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1. 0RIGlN AND CHARACTERIZATION OF THE PROBI.EM 

It is perhaps the most fundamental principle of Quantum Mechanics that the 
system of states forms a linear manifold,1 in which a unitary scalar product is 
defined.2 The states are grnerally represented by wave functions~ in such a way 
that "' and constant multiples of "' represent the same physical state. It is 
possible, therefore, to nonna1ize the wave function, i.e., to multiply it by a 
constant factor such that its scalar product with itself becomes i. Then, only a 
constant factor of modulus 1, the so-called pha..o;;e, will be left undetermined 
in the wave function. The linear character of the wave function is called the 
superposition principle. The square of the modulus of the unitary scalar 
product (1/t, tp) of two normalized wave functions 1/t and "'is called the transition 
probability from the state 1/t into tp, or conversely. This is supposed to give the 
probability that an experiment performed on a AystPm in the state "'' to see 
whether or not the state is 1/t, gives the result that it is Y,. If there are two or 
more different experiments to decide this (e.g., essentially the same experiment, 

• Parte of the present paper were presented at the Pittsburgh Symposium on Group 
Theory and Quantum Mechanics. Cf. Bull. Amer. Math. Soc., 41, p. 306, 1935. 

1 The po1111ibility of a future non linear character of the quantum mechanics must be 
admitted, of course. An indication in this direction is given by thl' theory of the positron, 
as developed by P. A.M. Dirac (Proc. Camb. Phil. Soc. ~0, 150, 1934, d. also W . Heieenberg, 
Zeits. f. Phys. 90, 209, 1934; 91,623, 1934; W. Heisenberg and H. Euler, ibid. 98,714, 1936 
and R . Serber, Phys. Rev. ~8, 49, 1935; 49, 54S, 1936) which does not use wave functioas 
and ie a non lineaftheory. 

• Cf. P. A.M. Dirac, The Principles of Quantum Mechanics, Oxford 1935, Chaptef!l I and 
II; J. v . Neumann, Mathematische ·Grundlagen der Quantenmechanik, Berlin 1932, pages 
19-24. 

• The wave functions represent throughout this paper states in the sense of the "He~n­
berg picturl'," i.e. a single wave function represents the state for all past and future. On 
the other hand, the operator which refers to a measurement at a certain time I contains 
this t as a parameter. (Cf. e .g. Dirac, I.e. ref. 2, pages 115-123). One obtains the wave 
function .,,(t) of the Schrodinger picture from the wave function f'H of the Heiaenberg 
picture by .,,(t) • exp ( -iHt/11).,8 The oi>erator of the Heisenberg picture is Q(t) • 
exp(iHt/lt) Qexp ( -iHt/lt), where Q is the operator in the Schrodinger picture which does not 
depend on time. Cf. also E. Schrodinger, Sitz.d. Kon . PreU88. Akad . p . 418, 1930. 

The wave funetione are complex quantitie11 and the undetermined factors in them are 
complex also. Recently attempt!! have been made toward a theory with real wave func­
tione. Cf. E. Majorana, Nuovo Cim. 14, 171, 1937 and P. A.M. Dirac, in print . 
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performed at different times) they are all supposed to give the same result, 
i.e., the transition probability h~ an invariant physical sense. 

The wave functions form a description of the physical state, not an invariant 
however, since the.same state will be described in different coordinate systems 
by different wave functions . In order to put this into evidence, we shall affix 
an index to our wave functions, denoting the Lorentz frame of reference for which 
the wave function is given. Thus "'' and .,,. represent the !>arne state, but they 
are different functions . The first is the wave function of the state in the co­
ordinate system l, the second in the coordinate system l'. If "'' = itr· the 
!ltate"' behaves in the coordinate system l exactly as Y, beha,·es in the coordinate 
:;;ystem l'. If <Fr is given, all"''' are determined up to a constant factor. Because 
of the invariance of the transition probability we have 

(l) I (<Pr , itr) 1
2 = I (tpr• , 1/tr•) 1

2 

and it can be shown 4 that the aforementioned constants in the "''' can be chosen 
in such a way that the <Pr· are obtained from the "'' by a linear unitary operation, 
depending, of course, on land l' 

(2) IPr• = D(l', C)tpr . 

The unitary operators Dare determined by the physical content of the tht:ory 
up to 11. constant factor again, wlaich can depend on land l'. Apart from this 
constant however, the operations D(l', C) and D(l~ , lt) must be identical if l' 
arises from l by the same Lorentz transformation, by which l~ arises from l1 • 

If this were not true, there would be a real difference between the frames of 
reference l and l1 . Thus the unitary operator D(l', l) = 'D(L) is in every 
Lorentz invariant quantum mechanical theory (apart from the constant factor 
which has no physical significance) completely determined by the Lorentz 
transformation L which carrie:~ l into l' = Ll. One can write, instead of (2) 

(2&) <Pu = D(L)'I'J. 

By going over from a first system of reference l to a second Z' = L1l and then to a 
third l" = LsLtl or directly to the thirtl l'' = .( LsL1)l, one must obtain-apart 
from the above mentiorwd CODBtant-tlw ":tme set of wave functions. Hence 
from 

it follows 

(3) 

"''" = D(l", l')D(l', C).,, 

'PI" = D(l", C)"" 

D(l", l')D(l', C) = wD(l", l) 

• E. Wi8Jier, Grt•ppentlt.eorie und ihre Anwendungen auf die Quantenmeclt.onik Jr:r Alonu­
,ektrtn. BraunAf'hwei« 1931, pagell251-254. 
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or 

(3a) D(~)D(L.) = wD(L,L.), 

where w is a number of modulus 1 and can depend on L2 and L1 • Tlm:s tlw 
D(L) form, up to a factor, a repre:<<'nto.tion of the inhomogeneou:s Lorentz 
~roup by linear, unitary operators. 

We see thus
5 

that there corresponds to e\'ery invariant quantum mechilllil·al 
system of equations such a rE'pre:;cntation of the inhomogeneou,;; Lor£>ntz ~~;roup . 
This representation, on the other hand, though not ~ufficient to replar.f' th~> 
quantum mechanical equations entirely, can replace them to a large extent . 
If we knew, e.g., the operator K corn':;ponding to the ml'asurement of a physical 
quantity at the time t =;. 0, we could follow up the change of thi,; quantity 
throughout" time. In order to obtain its value for the time t = . t1 , w~ could 
tran~form the original wa\'C function .,, by D(l', l) to a coordinntc .~ystem l' 
the time scale of which begins a time t1 1ater. The measurement of the quantity 
in question in this coordinate system for the time 0 is gi\·en- as in the original 
one- by the operator K. This measurement is indentical, however, with thP 
measurement of the quantity at time t1 in the original sy:stem. One can say that 
the representation can replace the equation of motion, it cannot replace, how­
ever, connections holding between operators at one il)stant of time. 

It may be mentioned, finally, that these developments apply uot only in 
quantum mechanics, but also to all linear theories, e.g., the ~laxwell equations 
in empty spac£' . The only difference is that there is no arbitraryfactor in the 
description and thew can be omitted in (3a) and one is It'd to real representations 
instead of rt'presentatiom: up to a factor. On the other hand, the unitary char­
acter of the representation is not a consequence of the basic assumptions. 

The increase in generality, obtained by the present <'alculus, as compared 
with the usual tensor theory, consists in that no assumptions regarding the 
field nature of the underlying equations are nec~ary. Thus more general 
equations, as far as they exist (e.g., in which the coordinate is quantized, etc.) 
are also included in the present treatment. It must be realized, however. 
that some assumptions conceming the continuity of space haYe been made by 
a.."Suming Lorentz frames of reference in the classic~! sense. We should likr to 
mention, on the other hand, that the previous remarks concerning the ti :· ·· ­
parameter in the observables, have only an explanatory character, and we do not 
make assumptions of the kind that measurements can be performed instan­
taneously. 

We shall endeaYor, in the ensuing sections, to determine all the continuouo<" 
unitary representations up to a factor of the inhomo~eneous Lorentz group. 
i.e., all continuous systems of linear, unitary operators satisfying (3a). 

• E.Wigner,l.c . ChapterXX . 
1 The exact definition of the continuous character of a repre.wntation upton fnr·tor "ill 

ht- ~~:ivf'n in Section 5A. The definition of the inhomo~~:Pnl'oi.Js l.orPntz group is coutninf'd 
in ::;ectioo -lA. 
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2. CoMPARisoN WITH PnEnous TREATMENTS AND SoME IMMEDIATE 

SIMPLIFICATIONS 

A. Previous treatments 

The r<'prc~entations of the Lorentz group have been im·estigated re-peatedly. 
The fir:::t inn~tigation i" due to :\Iajorana,7 who in fact found all representations 
of the <'la!:'s to b£' dealt with in the present work excepting two sets of representa­
tion~ . Dirac~ and Proca8 gn,·e more elegant deri,·ations of Majorana's results 
and brouj!;ht th<'m into a form which can be handled more easily. Klein's 
work9 do<'~ not endea,·or to deriYe irreducible representations and seems to be 
in a less close rontll'<'tion with the present work. 

The diff£>rcnee between the present paper and that of Majorana .and Dirac 
lies- ·apart from thl' finding of new representations- mainly in its greater 
mathematical rigor. :\fajorana and Dirac freely use the notion of infinitesimal 
operators and a st't of functions to all members of which every infinitesimal 
operator can be applied. This procedure cannot be mathematically justified 
at prt'sent, and no such assumption will be used in the present paper. Abo tlw 
conditions of reducibility and irreducibility could be, in general, somewhat more 
rompli<'ated than assumed by Majorana and Dirac. Finally, the previous 
treatments assume from the outset that the space and time <'Oordinates will be 
continuous \'ariables of the wave function in the usual way. This will not be 
done, of course. in the present work . 

B. Some immediate simplifications 

Two representations are physically equivalent if there is a one ·to one cor­
respondence between the states of both which is 1. invariant under Lorentz 
transformations and 2. of such a character that the tran~ition probabilities 
between corresponding states are the same. 

It follows from the second condition~ that there either exists a unitary operator 
S by which th£' wave functions <1>( 21 of the second representation can be obtained 
from the corresponding wa\·e functions <l>m of the first reprelit'ntation 

( 4) <I>(!) = S<l>m 

or that this is true for the conjugate imaginary of <l>m Although, in the 
latter case, the two representations are still equivalent phyaically, we shall, in 
keeping with t.hc mathematical convention, not call them equivalent. 

The first condition now m£>ans that if the states <l>m, <1>(2) = 8<1>01 correspond 
to each other in one coordinate system, the states D<n(L)<I>(J) and D(2>(L)<t><z> 
correspond to each other also. \Ye have then 

(4a) Dm(L)<1>(2) = SD01 (L)<I>m = SDm(L)s-1<1>u ). 

' E . .Majorana, l'o uovo Ci.m . 9, 335, 1932. 
' P . A.M . Dirac , Proc. Roy . Sol'. A. 155, -147, 1936; AI. Proca, J. de Phys. Rad . 7, 347, 

19Jti . 
• Klein, Arkiv f. Matern . Aetr. och Fysik, t5A, !'\o. 15, 1936. I am indehted to Mr. 

Dnrling for an interesting conversation on thi8 paper. 
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As thi~ shall hold for every <1><
21

, the existence of a unitary S which I musforms 
D01 into D(2) is the condition for the equi\·alencP of these two repr<',.;rntations. 
Equivalent representations are not considered to be really diffPrrnt and it will 
be sufficient to find one sample from en'ry infinite class of <>qtti,-:,IPnt repre­
sentations. 

If there is a closed linear manifold of ~tates which is ill\·arianl under all 
Lorentz transformations, i.e. which contains D(L)t/1 if it contaiu" Y, . thP linear 
manifold ~rpendicular to this one will be inYariant also. In fad . if If: belongs 
to the second manifold , D(L).p will bt>, on account of the unitary •·harader of 
D(L), perpendicular to D(L)t/1' if 1{;' bdongs to tlw first manifold . However, 
D(L -•).p belongs to the first manifold if -.f docs and thus D(L).p willlw or I hogonal 
to D(L)D(L - •).p = wt/1 i.e. to all members of the first manifold and l)('ionJ.!: itself to 
t.he second manifold also. The original representation then ' "de!'ompose~·· 
into two representations, correspouding to the two linPar mau\folds . It is 
clear that, conversely, one can form a representation, by simply "adding'' 
several other representations together, i.e. by considering as ~tutt>s linear 
combinations of the states of several representations and assume that I he states 
which originate from different representations arr perp<>ndicular to rach other. 

Representations which are equivalent to sums of already known reprrsenta­
tions are not really new and, in order to mastrr all rrpresentations, it will be 
sufficient to determine those, out of which all others can be obtained by "adding" 
a finite or infinite number of them together. 

Two simple theorems shall be mention<>d IH're which will l:w. proved lat!'r 
(Sections 7 A and 8C respectively). The first one rrfers to unitary rt>presf'nla­
tions of any closf'd group, the second to irrrdurible unitary represf'ntations of 
any (closed or open) group. 

The reprPsrntations of a closed group by unitary opernlors can he t.ransformrd 
into the sum of unitary rrpresentations \\ith matrirrs of finih~ dimf'n,-ion;;. 

Given two non equiYalent irreducible unitary repr<>sf'ntations of an arbitrary 
group. If the scalar product between the wa\'P functions is im·ariant und!'r thr 
OJX'rations of the group, the wave functions bclonging~8 to the first represm)ta­
tion are orthogonal to all wave functions ~longing to the second representation. 

C. Classification of unitary representations according to von Neuman,n 
and Murray10 

. 

