both sides are supposed to be strongly continuous functions of R, (88b)
holds for every B. In (86a), for every n, the summation must be carried out
only over a finite number of . We can write therefore immediately

(89) . q(l‘é)”'(uﬂ)* _ ZD(“(I{);["’("}”‘_

This proves that the original representation decomposes in the coordinate system
of the w into well known finite irreducible representations D(R).  Since the w
form a complete orthonormal set of vectors, the transition corresponds to a
unitary transformation:
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This ecompletes the proof of the complete reducibility of all (finite and infinite
dimensional) representations of the rotation group or unimodular unitary
group. It is clear also that the same consideration applies for all closed groups,
i.e., whenever the invariant integral f dR converges.

The result for the inhomogencous Lorentz group is: For every positive numeri-
cal value of P, the representations of the little group can be, in an irreducible
representation, only the D', D'V, D'V ... 'both for P, and for P... All these
representations have been found already by Majorana and by Dirac and for
positive P there are none in addition to these.

B. Representations of the two dimensional Euclidean group

This group, as pointed out in Section 6, has a great similarity with the inhomo-
geneous Lorentz group. It is possible, again™, to introduce “momenta”, i.e.
variables £, n and v instead of the { in such a way that

(90) Uz, Yelpo, & 1, v) = e plpy, £ n, v).
Similarly, one can define again operators R(8)

(9N RB)e(po , & 1, v) = o(po, ¥, ', v),
where

t' = tcosB — nsin g,

n' = Esinf + ncos B
Then §(8)R(B)™" = S(B) will commute, on account of (71¢), with Uz, v) an'd
again contain £, n as parameter only. The equation corresponding to (57a) is

(92) 5(B)e(Po, £, 9, v) = 22 SBwelpo, ', 9', 0).

(91a)

One can infer from (90) and (92) again that the variability domain of £, n can be
restricted in such a way that all pairs &, 5 arise from one pair £ , ne by a rotation,
according (91a). We have, therefore two essentially different cases:

a.) £+1=E##0
b.) £+ =2=0 ie t=12=0 ’

The positive definite metric in the #, 1 space excludes the other possibilities of
section 6 which were made possible by the Lorentzian metric for the momenta,
necessitated by (55). _

Case b) can be settled very easily. The “little group” is, in this case, the
group of rotations in a plane and we are interested in one and two valued
irreducible representations. These are all one dimensional (e**)

(93) S = ¢

where s is integer or half integer. These representations were also all found by
Majorana and by Dirac. For s = 0 we have simply the equation O¢ = 0,
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for s = +! Dirac’s clectron eguation without mass, for s = £1 Maxwell’s
electromagnetic equations, cte

In case a) the little group consists ouly of the unit matrix and the matrix
N
ii _01 _01 i} of the two dimensiAoual uniimodular group. This group has two
Iirreducible representations, as (1) and (—1) can correspond to the above two
dimensional matrix of the little group. This gives two new representations of
the whole inhomogeneous Lorentz group, corresponding to every numerical
value of 5. Both these sets belong to class 0, and two similar new sets belong
to class O_ .

The final resull ts thus as follows: The representations Py of the first subclass
P, can be characterized by the two numbers P and j.  From these P is positive,
otherwise arbitrary, while j is an integer or a half integer, positive, or zero.
The same holds for the subelass P_.  There are three kinds of representations
of the subelass 0, . Those of the first kind 0., can be characterized by a number
s, which can be cither an integer or a half integer, positive, negative or zero.
Those of the second kind 0, (%) are single valued and can be characterized by an
arbitrary positive number =, those of the third kind 0, (2) arc double-valued
and also can be characterized by h positive . The same holds for the subclass
0_. The representations of the other classes (0p and P with P < 0) have not
been determined.

i

8. REPRESENTATIONS OF THE ExTENDED LorenTtz GroOUP

A.