Given the operators D(L) of a unitary representation;;, or a represf'ntation 
up to a factor, one can consider the algebra of these opt>rators, i.e. all linear 
combinations 

a1D(L1) + ~D(L,) + a,D(L.) + ... 
of the D(L) and all limits of such linear combinations which arc bounded 
operators. According to the properties of this representation algf'bra, tht'l!IIC 
cla:.;.<;es of unitary representations can be distinguished . 

11 F . J . Murray and .J . v. Neumann, Ann . of :\lath. ~7. 116, 1936; J. , .. Neumann, to be 
publiRhed soon. 
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The fir:'t class of irnduciblr representations has a r<'presentation. algebra 
whlr·h contains all bounded operators, i.e. if 1{; and 'I' are two arbitrary states, 
there is an operator :t of th<' repr<'sentation alg<>bra for which At/! = "' and 
A 1{;' = 0 if 1{;' is orthogonal to 1{;. It is clear that the center of the algebra con­
tain~ only the unit op<>rutor and multiply thereof. In fact, if Cis in the center 
on£• r·a11 decompos<> Cl{t = w/1 + f' so that Y,' shall be orthogonal to 1{;. Howcnr, 
Y,' must ,·anish since ot lwrwis<> C would not commute with the operator which 
lea,·e~ -.f im·ariant and tra11~forms_ Pnry function orthogonal to it into 0. For 
similar rrasons, a mm=t he tlw same for all 1{;. . For irreducible repre;;entations 
thrre is no closed linear manifold of states, (excepting the manifold of all states) 
which i-.; im·ariant undN all Lorentz transformations. In fact, according to the 
abm·p definition, a f/J' arbitnuily nose to any 'I' can be represented by a finite 
linear c~inbination 

a,D(L,)t/1 + aJ)(L2)-.f + · · · + a"D(Ln)f. 

Hence, a closed linear im·ariant manifold contains every state if it contains one. 
This i:-;, in fact, the more customary definition for irreducible representations 
and the one which will be used sul>Requently. It is well known that all finite 
dimensional representations are sums of irreducible reprl'sentat.ions. This is 
not true, 10 in general , in an infinite number of dimensions. 

The second class of representations will be called factorial . For these, the 
r·enter of the representation algebra still contains only multiples of the unit 
operator. Clearly, the irreducible representations arc all factorial, but not 
conversely. For -finite dimensions, the factorial representations may contain 
onf' irreducible representation several times. This is also pos.'>ible in an infinite 
number of dimensions, but in addition to this, there are the "continuous" 
rPpresentations of Murray and Yon Neumann!a These are not irreducible as 
t hPTc ar<' invariant linear manifolds of states. On the other hand, it is impossible 
to carry the decomposition so far a." to obtain as parts only irreducible repre­
,.:cHtations. In all the examples known so far, the representations into which 
t hc~e continuous representations can be decomposed, are equivalent to the 
original representation. 

The third class contains all possible unitary representations. In a finite 
number of dimensions , these can be decomposed first into factorial repre­
srnt.ations, and these, in turn, in irreducible ones. Von Neumann10 has shown 
that the first step still is possible in infinite dimensions. We can assume, 
1 hcrefore, from the outset that we are dealing with factorial representations. 

In the theory of representations of finite dimensions, it is sufficient to deter­
mine only the irreduriblc ones, all others arc .equivalent to sums of these. Here, 
it will be necessary to determine all factorial representations. Having done 
that, we shall know from the above theorem of von Neumann, that all repre­
>'Pntations are equivalent to finite or infinite sums of factorial representations. 

It will be one of the results of the detailed investigation that the inhomo­
gr~ncous Lorentz group has no "continuous" representations, all representations 
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can "" tleeomposed into irreducible ones. Thus the work of Majorana and 
Dira(· appear~ to be justified from this point of view a posteriori. 

D. Classification of unitary representations from the point of view of 
infinitesimal operators 

Tlw rxi,.;lenrr of an infinite,.;imal operator of a continuous one parametric 
(ryclie, abelian) unitary group ha,.: been shown by Stone." He proved that the 
operator,; of sut'h a group can be writtPII as Pxp(il/t) where H is a (bounded or 
unhonndPd) hPrmitran opcrntor ami t is th<' group parameter. However, the 
Lorentz group ha,- many Oil<' param<'tri!' suu~roups. ami the corresponding 
infinitrsimal operators 1/1, H2 , .•. an' all unbounded. For every II; ttn 

everywhere dense spt of funrtion,.; <P ran be found such that. H,<P ran be defin~d. 
It is not dear, however, that an eYerywherr dense set can he found, to all 
members of which every If <'an he applied . In fact, it is not clear that one 
such <P ran be found . 

Indeed, it may be interesting to remark that for an irreducible representation 
the existenre of one funrtion <P to whirh all infinitesimal operators can be applied, 
entails the existrnce of an r,·rrywhrre dense set of such functions. This again 
has the consequence that. one ran OJ)('rate with infinitesimal operators to a large 
extent in the usual way. 

PRooF: Let Q(t) be a one parametrir subgroup surh that Q(t)Q(t') = Q(t + t') . 
If the infinitesimal operator of all subgroups can be applied to <P, the 

(5) lim t-1(Q(t) - O<P 
t-O 

exists. It follow::;, then, that the infinitesimal operators can be applied to R<P 
also where R is an arbitrary operator of the representation: Since R-1Q(t) R is 
al~<o a one parametric subgroHp 

lim r•cu-•Q(t)R- I)"' = lim R-1 -C1(Q(t) - t)R<P 
t-o t-o 

also exists and hence also (R is unitary) 

lim C 1(Q(t) - l)R<P. 
t-O 

' 
Every infinitesimal operator can be applied to Rtp if they aU can be applied to "'' 
and the same holds for sums of the kind 

(6) a1R1<P + a,R'!<P + . · .· + a,.R,.<p. 

Thel>e form, however, an everywhere dense set of functions if the representation 
is irreducible. 

If the representation is not irreducible, one can consider the set No of such 
wave functions to which every infinitesimal operator can be applied. This set is 

11 M . H . Htone, Proc. Nat. Acad . 16, 173, 1930, Ann. of Math. 33, 643, 1932, also J. v. 
;\"cumann, ibid, 33, 567, 1932. 
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clearly linear and. according to the preYious paragraph, invariant lllH.Icr the 
operations of th<' group (i .e. contains every Rtp if it contains <P). The same 
holds for the closed set N generated by No and also of the s<'t P of functions 
which are perpendicular to all functions of N. In fact , if 'Pt• is perpmdicular to 
all<Pn of N, it is perpendicular also to all R-1

<Pn and, for the unitary eharacter IJf 
R, the R<PP is perpendicular to all"'" , i.e. is also contained in thP set P. . 

We can decompose thus, by a unitary transformation, every unitary repre­
sentation into a "normal" and a "pathological" part. For the former, there is 
an e,·erywhcre dense set of functions, to which all infinitesimal operators can be 
applied. There is no single wave functions to which all infinitr;;imal operators 
of a "pathological" representation couldbc applied. 

According to Murray and von l\eumann, if the original representation was 
factorial, all representations into which it can be decomposed will be factorial 
also. Thus every representation is equivalent. to a sum of factorial r<'pre­
scntations, part of which is "normal," the other part "pathological.'' 

It will turn out again that the inhomogeneous Lorentz group ha~ no path­
ological representations. Thus this assumption of Majorana and Dirac also 
will be justified a po~teriori. Every unitary represPntation of the in homogenous 
Lorentz group can be decomposed into normal irreducible representations. It 
should be stated, however, that the representations in which the unit operator 
corresponds to every translation have not been determined to date (cf. also 
section 3, end) . Hence, the above statements are not provPd for these repre­
sentations, which are, however, more truly representations of the homogeneous 
Lorentz group, than of the inhomogeneous group. 

While all these points may be of interest to the mathematician only, the new 
representation of the Lorentz group which will he described in section 7 may 
interest the physicist also. It describes a particle with a continuous spin. 

Acknowledgement. The subject of this paper was sugge::;ted to me as early as 
1928 hy P. A.M. Dirac who realised even at that date the connection of repre­
sentat.ions with quantum mechanical equations. I am greatly indebted to him 
also for many fruitful conversations about this subject, especially during the 
years 1934/35, the outgrowth of which the present paper is. 

I am indebted also to J. v. Neumann for his help and friendly ath·ice. 

3. SUMMARY OF ENSUING SECTIONS 

Section 4 will be devoted to the definition of the inhomogeneotJ~ Lorentz 
group and the theory of characteristic values and characteristic ,-cdors of a 
homogeneous (ordinary) Lorentz transformation. The discussion "·ill follow 
very closely the corresponding, well-known theory of the group of motions in 
ordinary space and the theory of characteristic values of orthogonal trans­
formations!2 It will rontain only a straightforward generalization of the 
met hods usually applied in those discussions. 

12 Cf. e .g. E . Wigner, I.e . Chapter Ill. 0. Veblcn and .J . \V. Young, Pmje.cli1•1' Geometry, 
Boston 1917. Vol. 2, I'Spet'ially Chapter VII. 
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In Section 5, it will be pro,·cd that one can determine the'physicalty meaning­
le;.;s con,.tants in the D(L) in such a way that instead of (3a) the more sp~r.ial 
equation 

(I) D(L.)D(L2) = ±D(L.Lz) 

will be valid. This means that instead of a representation up to a factor , we 
ean consider rrp~esentat ions up to the sign. For the case that either L 1 or L2 
is a pure tramdation. Dirae13 has ginn a proof of (7) using infinitesimal operators. 
.\ eonsideration Yery similar to his can be carried out, ho"·eyer, also using only 
finite transformations. 

For rl.'prescntations with a finite number of dimensions (corresponding to an 
only finitr number of linearly independent states), (7) could be proved also if 
both L. and L2 are homogeneous Lorentz transformations, by a straightforward 
application of the method of )\'eyl and Schreier!4 Howewr, the Lorentz group 
has no finite dimensional representation (apart from the tri,·ial·one in which the 
unit operation corresponds to rvery L). Thus the method of Weyland Schreier 
cannot be applied. Its first step is to normalize the indeterminate constants in 
every matrix D(L) in such a way that the determinant of D(L) becomes l. 
~o determinant can be defined for general unitary operators. 

The method to be employed here will be to decompose every L into a product 
of two involutions L = M N with M 2 

= N 2 
= I. Then D(M) and D(N) will be 

normalized so that their squares become unity and D(L) = D(M)D(N) set 
It will he possible, then, to pro,·e (7) without going back to the topology of the 
group. 

Sections 6. I, and 8 will contain the determination of the representations. 
The pure translations form an invariant subgroup of the whole inhomogeneous 
Lorentz group and Frobenius' method 1 ~ will be applied in Section 6 to build 
up tl1c rcprescntat ions of the whole group out of representations of the subgroup, 
by m('ans of a "little group." In Section 6, it will be shown on the basis of an as 
yet unpublish'.'d work24 of J. v. Neumann that there is a characteristic (in­
variant) set of ~'momentum vectors" for every irreducible representation . The 
irrPducibiP representations of the Lorentz group will be divided into four classes. 
ThP momentum vectors of the 
I st class are time-like, 
2nd dass are null-vectors, but not all their components will be zero, 
3rd class vanish (i.l'., all their components will be zero), 
4th rlass arr space-like. 
Only the first two rases will be considered in Section 7, although the last case 

"P. A. ;\1. Dira<', mimeographed notes of lectures deliven•d at Princeton University, 
1934/ 3.') , pnjl;f' Sa. 

"11 . Weyl. :\Iathem. Zcits. f.J, 271; l-', 328, 377, 789, 1925; 0. Schreier, Abhandl. Mathern. 
Seminar Hamburg,.$, 15, 1926; 5. 233, 1927. 

"G . Frohenius, Sitz. d. Ron. Preuss. Akad . p. 501, 1898, I. Schur, ibid, p. 164, 1906; 
F . S.,itz, Ann. of 1\fath . . J7. 17, 1936. 
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may be the most inter!'sting from the mathematical poi.ut of \·icw. I hope to 
return to it in another paper. I did not succeed so far in givinJ?; a complete 
discussion of the 3rd rhss. (All these rpstrirtions appear in th" prcviou!'! 

treatments also.) . 
In Section . 7, we shall find again all known representation:- of t hc inhomo­

geneous Lorentz group (i.P., all known Lorl'ntz invariant cquations) and two 

new sets. 
Sections 5, 6, 7 will deal with the "restricted Lorentz group" only, i.<' . Lon~ntz 

transformations with determinant l which do not reverse the direction of the 
time axis. In section 8, the representation;:; of the extended Lorpntz group will 
be considered, the transformations of whirh arr~ not subject to t hesP ("()nclitions. 

4. DEscRrPTION oF THE l"'HOMOGENEous LoRENTZ GHot"P 

A. 

An inhomogeneous Lorentz transformation [, 
translation by a real vector a 

(8) x: = .ri + a; 

(a., .\) i>1 the product of a 

(i = I. 2, 3, 4) 

and a homogeneous Lorentz transformation A with real coefficients 
4 

(9) x:' = L AH-Xk. 
k-1 

The translation shall be performed after the homogeneous transformation. 
The coefficients of the homogeneous transformation satisfy three conditions: 
(l) They are real and A leaves the indefinite quadratic form -'-x~- x~- x~ + x! 
invariant: 

(10) AFA' = F 

where the prime denotes the interchange of rows and columns and F is the 
diagonal matrix with the diagonal elements - 1, -1, - l, + 1. -(2) The deter­
minant I A;t I = 1 and- (3) A.. > 0. 

We shall denote the Lorentz-hermitean product of two vectors r and y by 

(11) lx, Yl = -x~yl - x:Y2 - x:ya + x:y •. 

(The star denotes the conjugate imaginary.) If lx, xl < 0 the Yector x is 
called space-like, if lx, xl = 0, it is a null vector, if lx, xl > 0, it is railed time­
like. A real time-like vector lies in the positive light cone if x4 > 0; it lies in the 
negative light cone if x. < 0. Two vectors x and y are called ortho~~:onal if 
lx, yJ = 0. 

On account of its linear character a homogeneous Lorentz transformation is 
completely definl'd if Av is given for four linearly indcpendmt vectors v0 >, 

(2) (3) (4) 

v 'v 'v 
From (ll) J.nd (JO) it follows that lv, wl = 1.\v, Awl for every pair of vectors 

v, w. This will be satisfied for every pair if it is sati;::fied for all pairs ,,<i>, v<kl 
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of four linearly independent vectors. The rPality conrlition is satisfied if 
( ,\v<•>)• = .\(v'"*) holds for four such vectors. 

The scala r product. of two vectors x and y is positive if both lie in the posit.ive 
light eone or bot.h in the negative light com• . It is negative if one lies in the 
positive, the other in t.he negative light cone. Since both .r anci y arc t.ime-like 
I x•l2 > I~~ 12 + I Xz 12 + I xJI 2

; I Y• 12 > I Y1 12 + I Y2 12 + I Ya 12- Hence, by 
Schwarz's inequality I x: Y•l > I x~ Yt + x; y2 + x; y3 l and t.he sign of the scalar 
product of two real time-like vectors is determined by the produrt of their 
time components. 

A time-like vector is transformed by a Lorentz tram;formation into a time-like 
vector. Furthermore, on account of the condition At4 > 0, the . vector v10

> 

with the components 0, 0, 0, 1 remains in the positive light cone, since the fourth 
component of Av10

> is A44 . • • If v0
> is another vector16 in the positive light cone 

I v0 >, v<o> I > 0 and hence aL<>o I Av0 >, Av<o> I > 0 and Av0 > is in the positive light 
cone also. The third condition for a Lorentz transformation can be formulated 
also as the requirement, that every vector in (or on) the positive light cone shall 
remain in (or, respectively, on) the positive light cone. 

This formulation of the third condition shows that the third condition holds 
for the product. of two homogeneous Lorentz transformations if it holds for both 
factors. The same i<> evident for the first two conditions. 

From AF A' = F one obtains by multiplying with A - I from the left and 
A,- 1 = (A- 1

)' from the right F = A- 1F(A- 1
)' so t.hat the reciprocal of a homo­

geneous Lorentz transformation is again such a transformation. The homo­
geneous Lorentz transformations form a group, therefore. 

One easily calculates that the product of two inhomogeneous Lorentz trans­
formations (b, M) and (c, N) is again an inhomogeneous Lorent.z transformation 
(a, A) 

(12) (b, M)(c, N) = (a, A) 

where ... 
A;~: = L M,)l;~:; a; = b; + L M;;C;, (12a) 

or, somewhat shorter 

(12b) A= MN; a= b +Me. 

B. Theory of characteristic values and characteristic vectors of a homogeneous 
Lorentz transformation 

Linear homogeneous transformations are most simply described by their 
characteristic values and vectors. Before doing this for the homogeneous 
Lorentz group, however, we shall need two rules about orthogonal vectors. 

11 Whereve r a confusion between vectors an.d vedor components appears to be poBBible, 
upper indices will be used for distinguishing different vectors and lower indices for denotin11: 
the components of a ver.tor . 
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[1] lflv, wl = 0 and lv, vi > 0, then lw, wl < 0; iflv, wl = 0, (v, vi = 0, 
then w is either spaa-like, or parallel to 11 (either (w, wl < 0, or w = cv). 

PROOF: 

(13) • • • • II4W.4 = V1Wt + llttOt + II31D3. 

By Schwarz's inequality, then 

(14) I Vc 12 I We 12 ~ ( I"' I' +I Vtl
2 + I l13 12)( I w, I' + ! Wt 12 + ! w, 1'). 

For I vc I' > I 111 12 + 1112 12 + I v, 12 
it follows that I We 12 < I Wt 12 + I Wt I' + I w, 1'. 

If I v4 12 = I v1 12 + I v, 12 + I v, 12 the second inequality still follows if the in­
equality sign holds in (14) . The equality sign can hold only, however, if the 
first three components of the vectors v and w are proportional. Then, on 
account of (13) and both being null vectors, the fourth components are in the 
same ratio also. 

[2) If four vectors vm, v">, v<3>, v<•> are mutuaUy orthogonal and linearly inde­
pendent, one of them is time~like, three are space-like. 

PaooF: It follows from the previous paragraph that only one of four mutually 
orthogonal, linearly independent vectors can be time-like or a null vector. It 
remains to be shown therefore only that one of them is time-like. Since they 
arc linearly independent, it is possible to express by them any time-like vector 

4 

"

(I) - ~ "(t) - ,t.... at . 
k-1 

The scalar product of the left side of this equation with itself is positive and 
therefore 

or 

(15) 

{

""' (j;) 
..;.- a~;V , ~ a~:v<t>} > 0 

L: I at I' I v'">, "<">I > o 
l 

and one I vm, v11
> I must be positive. Four mutually orthogonal vectors are not 

necessarily linearly independent, because a null vector is perpendicular to itself. 
The linear independence follows, however, if none of the four is a null vector. 

We go over now to the characteristic values >.. of A. These make the deter­
minant I A - >..I I of the matrix A - >..1 vanish. 

[3] If>.. is a characteristic value, >..•, >..-I and >..*- 1 are characteristic values also. 
PRooF: For >.. • this follows from the fact that A is real. Furthermore, from 

I A - ).1 I = 0 also I A' - ).1 I = 0 follows, and this multiplied by the deter­
minants of AF and F' gives 

I AF I . I A' - XI I . I F 1-l = I AF A'F1 
- ).A I = It - ).A I = 0, 

so that >.. _, is a characteristic value also. 
[4] The characteri3tic vectors t•, and"' bekmging to two characteristic values ).1 and 

>.., are orthogonal if).~)., "F- 1. 
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PRooP: 

lvr, Vtl = I Avr, Av,l = P·rllr, AtVtl = A:A,Ivr, v,l. 
Thus if lvr, Vtl ~ 0, >.:>., = I. 

[5) If thrmodulus of a characteristic value X is I >. I ~ I, the corresponding 
characteristic vector v is a nuU vector and A itself real and positive . 

. From lv, vi = I .\v, Avl = I A l'lv, vi the lv, vi = 0 follows immediately for 
I A I ~ 1. If X were complex, >. • would be a characteristic value also. The 

characteristic vectors of A and X • would be two different null vectors and, 
because of (41, orthogonal to each other. This is impossible on account of [1]. 
Thus>. is real and v a real null vector. Then, on account of the third condition 
for a homogeneous Lorentz transformation, >. muRt be positive. 

(6) The characteristic value X of a characteristic tJector v of length null is real and 
positive. 

If>. w~re not real, x• would". be a characteristic value also. The corresponding 
characteristic vector v• would be different from u, a null vectOr also, and per­
pendicular to von account of (4). This is impossible because of (1]. 

(7] The characteristic vector v of a complex characteristic value A (the modulus of 
which is 1 on account of [5]) is space-like: lv, vi < 0. 

PaooF: X • is a characteristic value also, the corresponding characteristic 
vector is v•. Since (A*)*X = X2 ~ 1, lv*, vi = 0. Since they are different, at 
least one is space-like. On account of lv, vi = lv•, v*l both are space-like. If 
all four characteristic valuE's were complex and the corresponding characteristic 
vectors linearly independent (which is true except if A has elementary divisors) 
we should have four space-like, mutually orthogonal vectors. This is impossible, 
on account of [2]. Hence 

(8) There is not mere than one pair of conjugate complex characteristic ooluu, 
if A has no elementary dirlisQrs. Similarly, under the same condition, there u 
not more than one pair A, X - • of characteristic values whose modulus is differem 
from 1. Otherwise their characteristic vectors would be orthogonal, which 
they cannot be, being null vectors. 

For homogeneous Lorentz transformations which do not have elementary 
divisors, the following possibilities remain: 

(a) There is a pair of complex characteristi~ values, their modulus is 1, on 
account of (5) 

(16) Ar = >.: = Xl1
; I Xr I = I At I = 1, 

and also a pair of characteristic values X, , A. , the modulus of which is not 1 · 
These must be real and positive: 

{16a) >.. = Xl1
; X, = x: > 0. 

The characteristic vectors of the conjugate complex characteristic values are 
conjugate complex, perpendicular to each other and space-like so that they can 
be normalized to -1 

{17) 
• Vr = "'; I Vr , Vt I = I llr , v: I = 0 

I "• , vd = I"' ," "'I = -1 
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those of the real characteristic values are real nut! vectors, their scalar product 
can be normalized to 1 

(l7a) 
• va = 1/3 • Vt = 1/4 lv3, "•i = 1 

I lla , val = I V4 , "•I = 0. 

Finally, the former pair of characteristic vectors is perpendicular to the latter 
kind 

(17b) lvr, 1/31 = lvr, u•l = lv,, val = fv,, Vt} = 0. 

It will turn out that all the other cases in which A has no elementary divisor 
are special cllSes of (a). 

A4 

F10 . 1. Position of the characteristic values for the general case a) in the complex plane. 
In case b), >.,and>., coincide and are equal I; in case c), >. 1 and >.2 coincide and are either 
+ 1 or -I. In Cll.lle d) both pairs>., = >., ,. I and>., = X2 ~ ±I coincide . 

(b) There is a pair of complex characteristic values X1 , At = Al1 = x:, 
Ar ~ x:, I Ar I = I A, I = I. No pair with I X31 ~ 1, however. Then on account 
of [8), still Aa = x: which gives with I A1 I = 1, A3 = ± 1. Since the product 
XJA,A,>,. = 1, on account of the second condition for laomogeneous Lorentz 
transformations, also A. = X3 = ± 1. The double characteristic value ± 1 has 
two linearly independent characteristic vectors v3 and v4 which can be assumed 
to be perpendicular to each other, lv3, u41 = 0. According to [2), one of the 
four characteristic vectors must be time-like and since those of X1 and X, are 
space-like, the time-like one must belong to ± 1. This must be positive, 
therefore X, = X. = 1. Out of the time-like and space-like vectors I v

3 
, v3l = -1 

and I vc , v.} = 1, one can build two null vectors v4 + v3 and v4 - v3 . Doing 
this, case (b) becomes the special case of {a) in which the real positive char­
acteristic values become equal >.3 = x;• = 1. 

(c) All characteristic values are real; thPre is however one pair >.3 = x:, 
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A4 = >.31
, the modulus of which is not unity. Then I lla , val = I "• , "•I = 0 

and >., > 0 and one can conclude for >.t and >.2 , as before f0r >.a and X. that >-t = 
At = ± l. This again is a special case of (a); here thP two characteristic values 
of modulus 1 become equal. 

(d) All characteristic values are real and of modulus l. If all of them are + l, 
we have the unit matrix which clearly can be considered as a special case of (a). 
The other case is ;>.q = At = - l , A3 = >..4 = + l . The characteristic vectors of 
At and At must be space-like, on account of the third condition for a homogeneous 
Lorentz transformation; they can be assumed to be orthogonal and normalized 
to -1. This is then a special case of (b) and hence of (a) also . The cases 
(a), (b), (c), (d) are il!ustrated in Fig. 1. 

The cases remain to be considered in whicn A has an elementary divisor. 
We set therefore 

(18) A,11. = >..,11, ; ~w. = >...w. + v • . 

It follows from (51 that either I X. I = 1, or 111., v.l = 0. We have l11. 1 w.l 
I A.v. , A,w.l = I >... \

2 111, 1 w,J + I v. , v.J. From this equation 

(19) I "• , v.l ""' 0 

follows for I>..\ = 1, so that (19) hold'! in any case. It follows then from 
(6) that >...is real, positive and "•, w. can be assumed to be real also. The last 
equation now becomes I 11, , w.l = A! I 11, , w.l so that either>... = 1 or I v. , w.l = 0. 
Finally, we have 

lw,, w,J = {A,w,, A.w.} = >..!{w. , w,J + 2X,Iw., v,J + 111., v.} . 

This equation now shows that 

(l9a) lw., v.l = 0 

even if A, = 1. From (19), (19a) it follows that w, is space-like and can be 

normalized to 

(19b) {w., w.l = -1. 

Inserting (19a) into the preceding equation we finally obtain 

(19c) x. = 1. 

(9) If A, has an elementary divisor, all its characteristic roots are l. 
From (19c) we see that the root of the elementary divisor is 1 and this is at 

least a double root. If A had a pair of characteristic values At ~ 11 >.., = XI\ 
the corresponding characteristic vectors lit and v, would be orthogonal to "• and 
therefore space-like. On account of (5], then I Xt I = I>.., I = 1 and I"•, v,} = 0. 
Furthermore, from lw., 11d = { A,w., A,11d = X.{w., 11d + )..{v., 11d and from 
I 11,, 11tl = 0 also I w., 11.} = 0 follows. Thus all the four vectors"', v,, "•, w. would 
be mutually orthogonal. This is excluded by [2] and (19). 
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Two cases are conceh·ahlc now. Either the fourfold characte-ristic root ltas 
only one characteri~tic vP<'Ior, or there is in addition to v. (at least) anothrr 
characteristic vector v1 . In the former case four linearly indPpPndPnt ,·cdors 
11, , w, . z. , x, could be found ~uch that 

. \.v, = 11. ,\,w, = w. + v • 

A.z. = z. + w. A.x. = x. + z,. 

However 111., x,l = I A,v., A.x.l = lv,, x.l + 111., z.l from which lv., z.l = 0 
follows. On the other hand 

I w, , z,l = I A,w. . A.z.l = { w. , z.j + { w, , w, I + I v. , z.l + I 11, , w,J. 