As most wave equations are invariant under a wider group than the one
investigated in the previous sections, and as it is very probable that the laws of
physies are all invariant under this wider group, it seemns appropriate to investi-
gate now how the results of the previous sections will be modified if we go over
from the “restricted Lorentz group” defined in section 4A, to the extended
Lorentz group. This extended Lorentz group contains in addition to the
translations all the homogeneous transformations X satisfying (10)

(10%) XFX' = F

while the homogencous transformations of section 4A were restricted by two
more conditions. From (10°) it follows that the determinant of X ean be 41 or
—1 only. If its —1, the determinant of Xy = XF ix -+1. If the four-four
element of X, is negative, that of X, = — X, is positive. It is clear, therefore,
that if X is u matrix of the extended Lorentz group, one of the matrices X,
XF, —X, —XF is in the rvestricted Lorentz group.  For #° = 1, conversely, all
homogeneous translormations of the extended Lorentz group can be obtained
from the homogeneous transformations of the restricted group by multiplication
with one of the matrices

(94) 1, F, —1, —F.
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The group elements corresponding to these transformations will be denoted by
E, F, I, IF. The restricted group contains those clements of the extended
group which can be reached continuously from the unity. It follows that the
transformation of an element L of the restricted group by F, I, or IF gives again
an clement of the restricted group. This is, therefore, an invariant subgroup
of the extended Lorentz group. In order to find the representations of the
extended Lorentz group, we shall use again Frobenius’ method.”

We shall denote the operators corresponding in a representation to the
Lhomogeneous transformations (94) by d(E) = 1, d(F), d(I}, d(IF). For deriving
the cquations (52) it was necessary only to assume the existence of- the trans-
formations of the restricted group, it was not necessary to assume that these are
the only transformations. These equations will hold, therefore, for elements
of the restricted group, in tepreseniations of the extended group also. We
normalize the indeterminate factors in d(¥F) and d(I) so that their squares
become unity.  Then we have d(F)d(I) = wd(Id(F) or d(I) = wd(F)d(I)d(F).
Squaring this, one obtains * = +1. We can set, therefore

d(IF) = d(Dd(F) = +d(F)d(I)

(95) .

d(F)’ = d(I)’ = 1; d(IF) = +1.
Finally, from
(96) d(FYD(L)A(F) = (L) D(FL,F)

we obtain, multiplying this with the similar equation for L,
w(lh)w(Ly) = w(LiL,)

which, gives w(l.) = 1 as the inhomogencous Lorentz group (or the group used
in (52B)-(52D)) has the only one dimensional representation by the unity (1).
In this way, we obtain

(96a) d(F)D(L)d(F) = D(FLF),

(96b) d(I)D(L)d(I) = D(ILI),

(96¢) d(IFYD(L)d(IFY™ = D(IFLFI).
B.

Given a representation of the extended Lorentz group, one can perform the
transformations described in section GA, by considering the elements of the
restricted group only.  We shall consider here only such representations of the
extended group, for which, alter having introdnced the momenta, all representa-
tions of the restricted group are either in class 1 or 2, i.e. P 2 0 but not 0.
Following then the procedure of section 6, one can find a set of wave functions
for which the operators D(L) of the restricted group have one of the forms, given
in section 6 as irreducible representations.  We shall proceed, next to find the
operator d(F). For the wave functions belonging to an irreducible D(L) of the
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restricted group, we can introduce a complete set of orthonormal functions
wl(py g-)v 'l’z(P, r)v --- . We then have
(97) DLW(p, §) = 22 D(L)uetu(p, ).

I
Thtﬁe i'nf'inite n.latrices D(L),. defined in (97) are unitary and form a representation
which is equivalent to the representation by the operators D(L). The D(L),
d(F) are, of course, operators, but the D(L),. are components of a matrix,

i.e. numbers. We can now form the wave functions d(F)y , d(F)¢s , d(F)¢, , - -
and apply D(L) to these. For (96a) and (97) we have

D(L)d(F)¢. = d(F)D(FLF)y,
d(F) 3 D(FLF),4,

(97a)

]

_E D(FLF),d(F)y, .

The matrices D°(L),. = D(FLF),, give a representation of the restricted group
(FLF is an element of the restricted group, we have a new representation by an
automorphism, as discussed in section 6B). We shall find out whether D°(L) is
equivalent D(L) or not. The translation operation in D° is ‘

(98) T°(a) = d(F)T(a)d(F) = T(Fa)

which, together with (53) shows that D° has the same P as D(L) itself. In
fact, writing

(99) Uswe(p, §) = o(Fp, ¢)

one has Uy' = U, and one easily calculates U T(@)U, = T ‘Simi
= . larl
Ud°(A)U, one has ! 1 (a). ‘Similarly for

U1d°(A) Ure(p, §)

]

Uid(FAF)U, o(p, ¢)
d(FAF)Uro(Fp, §) = 32 Q(Fp, FAF),Usp(FA ™ p, 7)

i

(99a)
= ; Q(Fp, FAF)1,0(A™'p, n).