This gives with (l9a) and (19b) 111., z.l = I so that this case must be excluded. 
(e) There is thus a vector v1 so that in addition to (18) 

(l8a) A,111 = v, 

holds. From { w. , v,J I A.w. , A.vtl = I w. , 11,) + I 11, , 11,1 follows 

lv., 11d = 0. (l9d) 

The equations (18), (18a) will remain unchanged if we add tow. aad lit a multiple 
of 11,. We can achieve in this way that the fourth components of both w. and 
v1 vanish. Furthermore, Vt can be normalized to - 1 and addeJ to w. also with 
an arbitrary coefficient, to make it orthogonal to Vt . Hence, we can assume that 

(l9e) llu = w_. = 0; {lit , Vtl = - 1 ; lw., 11d = 0. 

We can finally define the null vector z. to be orthogonal tow. and v, and have a 
scalar product 1 with 11, 

(19f) I z. , z.l = I z. , w.; I = I z. , vt l = o; I z. , 11,) = 1. 

Then the null vectors 11, and z. represent the momenta of two light beams in 
opposite directions. If we set A,z, = av. + bw. + cz, + d111 the conditions 
I z. , vI = I A.z. , A.v I give, if we set for 11 the vectors 11. , w. , z. , 111 the conditions 
c = l; b = c; 2ac - b2 

- d2 
= 0; d = 0. Hence 

A,11, = 11, A,w. = w, + 11. 
(20) 

A.Vt = 11, A.z. = z. + w. + !11 •. 

A Lorentz transformation with an elementary divisor can be best characterized 
by the null vector v. which is invariant under it and the space part of which 
form::; with the two other vectors w. and lit three mutually orthogonal vectors in 
ordinary space. The two vectors w, and Vt are normalized, v1 is invariant under 
A. while the vector v. is added to w. upon application of A. . The ·result of the 
application of A, to a \'ector which is linearly independent of 11, , w. and lit is, 
as we saw, already determined by the expressions for A.v. , A,w. and A,vt . 

The A.(-y) which have the invariant null vector 11, and also w. (and hence also 
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u1) in common and differ only hy adding to w. diffPrPnt multiples yv. of t•., 
form 1\ ~yclic group wit.h "Y = 0, the unit transformation II$ unity: 

. \,(y)A.(y') = .\.(y + y'). 

The Lorent7. transformation M(a) whirh lravPs v1 and w. invariant but re­
placf's v. by av, (and z. by a - •z,) has thP prop<>rty of transform in~~: A,(y) int.o 

M (a) A.(y )M (a) - • = .\.(cry) . ( +) 

An example of A,(y) and M (a) is 

I 
1 0 0 0 

0 1 "Y "Y 
A.()') = I 

0 -y 1- h 2 -!/ 
10 "Y h2 1 + h 2

1 

II 1 0 0 0 

0 1 0 0 
M(a) = II 

!{a+ a - 1
) !{a- a-1

) 0 0 

.0 0 Ha- a - 1
) Ha + a-1

) 

These LorPntz transformations play an important roie in the representlli iPil!' 
with space like momentum vectors. 

A behavior like ( +) is impossible for finite unitary matrices because the 
characteristic values of M(a)-1 A.(y)M(a) and A,(y) are the same-those of 
A.(ya) = A.(yr thP a•h powers of those of A.(y). This shows very simply that 
the Lorentz group has no true unitary representation in a finite number of 
dimensions . 

C. Decompo,sition of a homogeneous Lorentz transformation into rotations and 
an acceleration in a given direction 

The homogeneous Lorentz transformation is, from the point of view of the 
physicist, a transformation to a uniformly moving coordinate system, the origin 
of which coincided at t = 0 with the origin of the first coordinate system. ' One 
can, therefore, first perform a rotation which brings the direction of motion of 
the second system into a given direction-say the direction of the third axis­
and impart it a velocity in this direction, which will bring it to rest. After 
this, the two coordinate systems can differ only in a rotation. This means that 
every homogeneous Lorentz transformation can be decomposed in the following 
way 17 

(21) A= RZS 

17 Cr. e.g. L. Silberstein, The Theory of Rela.tivity, London 1924, p. 142. 
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where R and S are pure rotation!', (i.e. 
and R« = s .. = I, also H.' = R- 1

, S' 
direction of the third axis, i.e . 

;: 1 

1
1o z •' = II 
" 0 

!io 

0 

1 

0 

0 

R;~ = fl.; = S;c = Sc; = 0 fori ;t!. 4 
s-•) and z is an acceleration in the 

0 o; 
' 

0 
I . 

0 !~ 

b!l a 

b a " ·' 

with a
2 

- b
2 

= 1, a > b > 0. The decomposition (21) is clearly not unique. 
It will be shown, however, that Z is uniquely determined, i.<'. the same in every 
decomposition of the form (21). 

In order to prove this mathematically, we chose R so that in R-1 A = I the 
first two components in the fourth column [14 = [24 = 0 become zero: n-• 
shall bring the vector with the components ;\u , A2, , .\34 into the third axis. 
Then we take l3t = (A~t + A~t + A~c) 1 and Icl = .\H forb and a to form Z; 
they satisfy the equation I!c - lie = I . Hence, the fir;;t threP- components of the 
fourth column of J = z-•/ = z-•n-• ;\will become zero and JH = 1, because of 
J!c - J:c - Jic - J!c = 1. Furthermore, the first three components of the 
fourth row of J will vanish also, on account of J!4 - J!. - J!2 - J!3 = I, i.e. 
J = S = z-• R-

1 
A is a pure rotation . This proves the possibility of the de­

composition (2i). 

The trace of AA' = RZ
2
R-

1 
is equal to the trace of Z2

, i.e. equal to 2a1 + 
2b

1 + 2 = 4a
2 

= 4b
2 + 4 which shows that the a and b of Z are uniquely deter­

mined. In particular a = I, b = 0 and Z the unit matrix if A A' = I, i.e. A a 
pure rotation. 

It is easy to show now that the group space of the homogeneous Lorentz 
transformations is only doubly connected. If a continuous series A(t) of 
homogeneous Lorentz transformations is given, which is unity both for t = 0 
and fort = 1, we can decompose it according to (21) 

(2la) A(t) = R(t)Z(t)S(t). 

It is also clear from the for<>going, that R(t) can be as!-iumed to be continuous 
in t, except for values of t, for which A14 = A24 = .\34 = 0, i.e. for which A is a 
pure rotation. Similarly, Z(t) will be continuous in t and this will hold even 
where A(t) is a pure rotation. Finally, S = z - 'R- 1 A will be continuous also, 
excq)t where A(t) is a pure rotation. 

Let us consider now the series of Lorentz transformations 

(2lb) A.(t) = R(t)Z(t)'S(t) 

where the b of Z(t)' is s times the b of Z(t). By decreasing s from l to 0 we 
continuously deform the set .\1(t) = A(t) of Lorentz transformations into a set of 
rotations Ao(t) = R(t)S(t). Both the beginning Ao(O) = 1 and the end A.(l) = 1 
of the set remain the unit matrix and the sets A,(t) r<>rnain c~ntinuous in t for 
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all values of s. Thi~ last fact is evident for such t for which A(t) is not a rota­
tion: for such t all factors of (21 b) are continuous. But it is true also. for to 
for which .\(to) is a rotation, and for which, hence Z(to) = 1 and A,(to) = A1(to) = 

A(lo). As Z(t) is everywhere continuous, there will be a neighborhood of to 
in which Z(t) and hence also Z(t)' is arbitrarily close to the unit matrix. In 
this neighborhood A,(t) = A(t). S(t) - 1Z(t) - 1Z(t)' S(t) is arbitrarily close to 
A(t); and, if the neighborhood is small enough, this is arbitrarily close to 
A(to) = A,(to) . 

Thus (21b) replaces the continuous set A(t) of Lorentz transformations by a 
continuous set of rotations. Since these form an only doubly connected mani­
fold, the manifold of Lorentz transformations can not be more than doubly 
connected. The existence of a two valued representation18 shows that it is 
actually doubly and not sir9ply connected. 

We can form a new groupu from the Lorentz group, the elements of which are 
the elements of the Lorentz group, together with a way A(t), connecting A(l) 
= A with the unity A(O) = E. However, two ways which can be continuously 
deformed into each other are not considered different. The product of the 
element" A with the way A(t)" with the element "I with the way l(t)" is the 
element A/ with the way which goes from E along A(t) to A and hence along 
Al(t) to A/. Clearly, the Lorentz group is isomorphic with this group and two 
elements (corresponding to the two essentially different. ways to A) of this group 
correspond to one element of the Lorentz group. It is well known/8 that this 
group is holomorphic with the group of unimodular complex two dimensional 
transformations. 

Every continuous representation of the Lorentz group "up to the sign" is a 
singlevalued, continuous representation of this group. The transformation which 
corresponds to" A with the way A(t)" is that d(A) which is. obtained by going 
over from d(E) = d(A(O)) = 1 continuously along d(A(t)) to d(A(l)) = d(A) . 

D. The homogeneous Lorentz group is simple 
• 

It will be shown, first, that an invariant subgroup of the homogeneous Loren~z 
group contains a rotation (i.e . a transformation which leaves x. invariant).­
We can write an arbitrary element of the invariant subgroup in the form /lZS 
of (21) . From its presence in the invariant subgroup f~llows that of S-RZS-~1 

= SRZ = TZ. If X, is t.he rotation by 1f about the first axis, X ,ZX, = z-' 
and X .TZX. - • = X, TX .X .ZX. = X ,T X .z-1 is contained in the invariant 
subgroup also and thus the transform of this with Z, i.e. z-'x ,TX-, also. The 
product of this with TZ is TX ,TX. which leaves x4 invariant. If TX ,TX, = 1 
we can take TY ,TY, . If this is the unity also, TX ,TX, = TY ,TY, and T 
commutes with X. Y. , i.e. is a rotation about the third axis. In this ease the 

·- ·-- ·-----

" Cf. H . Weyl, Gruppentheurie und Quantenmechanik, I st. ed. Leipzig 1928, pagesll0--114, 
. 2nd ed . Leipzig 1931, pages 130--133. It may be interesting to remark that essentially the 
snmc isomorphism has been recognized already by L. Silberstein, I.e. pages 148-157. 
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space like (complex) characteristic vectors of TZ lie in the plane of the first two 
coordinate axes. Transforming TZ by an acceleration in the direction of the 
first coordinate axis we obtain a new element of the invariant subgroup for 
which the space like characteristic vector will have a not vanishing fourth 
component. Taking this for RZS we can transform it with S again to obtain a 
new SRZ = TZ . However, since S leaves X1 invariant, the fourth co~ponent 
of the space like characteristic vectors of this TZ will not vanish and we can 
obtain from it by the procedure just described a rotation which must be con­
tained in the invariant subgroup. 

It remains to be shown that an invariant subgroup which contains a rotation, 
contains the whole homogeneous Lorentz group. Since the three-dimensional 
rotation group is simple, all rotations must be contained in the invariant sub­
group. Thus the rotat.ion by 1r around the first axis X. and also its transform 
with Z and also 

zx .. z-1 -X, = z.x,z-'x .. = Z1 

is contained in the invariant subgroup. However, the general acceleration in 
the direction of the third axis can be written in this form. As all rotations are 
contained in the invariant subgroup also, (21) shows that this holds for all 
elements of the homogeneous Lorentz group. 

It follows from this that the homogeneous Lorentz group has apart from the 
representation .with unit matrices only true representations. It follows then 
from the remark at the end of part B, that these have all infinite dimensions. 
This holds even for the two-valued representations to which we shall be led in 
Section 5 equ. (52D), as the group elements to which the ~sitive or negative 
unit matrix corresponds must form an invariant subgroup also, and because the 
argument at the end of part B holds for two-valued representations also. One 
easily sees furthermore from the equations (52B), (52C) that it holds for the 
inhomogeneous Lorentz group equally welL 

5. REDUCTION OF REPHESENTATIONS UP TO A FACTOR TO 1'wo-VALUED 

REPRESENTATIONS 

The reduction will be effected by giving each unitary transformation, which is 
defined by the physical content of the theory and the consideration of reference 
only up to a factor of modulus unity, a "phase," which will leave only the sign 
of the representation operators undetermined. The unitary operator cor­
responding to the translation a will be denoted by T(a), that to the homogeneous 
Lorentz transformation A by d(A). To the general inhomogeneous Lorentz 
transformation then D(a, A) = T(a)d( A) will correspond. Instead of the 
relations (12), we shall use the following ones. 

(22B) 

(22C) 

(22D) 

T(a)T(b) = w(a, b)T(a + b) 

d(A)T(a) = w(A, a)T(Aa)d(A) 

d(A)d(l) = w(A, l)d(Al) . 
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The w are numbers of modulus l . They enter because the multiplication 
rulf's ( 12) hold for the representatives only up to a factor . Otherwise, the 
dn.tions (22) arc consequences of (12) and can in their return replace (12). 
.VP shall replace the T(a), d(A) by fl(a)T(a) and fl(A)d(A) respectively, for 
which equations similar to (22) hold, however with 

22') w(a, b)= l; w(A, a)= l; w(A, I) ±I. 

A. 
lt is necessary, first, to show that the undetermined factors in the representa­

,ion D(L) can be assumed in such a way that the w(a , b), w(A , a), w(A, I) become 
--apart from regions of lower dimensionality- continuous functions of their 
1rgurnents. This is a consequence of the continuous character of the representa­
.ion and shall be discussed first·. 

(a) From the point of view of the physicist, the natural definition of the 
~ontinuity of a representation up to a factor is as follows. The neighborhood ;; 
>f a Lorentz transformation Lo = (b, I) shall contain all the transforml.\tions 
/, = (a, A) for which I a. - b. I < ;; and I Au, - I ;t I < ;;. The representation 
•1p to a factor D(L) is continuous if there is to every positive number t, every 
10rmalized wave function 'I' and every Lorentz transformation Lo such a neigh­
.>orhood ;; of L0 that for every L of this neighborhood one can find an n of 
modulus l (then depending on Land 'I') such that (u~, u~) < t where 

(23) u~ = CDCLo) - nDCL))'f'. 