This means that the similarity transformation with U, brings T°(a) into T'(a)

and @°(A) into Q(Fp, FAF)P(A). Thus the representati f the “Ii .
in Ud®(A)U, is p on of the “little group

7°(\) = Q(Fpo, FXF).
For this latter matrix, one obtains from (67a)
9°(N) = Q(Fpo, FNF) = q(a(Fpo) "' FAFa(Fpo))

- =)
where \° is obtained from A by transforming it with Fa(Fp,).
The representations D°(L) and D(L) are equivalent if the representation

(100)
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q(\) is equivalent to the representation which codrdinates g(A\°) to . The
a(Fpo) is a transformation of the restricted group which brings po into a(Fpe)pe =
Fpo. (CI. {65).) This transformation is, of course, not uniquely determined
but if a(Fpo) is one, the most general can be written as a(Fpo):, where ipy = 1o
isin the little group. For q(«+ " a(Fpo) ™" A a(Fpo)i) = 9(1) " g(a(Fpo) ™ A a(Fpo))
q(1), the freedom in the choice of a(Fp,) only amounts to a similarity trans-
formation of ¢°(A) and naturally does not change the equivalence or non equiva-
lence of ¢°(\) with g()).

For the case P, , we can choose po in the direction of the fourth axis, with
components 0, 0,0, 1. Then Fpy = poand a(Fp,) = 1. The little group is the
group of rotations in ordinary space and FAF = A. Hence ¢°(\) = ¢(A) and
D°(A) is equivalent to D(A) in this case. The same holds for the representa-
tions of class P_ . ’

For 0, we can assume that p, has the components 0, 0, 1, 1. Then the
components of Fpo are 0, 0, —1, 1. For a(Fps) we can take a rotation by =
about the second axis and Fa(Fp,) will be a diagonal matrix with diagonal
elements 1, —1, 1, 1, i.e., a reflection of the second axis. Thus if A is the trans-
formation in (70), A° = a(Fpo) ' FAFa(Fp,) is the transformation for which

ot o 1 — im T+ 1 1 — ity
ko )‘" = ’ ! ’ ! ©

n+ it Z— I n+in T — o
This is, however, clearly > = A\*. Thus the operators of ¢’(\) are obtained
from the operators g(\) by (cf. (71a))

tn(zv y) t("» "!I)
#B) = -h).

For the representations 0., with discrete s, the ¢’(\) and ¢()) are cleatly inequiva-
lent as §°(8) = (¢ ***) and 8(8) = ("), except for s = 0, when they are equiva-
lent. For the representations 0,(Z), 0:(2), the ¢"(A) and g¢()) are equivalent,
both in the single valued and the double valued case, as the substitution  — — »
transforms them into each other. The same holds for representations of the
class 0_. If D°(L) and D(L) are equivalent ’

(102) U™'DL)U = D(L),

the square of U commutes with all D(L). As a consequence of this, U* mus:
be a constant matrix. Otherwise, one could form, in well known manner,
an idempotent which is a function of U* and thus commutes with D(L) also.
Such an idempotent would lead to a reduction of the representation D(L) of the
restricted group. As a constant is free in U, we can set.

(102a) U'=1

(101)

(101a)

1 J_von Neumann, Ann. of Math. 32. 191. 1931 : ref. 2. 0. 89.
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C.

Returning now to equation (97a), if D(L) = D(FLF) and D(L) are equivalent
(P > 0 or 0,, 0_ with continuous = or s = 0) there is a unitary matrix 07, ,
corresponding to U, such that

S D(FLF) QU = 2 UWD(L),0
Y Ul = 6.

Let us now consider the functions

(103) e =¥ + 2, U d(FYY, .

(102b)

Applying D(L) to these

D(L)o, = DLW, + 2 U, D(L)A(F),
= D(LW. + 2, Uwd(F)D(FLF)y,
(103a) "
= 2 D)ty + 2 Und(FYD(FLE) Wy
= 2. D(L), (w +- ); l-'.,dww.) = > D) e,
Similarly

d(FYp, = d(F)W, + 2 Ui
(103b) g
=2 L',,(w, + 2 I'.,d(f‘)w.) =2 Uso..

Thus the wave functions ¢ transform according to the representation in which
D(L),» corresponds to L and U, to d(F). The same holds for the wave functions

(104) o, =¥ — 2 Und(F)Y,,

except that in this case (—",,) corresponds to d(F). The ¢, and d(F)y, can be
expressed by the ¢ and ¢’ If the ¥ and d(F)y were linearly independent, the
¢ and ¢’ will be linearly independent also.  If the d(F)¢ were linear combinations
of the ¢, either the ¢ or the ¢’ will vanish.