Let us now take a point Lo in the group space and find a normalized wave 
function 'I' for which I ('1', D(Lo)'l') I > l/6. There always exists a 'I' with this 
property, if 1('1', D(Lo)'l')l < l/6 then Y, = atp + fW(Lo)'l' with suitably chosen 
a and (3 will be normalized and I (Y,, D(Lo).f) I > 1/6. We consider then such 
~ neighborhood 91 of L0 for all L of which I C'l', D(L)'I') I > 1/12. It is well 
known'g that the whole group space can be covered with such neighborhoods. 
We want to show now that the D(L)'I' can be multiplied with such phase factors 
(depending on L) of modulus unity that it hecomes strongly continuous in the 
region 91 . 

We shall chose that phase factor so that ('1', D(£)'1') becomes real and positi~e. 
Denoting then 

(23') (D(L,) - DCL))'I' = U~, 

the ( U,., U ,.) can be made arbitrarily small by letting L approach sufficiently 
near to L 1 , if L1 is in 91. Indeed, on account of the continuity, as defined 
above, there is an n = e;• such that (u, u) < t if L is sufficiently near to L, 
where 

u = (D(L 1) - e;"D(L))tp. 

"This condition is the "s<'parability" of the group. Cf. e .g. A. Haar, Ann . of Math. , 
34 , 147, 1933. 
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Taking the absolute value of the scalar product of u with 'I' one obtains 

I ('1', D(Lt)'l') - cos KC'f', D(L)tp) - i sin K('l', D(L)'I') I = I (tp, u) I ~ Vt, 
because of Schwartz's inequality. If only vf; < l / 12, the K must be smaller 
than r /2 because the absolute value is certainly greater t.han the real part., and 
both (tp, D(L1)tp) and ('1', D(L)'I') arc real and greater than 1/12. 

As the absolute value is also greater than the imaginary part, we 

sinK< l2vf;. 

On the other hand, 

and thus 

U~ = u + (e;• - l)D(L)'I', 

( U~, U~)' ~ (u, u)1 + I e;. - l I ~ Vt + 2 sin K/ 2 

(U~, U~) ~ 625 t . 

(b) It shall be shown next that if D(L)'I' is strongly continuous in a region 
and DCL) is continuous in the sense defined at the beginning of this section, 
then D(L)Y, with an arbitrary f is (strongly) continuous in that region also. 
We shall see, hence, that the D(L), with any normalization which makes a 
D(L)'I' strongly continuous, is continuous in the ordinary sense: There is to 
every L 1 , t and every Y, a;; so that CU-t, U-t) < t where 

U-t = CD(L1) - DCL)).f 

if L is in the neighborhood 6 of L, . 
It is sufficient to show the continuity of DCL).f where Y, is orthogonal to 'I'· 

Indeed, every Y,' can be decomposed into two terms, .f' = atp + (31/t the one of 
which is parallel, the other perpendicular to 'I'· Since D(L)'I' is continuous, 
according to supposition, D(L)f' = aD(L)'I' + (3D(L)f will be continuous also if 
D(L).Jt is continuous. 

The continuity of the representation up to a factor requires that it is possible 
to achieve that Cu-t, U-t) < t and CuH~, uH~) < t where 

C23a) 

C23b) 

u"' = (DCL,) - n.D(L)).f, 

UH~ = (D(L,) - 0-t~D(L))(Y, + '1'), 

with suitably chosen n's. According to the foregoing, It also is possible to 
choose L and L 1 so close that ( U ~ , U ~) < t. 

Subtracting (23') and (23a) from (23b) and applying D(L)-1 on both sides gives 

(n"' - n"'~)Y, + Cl - nH~)"' = D(L)-1(uH., - u"' - U~) 

The scalar product of the right side with itself is less than 9t. Hence both 
I fl-t - n"'~ I < 3t1 and II - nH~ I < 3t1 or 11 - n"' I < 6t1. Because of 
u"' = u"'- (1 - flt)D(L).Jt, the CUt' Ut)1 < (u"' ' Ut)1 + ll - f.!-t I and thus 
CU-t, U-t) < 49t. 
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This completes the proof of the theorem statl'd un<ll'r (b) . It also ~hows that 
not only the continuity of D(L)<P has !wen arhicnu in the neighborhood of Lo 
by the normalization u,.;cd in (a) but abo that of D(J. )t/1 "·ith l'Yery t/1, i.e., the 

<"ontinuity, of D(l.). . 
It is clear al,.;o that C\Try finite part of tlw group ,.;pace can l>c ro,·Pred by :1 

finite number of nrighhorhood:< in "-hirh D(L) ran he made continuous. It i;; 
Pasy to S<'C that tlw w of (22) will hr also continuous in thl'se neighborhoods so 

that is i,.; po~;;ihlP to make tll('tn continuous, npart from r<'gion,.; of lower dimen­
sionality than their Yarinblc,.; han. In the followinjl; only thl' fact will he used 
that they can lw made rontinuous in tliP nc>if.!:hborhood of any a. b nnd .\. 

B. 

(a) We want to show nc>xt that aliT(a) commute. From (22B) we have 

(24) T(~)T(b)T(a)- 1 
= c(a, b)T(b) 

where 

(24a) 

r(a , b) = w(a, b) / w(b, a) 

c(a, b) = c(b, a) - 1
• 

Tran:<forming (24) with T(a') one obtains 

T(a') T(a) T(b) T(a) - 1T(a') - 1 
= c(a, b) T(a')T(b) T(a') - I 

and hence 

or w(a', a)T(o.' + a)T(b)w(a', a) - 1T(a' + a) -
1 

= c(a, b)c(a', b)T(b) 

or 

(2!l) c(a, b)c(a', b) = c(a + a', b) . 

It follows20 from (25) and the partial continuity of c(a, b) that 

(26) c(a, b) = exp ( 2ll"i t. a.J.(b)) 

and, since thi::;_ is equal to c(b, a) - I = exp(- 2 ... i L: b.j.(a)) 

4 

(Z7) L (a.J.(b) + b./.(a)) = n(a, b) 
·-1 

where n(a, b) is an integer. Setting in (27) forb the vector e(A) the X com~nent 
of which is 1, all the others zero and for J.(e(Al) = -/.A 

/A (a) = n(a, e(Al) + L a./. A, . 
and putting this back into (2i) we obtain 

4 4 

(28) L !.A(aAb. +bAa.) + L: a.n(b, e<•>) + b.n(a, e("
1
) = n(a, b) . 

1' ,).-1 ·-1 

"G. Hamel , Mnth . Ann . 60, 460, 1905, quote-d fmm H . Hahn, Thr11rir tier rrellen Funk­

tionrn . Berlin l!l21 , pages 581-583. 
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Assuming for the components of a and b such values which are transcendental 
both with respect to each other and the /.A (which are fixed numbers), one sees 
that (28) cannot hold except i~ the coefficient of evl'ry one vanishes 

(29) /.A +/A. = 0; n(b, e<•>) = 0, 

so that (26) becomes 

(30) c(a, b) = exp (2Ti .t
1 

/.AaAb.). 

It is necessary now to consider the existence of an operator d( A) satisfying (22C). 
Transforming this equation with the similar equation containing b instead of a 

d( A) T(b)d( A)- WA)T(a)d( A) - 1d( A) T(b) - 1d( A) - 1 

= w(A, b)T(Ab)w(A, a)T(Aa)w(A, b)- 1T(Ab)- 1 = w(A, a)c(Ab, Aa)T(Aa), 

while the first line is clearly d(A)c(b, a)T(a)d(A)- 1 = w(A, a)c(b, a)T(Aa) 
whence 

(31) c(b, a) = c(Ab, Aa) 
I 

holds for every Lorentz transformation A. Combined with 

L (!.Aa.bA - J:,J,~A •• A,u..a.bA) = n'(a, b), 
cA PIJ 

(20) this gives 

where n'(a, b) is again an integer. As this equation holds for every a, b 

/.A = Lf,,.A,.A,.,.; f = A'/A . 
·~ 

must hold also, for every Lorentz transformation. However, the only form 
invariant under all Lorentz transformations are multiples of the F of (10) . 
Actually, because of (29), f must vanish and c(a, b) = 1, all the operators 
corresponding to translations commute 

(32) T(a)T(b) = T(b)T(a). 

It is well to remember that it was necessary for obtaining this result to use the 
existence of d( A) satisfying· (22C) . 

(b) Equation (32) is clearly independent of the normalization of the T(a). 
If we could fix the translation operators in four linearly independent directions 
em, e<2>, e(3), e<4

> so that for each of these directions 

(33) T(ae(~1 )T(be<•>) = T((a + b)e<•>) 

be valid for every pair of nun1bers a, b
1 

then the normalization 

(33a) T(a1e 01 + aaem + aae(3) '+ a4e<41 ) = T(ate01 )T(aae<21 )T(a,e(31 )T(a4e<41
) 

and (32) would ensure the general validity of 

(34) T(a)T(b) = T(a + b) . 
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As the four linearly independent directions ,(I), ... , c14
l we shall take four 

null vectors. If e is a null vt>ctor, there is, according to sPction 3, a homogeneous 
Lorentz transformation21 

A. such that .\.c = 2e. 
We normalize T(e) so that 

(35) d(A.)7'(e)dC\.)- 1 = T(ef 

This is clearly independent of the normalization of d( A.). We further normalize 
for all (positive and negative) integers n 

(35a) d( A.) "T(e)d( A.)-" = T(2"e). 

It follows from this equation also that 

(36) T(2~e)2 = d(A.rT(e) 2d(A.) - • = d(A.rd(A.)7'(e)d(.\.) - 1d(A.)-· = T(2"+ 1e). 

This allows us to normaliz~. for every positive integer k 

(35b) 7'(k-T"e) = T(2- "e)t 

in such a way that the normalization remains the same if we replace k by 2"'k 
and n by n + m. This ensures, together with (36), the validity of 

T(ve)T(J.U!) = T((v + l')e) 

d(A.)T(ve)d(A.) - 1 
= T(2ve) 

(36a) 

for all dyadic fractions v and I'· 

It must be shown that if "• , v,, "•, · · · is a sequence of dyadic fraction8, 
converging to 0, lim T(v;e) = 1. From T(a). T(O) = w(a, O)T(a) it follows that 
T(O) is a constant. According to the theorem of part. (A)(b), the T(ve) , if 
multiplied by proper constants n,. will converge to I, i.e., by choosing an arbi­
trary"'' it is possible to make both (1 - fl.T(ve))tp = u and (1 - fl.T(ve)). 
d( A.) - I 'I' = u' arbitrarily small, by making v small. Applying d( A.) to the 
second expression, one obtains, for (36a), that (I - n.T(2ve})tp = d(A.)tt' is 
also small . On the other hand, applying T(ve) to the first expression one sees 
that (T(ve) - fl.T(2ve))'l' = T(ve)u approaches zero also. Hence, the difference 
of these two · quantities (I - T(ve))tp goes to zero, i.e. T(v,-e)tp converges to. ''I' 
if 111 , "' , "• , • • • is a sequence of dyadic fractions approaching 0. 

Now "• , v2 , v1 , ... be a sequence of dyadic fractions converging to an arbi­
trary number a. It will be shown then that T(v,e) converges to a multiple of 
T(ac) and this multiple of T(ae) will be the normalized 7'(ae). Again, it follows 
from the continuity that there arc such n, that fl,T(v;e)tp converges to T(ae)tp. 
The flj 1T(v;e) - 1!l;T(v;e)tp will converge to co, therefore, as both i and j tend to 
infinity. However, according to the previous paragraph, T((v; - v;)e)tp tf'nds 
to "' and thus n-;tn, tends to 1. It follows that fli

1 converges to a definite 
number fl . Hence n;• . fl,T(v;e)tp converges to flT(ae)<p which will be denoted, 
hrnceforth, by T(ac) . For the T(ae), normalized in this way, (33) will hold, 

11 The index e denotes here the vector e for which A, e = 2e; this A, has no elementary 
diviBOr. 
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~illl'l' if 1'1 ' 112 . IJJ . 

ltdp (:~ua) 
arc dyadic fraction,.; conYcrging to b, ,,-c obtain, with the 

1'(ai!}T(be)<p = lim T((v; + !1;)c)<p = 1'((a + b)c)<p. 
t , j-a:J 

Tlti" nr~ument not only shows tlmt it is possible to normalize the T(ac<t1
) and 

lwncc by (3:3a) the T(n) so that (34) holds for tlwm hut, in addition to this, 
that t h<'~e T(a) will he continuou .;; in the ordinary sense. 

c. 
It is clear that (34) will remain valid if one replaces T(a) by exp (2nla, ci)T(a) 

1dH•rc c i;; an arbitrary q•ctor. This remaining freedom in the normalization of 
T(a) will be used to eliminate thew(,\, a) from (22C). 
Tran~forming (22C) d(.\)T(a)d(.\)- 1 

= w(.\, a)T(Aa) with d(i\-1) one obtains 
on the IPft side w(M, .\)ri(M.\)T(a)w(M, .\)- 1 d(.ll.f.\) - 1 = w(M.\. a)T(M,\a) 
11 hilc the right siJc bPcon1es w( .\ , a)w(.M, .\a)T(M .\a). Hence 

(TI) w(M.\, a) = w(M, Aa)w(.\, a). 

On the other hamJ, the product of two equation:; (22C) with the sam<' A but 
11·ith nand b resp<'rtiHly, in~tead of a yields with the help of (34) 

w(A, a)w(A, b)= w(A(a +b)). 

Hc·nc·t~ 

w( ;\, a) = exp (21ri I a, f( .\)I), 

11 l11~n~ f( .\) i" a ,·crt or which can clPpcnd on .\. Inserting this back into (37) 
onc• obtain~ 

ia,f(i\.f.\)1 = iAa,f(M)I + la,f(A)I + n, 

ia , f(MA)- .\-f(M) - f(A)I = n, 

when· n i:; an intcg<>r whid1 tnust vanish :;inc:c it is a linear function of a. Hence 

(:38) f(M.\) = .\-
1f(M) + f(A). 

If,,.,. c:an show that the most general solution of the equation is 

om f(A) = (A - 1
- l)vo, 

when: v0 i:; a vcdor independent of .\, thew( A, a) will become w(A, a) = exp 
(2Jri I (A - 1 )a, vo l ). Then w( .\, a) in (22C) will disappear if we replace T(a) by 
cxp (21riin, vnl )T(a). 
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Tlw prour t 1!:1 t. (:~!l) i,- a con,-C'q IICIH'I' uf (:3~) i:< ,.:omi'\Yhn t Ia horiou:<. ( hw 1':111 
fir"l eon"i1h·r thl' follo"·ing homog1·m·ou:< J.orcntz tran"formation" 

c, 0 0 s, rt 0 -s~ 0 

0 r, s, 0 0 c~ 0 s2 
X(a,, 'Yt) = II 

' 
Ha2, '}'z) = 

0 0 0 -s, Ct 0 s~ Cz 

s, 0 0 c, 0 St 0 c! 
(40) 

f3 S3 0 0 

-s3 f3 0 0 
Z(al, 'YJ) = 1\ 

0 c3 SJ I 0 

I o 0 s~ CJ 

where c; = cos a;; S; = sin a;; C; = Ch'Y;; S; = Sh)';. .\ll 'thC' X(a, 'Y) co•n­
mute. Let us rhoo:-;c, therefore, t\\·o an.gll's h 1 • 'Yl for which 1 - .\(a,, 'Y•r' 
hal' a reciprocal. It follows then from (38) 

X(a, 'Y) - 1j(X(a,, 'Yt)) + j(X(a, -y)) = X(a,, 'Y,) - 1j(X(a, -y)) + f(.\(cc,. 'Yt)) 

(41) or j(X(a, -y)) = [I - X(a,, -y,)-'r'll - X(a, -y) - 'Jj(X(a,, 'Y,)) 

j(X(a, -y)) = (I - X(a, -y)-1)r•x, 

where vx i!' independent of a, -y. Similar Pquations hold for the f(r{a, -y)) and 
j(Z(a, -y)). Let us denote now X(r, 0) = X; Y(r, 0) = l'; Z(r, 0) = Z. The=-e 
:mticommute in the following sense with t I}(' transformation:< ( 40): 

(42) YX(a, -y)Y = ZX(a, -y)Z = X(a, -y) - 1
• 

From (:38) one C'asily calculates 

j(YX(a, 'Y)Y) = (YX(a, 'Y)-1 + l)j(}') + Yj(X(a, 'Y)) , 

or, because of (41) and (42). after some trivial transformations 

(43) (1 - X(a, -y))(l - Y)(vx - Vr) = 0. 

As a, 'Y can he taken arbitrarily, the first factor can be dropped. This leaYe!' 
(I - Y)(vx - vr) = 0, or that the first and third components of v.r and Vr arC' 
equal. One similarly concludes, howcYer, that (I - X)(vr - v.r) = 0 and' thus 
that the first threC' components of Vx, Vr and also of vr are equal. . 

For 1'1 = "Yz = -y·1 = 0 the transformations (40) are the generator:-: of all 
rotations, i.e. all Lorentz transformations R n~t affecting the fourth coordinatC'. 
As the 4-4 matrix clPment of these transformations is 1, the expression (1 - u - ')v 
is independent of the fourth component of v and (1 - n-')vx = (1 - n-')vr = 

(I - u - ')t·z . It follows from (38) that if j(R) = (1 - R-')vx and f(S) = 
(I - s - •)vx, th<>n j(SR) = (l - R-'g-1)vx . Thus f(R) = (1 - R- ')vx is 
\'!did with thP same llx for all rotations. 

Now 

j(X(a,'Y)R) = R- 1(1- X{a,-y)-')vx + (l- R-')vt: = (l- (X(a,-y)H) - ')t'x. 
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One ea~ily r.ondudes from (38) that the f(E) corresponding to the unit operation 
vanishes andf(A- 1

) = - Aj(A) . Hcncej(R- 1X(a, 'Y) - 1
) = (I - X(a, -y)/l)vx; 

and one concludes further that for all Lorr.ntz transformations .\ = RX(a, 'Y)S, 
(39) holds with Vo = -vx if Rand S are rotations. Howf'V{'r, Pvr.ry homogene­
ous Lorentz transformation can be brought into this form (Section 4C). This 
completes the proof of (39) and thus of w( A, a) = I. 

D. 
The quantitir.s w(a, b) and w( A, a) for which it has just been shown that they 

can be assumed to be I, are independent from the normalization of d(A). We 
can affix therefore an arbitrary factor of modulus 1 to all the d( A), without 
interfering with the normalizations so far accomplish<>d. In consequence 
hereof, the ensuing discussion will be simply a discussion of the normalization 

FIG. 2 

of the operators for the homogeneous Lorentz group and the result to be obtained 
will be valid for that group also . 

Partly because the representations up to a factor of the three dimensional 
rotation group may be interesting in themselves, but more particularly because 
the procedure to be followed for the Lorentz group can be especially simply 
demonstrated for this group, the three dimensional rotation group shall be taken 
up first . 

It is well known that the normalization cannot be carried so far thatw( A, I) = l 
in (22D) and there arc well known representations for which w(A, I) = ±1. 
We shall allow this ambiguity therefore from the outset. 

One can observe, first, that the operator corresponding to the unity of the 
group is a constant. This follows simply from d(A)d(E) = w(A, E)d(A). 
The square of an op«>rator corresponding to an involution is a constant, therefore. 
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The operator corresponding to the rotation about the axis r. by the angle r, 

normalized so that its square be actually 1, will be denoted by e; e2 = 1.· The 
i are ---apart from the sign - · uniquely defined. 

A rotation R about v by the angle a is the product of two rotations by r 

about e. and ft whrrc e. and r2 arc perpendicular to v and e2 arisrs from et by 
rotation about v with a/2. Choosing for every van arbitrary rt perpendicular to 
v, we can normalize, therefore 

(44) d(R) = ±etit . 

Now d(R) commutes with every d(S) if S is also a rotation about 11 . This is 
proved in equations (24) - (30). The / 11 in (30) must vanish on account of (29). 

l~ 

F1o. 3 

(Also, both R and S can be arbitrarily accurately represented as powers of a 
very small rotation about v). Hence, transforming (44) by d(S) one obtain.~ 

(44a) d(R) = ±d(S)etd(S)-1 -d(S)etd(S)- 1
• 

Now- d(S)e1d(S) - 1 corresponds to a rotation by 1r about an axis, perpendicular 
to v and enclosing an angle f3 with e. , where f3 is the angle of rotation of S. 
Since the square of d(S)e1d(S) - 1 is also 1, (44a) is simply another way of writing 
d(R) = eae, as a product of two e and we see that the normalization (44) i!' 
independent of the rhoice of the axis e. (Cf. Fig. 2). 

For computing d(R)d(T) we can draw the planes perpendicular to the axes of 
rotation of Rand T and usc for d(R) = eRic such a development that the axis ec 
of the second involution coincide with the intersection line of the above-men­
tionrd planes, while for d(T) = leer we choose the first involution to be a rota­
tion about this intersection line (Fig. 3). Then, the product 

(45) d(R)d(T) = ±eRecicer = ±eRer 

17S E. WW~ Ell 

will antomatic:.llly !tan• tl11' nonnalization ~·orrr,.:ponding to (44). This shows 
that the operntor,.: norm:-.lizrd in (44) giYe a n·pn'"''ntation up to the sign. 

For til(' Lorentz group. I he proof can br p!'rfonnrd along th!' same line, only 
t.he underlying J!;('()JlH'I rica I faCts are le,.:s oln·iou,.; . Let .\ he a Loren! z t ran;;­
formation without 1'11•nwntarv diYisors with thf' (·ham!'!Pristic Yalucs /''. c - ~•>, 
/"r, (' - ~. a:ld the l'!taradf'ri,.;ti~ \"!'ctors v,. ''2 = ,.7. va, r·~, a-; described 'in scd.ion 
4B. 

\r!' want .to rnakr .\ = .liN with .ll~ = N~ = I. For .LV = Jf. we havr 
/I.NAN = 1 and tllll" _\ ,\" .\ = N. Setting -,..·v, = L a;dlt, 11·cohtain .L'V.\v, = 

k 

L x,_a;kh,l'; = L a,(-11(- . Beenu:;e of lht linear independence of the Ilk thi,.: 
arHounts to A;A~o<X;k = a,,_.: all a;t arc Z!'ro, l'Xcept those for which X;Xk = 1. .\" 
in none of t he cases (a) , (IJ) , (1'), (d) of ,;cdion 4B is X1 or X2 reeiprocal to one of 
t II!' last two X, the \"!'!:(or,.: t't and 112 will he transfornwd hy N into a linear com­
hi nat ion of v1 and t'2 ag:-.in , and the sanw holds for v3 and 111 . Thi~ means that N 
<'an be considered :-.s the product of two transformations N = N,N

1 
, the first. 

in the VtV~ plan!' , thr se1·ond in the V3V4 plan!'. (Inst!'ad of 111112 plane one really 
,;hould say 111 + v~ , iu. - iv2 plane, as v1 and 112 arc~ complex t lwmselves. Thi;; 
11·ill be mr.ant always by rJ,v2 planr, etc.). Tlw sanw holds for 1lf also. 

Both N, and N 1 tllll"'t ,.;atisfy the first and third condition for Lorentz tran:;­
formations (cf. 4A) and both ddcrminants must. he either I, or -l. Furt.her-
111!11'<' , tlw sf!uarc of both of th!'m nwst lw unity. 

If hoth determinants 11·cr!' +I, theN, had to lw unity it:;clf, \\·hilc 1V, could 
lw the unity or a rotation by 1r in the v,v2 pbn!' . Thus 111 , 112 , v3 • 11, would be 
<:hara!'!erist ic vectors of N its!'! f. 

If both determinants arr -I (this will turn o11t. to be the ca:;c), N, is are­
flect ion on a line in I he 111v2 plane and N, a reflection in the 11311, plane, inter­
t·hang:ing lla and v1 . In this case "•, t'2, V3, u4 \rould not all be charactcristie 
VPctor,; of N. 

If Vt, 1!2. va, ll4 an· ~ ~ haraderist. ic \'ecton; of N, t.hcy :-.re charactcristir. \"!'dors 
of .1f = .\1\' also. Tltr.n hot h M and N would hr. l'ithrr unity, or a rotation by 11" 

in the v1v2 plane. If hot h of tlwm were rotations in t hr r•1r•2 planr., their product .\ 
would he the unity which we want to exclude for thr. present. We cancxcludc 
the remaining cases in which the determinants of N, and N, arc +I by furthrr 
stipulating that ncithN M nor N shall be the unity in the decomposition ,\ = 
ilfN. 

Hf•ncc N i:; the product. of a reflection in the v.v2 plane 

( 46a) Ns; = s; , tv·s, = -s, 

"h1:re s, and s; arc t.wo pnp!'ndicular rral n~cton; in tlw r·
1
v

2 
plane 

(461>) s: = ,/ ·,,, + c- '"v2 , s, - i(/',,, - ,.-•·,2). 
;:tnd of a rdll'l't ion in tlw llall4 plane 

(4fic) Nt; = t; , Nt. -l.' 
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when~ a~ain t,. , t; are real vectors in the v3v4 plane, perpendicular to each other, 
t,. being ~<pare-lih, t; time-like: 

(46d) t; = d'v3 + ~·-·v. , t,. = e'v3 - r.- •v •. 

TIJU::; N becomes a rotation by 1r in the purely sparf' like s,t,. plane. The M 
can be calculated from M = AN 

Ms; = ANs: = As; = e'· +~'"'v 1 + e-•·-2'"'v2 

!c2'.,(s; -is,) + !e-2'.,(s; +is,) = cos 2-y-s; +sin 2-y -s, 

M s, = sin 2-y. s; - cos 2-y. s, 

Mt; = ANt; = At; = tt+,xv3 + e-,.-zxv4 

(46e) 

1 2x ( ' + ) 1 - 2x ( 
1 

) Ch ' S 
2 e t,. t,. + 2 e t,.- t,. = 2x-t,. + h 2x -t,. 

Mt,. = -Sh 2x -t;- Ch 2x-t,. . 

Thus M also becomes a p~oduct of two reflections, one in. the VtVt = s;s, the 
other in the v3v4 = t;t,. plane. This completes the decomposition of A into two 
involutions. One of the involutions can be taken to be a rotation by 1r in an 
arbitrary space like plane, intersecting both the v1v2 and the V3V4 planes, as the 
freedom in choosing v and IL allows us to fix the lines s, and t,. arbitrarily in 
those planes. The involution characterized by (46) will be called N,,. hence­
forth. The other involution M is then a similar rotation, in a plane, however, 
which is completely determined once the s,t,. plane is fixerl. It will be denoted 
by M.,. (it is, in fact M,,. = N,+., •+x)- One sees tlu:i complete analogy to the 
three dimensional case if one remf'mbers that "Y and x are the half angles of 

rotation. 
The d(M) and d(N) so normalized that their square:; be 1 shall be denoted by 

dt(M,,.) and dt(N,,.). We m11st show that the normalization for 

(47) d(A) = ±dt(M,,.)d1(N,,.) 

is indcpendrnt of v and IL· For this purpose, we transform 

(47a) d(A) = ±d,(Moo)d,(Noo) 

with d( At) where At has the same characteristic vectors as A but. different 
characteristic values, namely c", e- •·, e" and e-". Since AtMooA~t = M.,. and 
AtNooA~ 1 = N,,. we have d(At)dt(Moo)d(A,)-1 

= wdt(M,,.) where w = ±1, as 
the squares of both sirlcs are I. Hence, (47a) becomes if transformed with 

d(At) just 

(47b) d(A 1)d(A)d(At)- 1 
= ±d,(M,,.)dt(N,,.). 