If we imagine a unitary representation of the group formed by the L and FL
in the form in which it is completely reduced out as a representation of the group
of restricted transformations L, the above procedure will lead to a reduction
of that part of the representation of the group of the L and FL, for which D(L)
and D(FLF) are equivalent.

If D(L),, and D°(L),, arc inequivalent, the y. and d(F)y, = . are or-
thogonal. This is again a generalization of the similar rule for finite unitary
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representations.™ One can see this in the following way: Denoting M., =
($«, ¢.) one has
M. = (b, ¥2) = (DLW, DILW.)

; D(L): D°(L)s Mo ;

M

il

D(L)' M D°(L).
Hence
(105) D(L)M = MD°(L); M'D(L) = D°(L)M".

From these, one easily infers that MM' commutes with D(L), and M'M com-
mntes with D°(L). Hence both are constant matrices, and if neither of them is
zero, M and M' are, apart from a constant, unitary. Thus D(L) would be
equivalent D°(L) which is contrary to supposition. Hence MM' = 0, M = 0
and the ¢ are orthogonal to the d(F)y = ¢’. Together, they give a representa-
tion of the group formed by the restricted Lorentz group and F. I they do not
form a complete set, the reduction can be continued as before.

One sees, thus, that introducing the operntion F “doubles” the number of
dimensions of the irreducible representations in which the little group was the two
dimensional rotation group, while it does not increase the underlying linear
manifold in the other cases. This is analogous to what happens, if one adjoins
the reflection operation to the rotation groups themselves.”

D.

The operations d(I) can be determined in the same manner as the d(F) were
found. A complete set of orthonormal functions corresponding to an irreducible
representation of the group formed by the L and FL shall be denoted by ¥,
¢2, --- . For this, we shall assume (97) again, although the D(L) contained
therein is now not necessarily irreducible for the restricted group alone but
contains, in case of 0, or 0_, and finite s, bothsand —s. Weshallset, furthermore

(106) d(F). = 2 d(F)uds .

We can form then the functions d(I)¢1, d(I)¢z, ---. The consideration, con-
tained in (97a) shows that these transform according to D(ILI),. for the trans-

formation L of the restricted group:
(106a) DLW, = - DULDwd(D) .
"

Chioosing for L a pure translation, a consideration analogons to that performea
in (98) shows that the set of momenta in the representation L — D (ILI) has the
opposite sign to the set of momenta in the representation D(L). If the latter

8 Cf. e.g. E. Wigner, ref. 4, Chapter X11.
» [. Schur, Sitz. d. kon. Preuss. Akad. pages 189, 297, 1924,
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belongs to a positive subclass, the former belongs to the corresponding negative
subelass and conversely.  Thus the adjunction of the transformation I always
leads to a “doubling” of the number of states, the states of “negative energy”’ are
attached to the system of possible states. One can describe all states ¥,

Y2, ---, d)¥r, d(I)¥s, --- by introducing momenta PL, P2, D3, Ps an(i
restricting the variability domain of p by the condition {r, p} = P alone
without stipulating a definite sign for p, .

As we saw before, the d(I)y,, d(I)y», are orthogonal to the origiral set of
wave functions ¢, ¥, , -- The result of the application of the operations
D(L) and d(F) to the gy s . - (ic., the representation of the group formed by
the L, FL) was given in part C. The D(L)d(I).. are given in (1062). On
account of the normalization of d(I) we can set

(106b) —d(Dd(Dy, = . .

For d(F)d(I)¢. we have two possibilities, according to the two possibilities in
(95).  We ean either set

(107) AFYd(I, = d(Dd(F)Y. = Z’f(l")...d(l)h,
or

(1072) d(F)-d(Dy. = —d(Nd(F)We = — X d(F),ud(D)y, .

Strictly speaking, we thus obtain two different representations.  The system of
states s'ntisfying (107) could be distinguished from the system of states for which
“97&_) 15 valid, however, only if we could really perform the transition to a new
coordinate system by the transformation I. As this is, in reality, impossible
the representations distinguished by (107) and (107a) are not different in th(;
same sense as the previously described representations are different.

. I am much indebted to the Wisconsin Alumni Research Foundation for their
aid enabling me to complete this research.
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