The normalization (47) would be clearly independent of v and J.l if d(A,) com­
muted with d(A). 

Again, the argument contained in equations (24)-(30) can be applied and 

shows that 

(48) d(At)d(A)d(At) - 1 = exp (27rif(2"YIL - 2x11))d(A) 

180 E. WIGNER 

holds for t~vcry -y, x, 11, IL- However, the exponPutial in (48) must be 1 if "Y = 0; 
11 = 21r/ n; x = !nJ.I since in this ca.c;e A = A~. Thus exp (-47r\fll) = 1 for 
every IL and f = 0 and the left side of ( 4 7b) can be replaced by d( A); the normali­
zation in (47) is indcpendl'nt of 11 and J.l. 

In order to have the analoJ?;ue of (45), we must show that, having two Lorentz 
transformations .\ = M,,.N,,. and I = P.,fJQo/J we can chose v, IL and a, (J so 
that N,,. = P .. 8 i.e. that tlw plane of rotation s,t,. of N,,. coincide with the plane 
of rotation of P .. 8 . A~ the latter plane can be made to an arbitrary space­
like plane intersed.ing both the WJWt and the W3W4 planes (where w,, Wt, w3, w4 

are the characteristie vector~ of /), we must show the existence of a space like 
plane, intersecting all four planes VtVt, V3V4, w,w2, W3W4. Both the first and 
the second pair of planes arc orthogonal. 

One can shuwn thut if A and I have no common null vector as characteristic 

"We first suppose thr Pxistence of a. real plane p intersecting all four planesv1v1 , "•"•, 

w,w, , w,w, . If p intl' rsect.s IJ 1V1 the plane q perpendicular top will intersect the plane "•"• 
perpendicular to v,v, . Ind!'ed, the line which is perpendicular to both ~ "•d 11 1111 (there is 
such a line asp and v, v, intP.rscf't) is f'ontained in both q and v,v, . This t~ .. JWII that if there 
is a plane intf'rsecting all four planes, the plane perpendicular to this will have this property 
also. 

.... tot 

Fig. 4 gives a projection of all lines into the .z,.z, plane. One sees that there are, in 
general, two intersecting planes, only in exceptional cases is there only 01re. 

If the plane p-the existence of which we suppose for the time being-contains a time-like 
vector, q will be space~like (Section 4B, (1)). Both in this c_ase and if p contains only 
space-like vectors, the theorem in the text is valid . There is a last possibility, that pis 
tangent to the light cone, i.e . contains only space like vectors and a null vector 11. The 
space-like vectors of pare all orthogonal to v, otherwise p would contain time-J:ke vectors 
also. In this case the plane q, perpendicular to p will contain v also. The line in which 
"•"• intersects pis space-like and orthogonal to the vector in which v,v, intersects p. The 
latter intersection must coincide with v, therefore, as no other vector of pis orthogonal to 
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vector, there are always two plane~ , perpendicular to pach othPr whil'h intl'r,.:<'cl. 
four such planes. One of these i,.: always space likr. It is possihh~ to as:<tllllf', 
therefore, that both N,,. and P,.8 are thP rotation by 1r in this plan<·. Thus 

(49) 
d( ,\)d(l) ±d1 (M .,.)d1 (N ,,.)rl1 ( P .. s)d, (Q .. s) 

±d,(M.,.)ri,(Q,3), 

and d( A)d(/) has the normalization rorrp:-ponding to t hr prodtH't of I wo involu­
tions, neither of which i:; unity. This is, howewr, also thr normalization 
adopted ford( AI). Hence 

(49a) d(A)d(l) = ±d(Al) 

holds if A, I and AI are Lorentz transformations corrc,;pondin!!; to onf' of t lw 
cases (a), (b), (c) or (d) of section 4B and if A and I have no common character­
istic null vector . In addition to this (49a) holds also, assnn1inJ.!; d(E) = ± I. 
if any of the transformations A, I, AI is unity, or if both characteristic null 
vectors of A and I are equal, as in this case the planes 113v4 and 11J3W4 and al"'o 
v,v2 and w,w2 coincide and tlwre arc many space like planes int.crsl'ctinJ!: all. 

If A and I have one common characteristic null vector, v3 = w3 , the others, V4 and 
trc respectively, being different, one can use an aritifice to prove ( 49a) whil'h will 
be used in later parts of this section extensively. One can find a Lorrntz 
transformation J so that none of the pairs I - J; A - I J; AI J - J - 1 has a 
common characteristic null vector. This will be trul', e.g. if the charaderistic 
null vectors of J are vc and another null vector, differPnt from Vs, W4 and the 
characteristic vectors of AI. Then (49a) will hold for all the above pairs and 

d( A)d(l) = ±d( A)d(I)d(J)d(F') = ±d( A)d(l J)d(F 1
) 

±d(AIJ)d(F1
) = ±d(Al). 

any spt. ~e-like veetor in it. Henre, vis the intersection of p and v,v, and is rither r·, or r•, . 
One can conclude in the same way that v coincides with either w, or w, also and wr· set> that 
if pis tangent to" the light cone the two transfonnations A and I haVf~ a common null vector 
as characteristic vector . Thus the theorem in the text is corre<'t if we can show the cx.il!t ­
ence of an arbitrary real plane p intersecting all four planes v1v, , v,v, , w 1w, , w,w, . 

Let us draw a coordinate system in our four dimensional space , the x 1x, planr of whi<'h is 
the v,v, plane, the x, and x, axes having the directions of the vectors r•, - v, nnd ,., + ''• , 
respectively . The three dimensional manifold M characterized by x, = I intcrsc.l'ts all 
planes in a line, the v,v, plane in the line at infinity of the x,x, plane, the v,v, plan!' in the x, 
axis . The intcrsc<'tion of M with the w,w, and w,w, planes will be Iilli'S in M with dirertions 
perpendicular to Pach other . They will have a common normnl through the ori~~:in of M, 
intf'rsecting it at ref'ipro<'al distances. This follows from their orthogonality in thP four 
r..limensional space . 

A plane intPrsccting t•1r.•2 and v,v, will be a line parallel to x 1x, throu~~:h the x, axi!< . If W<' 
r..lrnw Ruch lines through all points of the line corresponding to w,w,, th!' dirPrtion of thi~ 
linf' will turn hy .. if we 11:0 from one end of this line to the other . Similarly, thr lines~~:oing 
through the linP corresponding to w,w, will turn by .. in th!' opposite direction . Thus the 
first set of lines will havf.' nt least one line in common with the second set and this line will 
correspond to a real plane intersecting all four planes"'"' , v,,,, , w,w, , w,w, . This <'Om­
plt>tes the proof of the theor!'m referred to in the text. 
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This completes the proof of (49a) for all cases in which A, I and .\I have uo 
elementary divisors. It is evident also that we can rPplace in the nor111alization 
(47) the d1 by d. One also concludes easily that. d(lll/ is in lhP >':tmc representa­
tion either + 1 for all involutions M, or -1 for eYcry inYolution. The forml'r 
ones will give real representations, the latter onrs rcprcf':Pntation,; up to the 
sign. 

If A has an elementary divisor, it can be expressed in the v. , u•, , z. , v1 Hchemc 
as the matrix (Cf. ('qll. (20)) 

' 1 1 ~ 0 l, 
ilo 1 1 o ,,. 

A.= I I ,,o 0 1 0 : 

/iO 0 0 1 I 
and can be written, in the same scheme, as the produet of I wo Lorentz trans­
formations with the square 1 

I· 1 -1 1 
0 ~1111 0 0 0 ; 

,I l ,, 
: o -l I 0 0 -1 0 0 ji A.= MoNo= j I. 

~.II I 0 0 1 o I o 0 I 

l o 0 0 -1 ,0 0 0 

We can normalize therefore d(A.) = ±d(M0)d(No). If A c:...t be written as the 
product of two other involutions also A. = M 1N 1 the corresponding normaliza­
tion will be identical with the original one. In order to prove this, let us con­
sider a Lorentz transformation J such that neither of the Lorentz tram;forma­
tionsJ, NoJ, N,J, A.J = MoNoJ = M,N,J have an elementary divisor. Since 
the number of free parameters is only 4 in case (e), while 6 for case (a), this i!' 
always possible. Then, for ( 45a) 

d(Mo)d(No)d(J) = ±d(Mo)d(NoJ) = ±d(MoNoJ) 

= ±d(M,N,J) = ±d(M1)d(N1J) = ±d(M1)d(N1)d(J) 

and thus d(Mo)d(No) = ±d(M,)d(N1). This shows also that even if AI is in 
case (e), w( A, /) = ±I, since ( 49) leads to the correct normalization. 

If A = MN has an elementary divisor, I not, d(A)d(l) still will have the 
normalization corresponding to the product of two involutions. One can find 
again a J such that neither of the transformations J .. r', IJ, NIJ, MNIJ, 
have an elementary divisor. Then 

d(M)d(N)d(l) = ±d(M)d(N)d(I)d(J)d(J)- 1 

= ±d(M)d(N)d(IJ)d(J)-1 = ±d(M)d(NIJ)d(J)- 1 

= d(AIJ)d(F 1
) . 

The last product has, however, the normalization corresponding to two involu­
tions, as was shown in (49a), since neither AIJ, nor J - ' is in case (e). 
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Lastly, we must consider the case whm both .\and I may ha\'C an dementary 
Jivisor. In t.his rase , we need a .J s11ch that neither of J, J - 1

, I J have one. 
Then, because of the generalization of (4!la) just prond, in which the first. 
factor is in,C:J.Se (e) 

d(A)d{l) ±d( A)d{l)d(.J)d(r•) = ±d( A)d{l J)d(r•) 

±d( AI J)d(r1
) 

which has the right normalization. 
This completes the proof of 

(50) w(A, I) = ±l 

for all possible cases, and the normalization of all D(L) of a representation of the 
inhomogeneous Lorentz group up to a factor, is carried out in s.uch a way that the 
normalized operators give a representation up to the stgn. It is even carried 
so far that in the first two of equations (22) w = 1 cart be set. We shall consider 
henceforth systems of operators satisfying (7), or, more specifically, (22B) anrl 
(22C) withw(a, b) = w(A, a)= 1 and (22D) withw(A, I)= ±l. 

E. 
Lastly, it shall be shown that the renormalization not only did not spoil the 

partly continuous character of the representation, attained at the first normali­
zation in part (A) of this section, but that the same holds now everywhere, 
in the ordinary sense for T(a) and, apart from the ambiguity of sign, also for 
d(A). For T(a) this was proved in part (B)(b) of this section, for d(A) it means 
that to every A1 , t and 'I' there is such a & that one of the two quantities 

(51} ((d(A.) =f= d(A))tp, (d(A.) =f= d(A))tp) < E 

if A is in the neighborhood & of A1. The inequality (51) is equivalent to ... 
(5la) ., ((1 =f= d(Ae))'l', (1 =f= d(Ao)}tp) < E, 

where Ao = Al1 A now can be assumed to be in the neighborhood of the unity. 
Thus, the continuity of d( A) at A = E entails the continuity everywhere.23 

In fact, it would be sufficient to show that the d(X), d(Y) and d(Z) correspond­
ing to the transformations (40) converge to ±1, as a, -y approach 0, since. one 
can write every transformation in the neighborhood of the unit element as a 
product A= Z(O, -y3)Y(O, -y2)X(O, "Y•)X(a., O)Y(as, O)Z(a3, 0) and the param­
eters a1, ... , -y3 will converge to 0 as A converges to 1. However, we shall 

. carry out the proof for an arbitrary A without an elementary divisor. 
Ford(A), equations (46) show that as A approaches E (i.e., as -y and x apprt>ach 

zero) both Moo and N 00 approach the same involution, which we shall call K . 
Let us now consider a wave function Y, = 'I' + d1(K)'I' or, if this vanishes Y, = 
'I' - d.(K)tp. We have d1(K)Y, = ±Y,. If A is sufficiently near to unity, 

11 J. von Neumann, Sitz. d. kon . Preuss. Akad. p. 76, 1927. 
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d1(N00)Y, will be sufficiently near to nd.(K)l/t = ±fNt and all we have to show 
is that n approaches ±I. The same thing will hold for d1(M00) . Indeed from 
d1(N00)Y, - 111/t = u it follows by applying d.(Noo) on both fiides 1jt - 1121/t = 

(d1(N00) + n)u. As (u , u) goes to zero, n must go to ±1. and consequently, 
also d.(Noo)l/t goes to Y, or to -t/1.. Applying d.(Moo) to this, one sees that 
d1(Moo)d.(Noo)l/t = d(A)l/t goes to ±1/t as A goes to unity . The argunH:'nt 'given in 
(A)(b) shows that this holds not only for Y, but for every other function also, 
i.e. d(A) converges to± I = d(E) a.<; A approachc" E. "Thus d(A) i,.; continuous 
in the neighborhood of E and hence f'verywhere. 

According to the last remark in part 4, the operators ±d(A) form a single 
valued representation of the group of complex unimodular two dimensional 
matrices C. Let us denote the homogeneous Lorentz transformation which 
corresponds in the isomorphism to C by C. Our task of solving the equs. 
(22) has been reduced to finding all single valued unitary representation of the 
group .with the elements [a, C) = [a, I) [0, C), the multiplication rule of which is 
[a, C.) [b, C2J = [a + C.b , C.C,). For the representations of this group D[a, C) = 
T(a)d[C) we had 

(52a) 

T(a)T(b) 

d[C)T(a) 

T(a +b) 

T(Ca)d[C) 

d[C.)d[C,) = d[C.C,). 

It would be more natural, perhaps, from the mathematical point of view, to use 
henceforth this new notation for the representations and let the d depend on the 
C rather than on the Cor A. However, in order to be reminded on the geometri­
cal significance of the group elements, it appeared to me to be better to keep the 
old notation. Instead of the equations (22B), (22C), (22D) we have, then 

(52B) 

(52C) 

(52 D) 

T(a)T(b) = T(a + b) 

d(A)T(a) = T(Aa)d(A) 

d(A) d(l) = ±d(Al). 

6. REDUCTION OF THE REPRESENTATIONS OF THE INHOMOGENEOUS LoREN':Z 

GROUP TO REPRESENTATIONS OF A "LITTLE GROUP" 

This section, unlike the other ones, will often make use of methods, which 
though commonly accepted in physics, must be further justified from a rigorous 
mathematical point of view. This has been done, in the meanwhile, by J . 
vori Neumann in an as yet unpublished article and I am much indebted to him 
for hi,, cooperation in thi~ respect and for his readiness in communicating his 
results to me. A reference to his paper24 will be made whenever his work is 
necessary for making inexact considerations of this section rigorous. 

"J. vQn Neumann, Ann. of Math. to appear shortly . 
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A. 
Since the translation operators all commute, it is possible14 to introduce such a 

co<irdinate system in Hilbert space that the wave functions <P(p, !) contain 
momentum variables P1 , P2 , p3 , P• and a discrete variable ~so that 

(53) T(a)<P(P, !) = e'I"·•'<P(p, !) . 

p will stand for the four variables Pt , P2, Pl, P• . 
Of course, the fact. that the Lorentzian scalar product enters in the exponent, 

rather than the ordinary, is entirely arbitrary and rould be changed by changing 
the signs of P1 , P2 , P3 . . 

The unitary scalar product of two wave functions is not yet completely defined 
by the requirements so far made on the coordinate system. It can be a. sum­
mation over I and an ar~itrary Stieltjes integral over the components of p: 

(54) (Y,, <P) = ~ f Y,(p, l)*tp(p, I) df(p, ~). 

The importance of introducing a wetght factor, depending on p, for the scalar 
product lies not so much in the possibility of giving finite but different weights to 
different regions in p space. Such a weight distribution g(p, !) always could be 
absorbed into the wave functions, replacing all <P(p, I) by vg(p,!) ·<P(p, 1). The 
necessity of introducing the J(p, n lies rather in the possibility of some regions 
of p having zero weight while, on the other hand, at other places points may have 
finite weights. On account of the definite metric in Hilbert space, the integral 
J df(p, I) over any region r, for any I, is either positive, or zero, since it is the 
scalar product of that function with itself, which is I in the region r of p and the 
value I of the discrete variable, zero otherwise. 

Let us no·.v define the operators 

{55) P(A)<P(p, I) = <P(A- 1p, 1). 

This equation defines the function P(A)<P, which is, at the point p, ~.as great, as 
the function ''"' a.t the point A - 1p, 1. The operator P(A) is not necessarily uni­
tary, on account of the weight factor in (54). We can easily calculate 

P(A)T(a)tp(p, I) = T(a)<P(A-1p, I) = e'W'.,·•1<P(A-1p, 1), 

T(Aa)P(A)<P(p, I) = e'1"·Ael P(A)<P(P, I) = e'1, ·'-1<P(A - 1p, 1), 

so that, for I A - 1p, a I lp, Aal, we have 

(56) P(A)T(a) = T(Aa)P(A). 

This, together with (52C), shows that d(A)P(A)-1 
= Q(A) commutes with all 

T(a) and, therefore, with the multiplication with every function of p, since the 
exponentials form a complete set of functions of P• , P2, PJ, P•. Thus 

(57) d(A) = Q(A)P(A), 
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whPre Q(.\) is an opPralor in thP spacP of the I alonP~4 whil'h can dcpPnd, how­
PH'r, on the particulnr ,·altu• of pin the underlying spaeP: 

{57 a) Q(A)<P(p, I) = L Q(p, A)r,<P(]J , '11) . 

Here, Q(p, A)r. are thP components of an ordinary (finite or infinite) matrix, 
depending on p and .\ . From (57), we obtain 

d(A)<P(p, I) L Q(p, A)r,P(A)"'(p, '11) 
' 
L Q(p, A)r.<P(A- 'p, 71). 

(57b) 

As the exponentiab form a complete set of functions , " ·e can approximate the 
operation of multipli ration with any function of P•, P2, pa, P• by a linear 
combination 

(!58) J(p)'{' = L Cn T(an)l{'. 

If we choosef(p) to be such a function that 

{58a) f(p) = f(Ap) 

the operation of multiplication with f(p) will commute " ·iih all operations of 
the group. It commutes evidently with the T(a) and the Q(p, A), and on 
account of (56) and (58), (58a) also with P(A). Thus the operation of (58) 
belongs to the centrum of the algf'bra of our representation . Since, however, 
we assume that the representation is factorial (cf. 2), the centrum contains only 
multiples of the uni~y and 

(58b) J(p)<P(P. n = C<P(p, n. 
This can he true only if 'I' is different from zero only for such momenta p which 
l'an be obtained from each othPr by homogeneous Lorentz transformations, 
because f(p) needs to he equal to f(p') only if there is a ,\ which brings them 
into each other. 

It will be sufficient, henceforth, to consider only such representations, the 
wave functions of which vanish except for such momenta which can be obtained 
from one by homogeneous Lorentz transformations. One can restrict, then, 
the definition domain of the 'I' to these momenta. 

These representations can now naturally be divided into the four classes 
enumerated in section 3, and two classes contain two subclasses. There will be 
representations, the wave functions of which arc defined for such p that 

(1) lp, PI = p > 0 (3) p = 0 

(2) I p, vI = P = o; v ~ o (4) lp. PI = p < 0. 

The classes I and 2 contain two sub-classes each . In the positive subclasses 
P + and 0+ the time componP-nts of all momenta are p4 > 0, in the negative 
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~-<uhclas;;('s J> _ and 0_ thr fourth components of the momenta arr negative. 
( ' la"s ~3 will be denoted by Oo . If Pis negative, it has no index. 

From the rondition that d(A) shall be a unitary operator, it is possible to 
infer" that OIH' can introduce a coordinate system in Hilbert spare in such a 
way that 

(59) 1 df(p, ~) = j, df(p, '1) 

if Q(p, A)r. ~ 0 for the p of the domain r . Otherwise', ,. is an arbitrary domain 
in the space of P• , r-·2 , PJ , P• and ,\r is the domain which contains Ap if r con­
tains p. Equation (59) holds for all r, 11, except for such pairs for which 
Q(p, A)r. = 0. It is possible, hence, to decompo:;e the original representation 
in such a way that (59) holrls within every rcdurf.'d part. Neither T(a) nor 
d( A) can have mat.rix elemcrfts bet ween such 11 and r for which (59) docs not hold. 

In the third class of rrprcsPntations , the variable p ran be dropped entirely, 
and T(a)ip(r) = ip(r), i.e., all wan functions arc invariant under the operations 
of the invariant subgroup, forml:'d by the translations. The equation T(a)ip(r) 
= ip(r) is an invariant charactPrization of the reprl:'sentations of the third class, 
i.e., a characterization which is not affretcrl by a similarity transformation . 
Hence, the reduced parts of a representation of class 3 also belong to this class. 

Since no wave function of the other Classes can rl:'main invariant under all 
translations, no representation of the third class can be· contained in any repre­
sentation of one of the other classes. In the other classes, the variability 
domain of p rPmains three dimensional. It. is possible, therefore, to introduce 
instrarl of P• , P2 , PJ , Pt three independent variables. In the cases 1 and 2 with 
which we shall be concerned most, p1 , p2 , p3 can be kept for these three variables. 
On account of (59), the Sticltjes integral can be replaced by an ordinary integraf4 

OYer these variables, the weight factor being I Pc r' = (P + p~ + p~ + p~)-t 

(59a) 1~. ipl = ~ f f L: Y,(p, r)*ip(p, t) IPcl-•dp.dpozdpa . 

In fact, with the weight factor I p4 1-• the weight of the domain r i.e., W, 

f f jl Pt r· dp, dp2 dp3 is equal to the weight of the domain wAr as required
25 

by (59). Having the scalar product fixed in this way, P(A) becomes a unitary 
operator and, hence, Q(A) will be unitary also. 

Wr want to give next a characterization of the representations with a given P, 
which is indcpenrlf.'nt of the coordinate system in Hilbert space. It follows from 

"The in variance of integrals of the character of (59a.) i·s frequently rna.de use of in 
rela.tivity theory. One can prove it by ca.lculating the Jacobian of the tra.nsforma.tion 

p: = A;,p, + A;2p1 + A;,p1 + (P + p~ + p~ + p!)t (i- 1, 2, 3) 

which comes out to be (P + Pi + p~ + P!)t(P + p;' + p;' + p;')-1. Equ. (59a) will not be 
used in later parts or this paper. 
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(53), that in a representation with a given P the wavP functions Y, 1 , Y,1 , 

which are different from zero only in a finite domain of p, form an everywhere 
dense set, to all elements of which the infinitesimal operators of tran!':lation can 
be applied arbitrarily often 

lim h-"(T(hr) 

(60) h-0 

l)"Y, = limh- "(c;AIP·' 1 - t)"Y, 
h-o 

= i"{p, el"l/t, 

where e will be a unit vector in the direction of a coordinate axis or oppositely 
directed to it. Hence for all members Y, of this everywhere dense sl:'t 

(61) lim L ± h- 2(T(2hck) - ZT(hek) + 1)1/t = (p~ + p~ +pi- p!)y, = -PY,, 
~-o k 

where e. is a unit vector in (or opposite) the eh coordinate axis and the ± is + 
for k = 4, and - for k = 1, 2, 3. 

On the other hand, there is no 'I' for which 

(6la) lim L ± h-2(T(2hek) - 2T(hek) + l)ip 
~-o k 

if it exists, would be different from -Pip. Suppose the limit in (til a) exists and 
is ·- P'l' + ip'. Let us choose then a normalized 1/t, from the above set, such that 
(1/t, ip') = & with & > 0 and an h so that the expression after the lim sign in 
(61a) assumes the value -Pip+ ip, + u with (u, u) < o/3 and also the expression 
after the lim sign in (61), with oppositely directed ek becomes ~ PY, + u' with 
(u', u') < &/3. Then, on account of the unitary character of T(a) and because 
of T( -a) = T(a)-1 

("'· ~ ± h-
2
(T(2hek) - 2T(het) + l)ip). 

= {~ ± h-
2
(T(-2hek)- 2T(-het) + l)Y,, ip}• 

or 

- P(Y,, ip) + (1/t, ip') + (1/t, u) - P(Y,, ip) + (u', ip), 

which is clearly impossible. 
Thus if the lim in (61a) exists, it is -Pip and this constitutes a characterization 

of the representation which is independent of similarity transformations. 
Since, accorr!ing to the foregoing, it is always possible to find wave functions 
for a representation, to which (61a) can be applied, every reduced part of a 
representation with a given P must have this same P and no representation 
with one P can be contained in a representation with an other P. The same 
argument can be applied evidently to the positive and negative sub-classes of 
class 1 and 2. 
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B. 
EvNy automorphism L ---> L o of the group allows us to construct from one 

rrpresentation D(L) another represmtation 

(62) D 0 (L) = D(U). 

This principle will allow us to re:-;trict ours~lves, for representations with finite, 
positive or negatiw P, to one value of P which' can be taken respectively, to be 
+ l +and - l . It will also allow in cases 1 and 2 to construct the representations 
Ol the nrgatiYe SUh-rfasses OUt of representations Of the positive SUn-classes. 

The first automorphism is a0 
= aa, A 0 = A. Evidently Equs. (12) are invari­

ant under this transformation. If we set, however, 

T 0 (a)<P .·= T(aa)<P; d0 (A)<P = d( A)<P, 

then the occurring p 

To(a)<P = T(aa)<P = e'IP·""l"' = e'lap ,oJ"'' 

will be the p occurring for the unprimed representation, multiplied by a. This 
allows, with a real positive a, to construct all representations with all possible 
numerical v<J.Iucs of P, from all representation with one numerical value of P. 
If we take a negati\·e, the representations of the negative sub-classes are oht.ained 
from the representations of the positive sub-class. 

In case P = Oo evidently all representations go over into themselves by th~ 
transformation (62). In case P = 0+ and P = 0_ it will turn out that for 
positive a , (62) carries every representation into an equivalent one. 

c. 
On account of (53) and (56), (57), the equs. (52B) and (52C) are automatically 

satisfied and the Q(p, A)r. must be determined by (52D). This gives 

(63) :L Q(p, A)r.Q(A-1p, 1).,.,"'(1-1 A-1 p, 11) = ± :L Q(p, AI)r,"'(r1 r 1p, 11). 
•" " 

Since this must hold for every "'' one would conclude · 

(63a) L Q(p, A)r.Q(A -Ip, 1).,., = ± Q(p, AJ)r,. 

Actually, this conclusion is not justified, since two wave functions must be 
considered to be equal even if they are different on a set of measure zero. Thus 
one cannot conclude, without further consideration, that the two sides of (63a) 
arc equal at every point p. On the other hand,24 the value of Q(p, A)r. can be 
changed on a set of measure zero and one can make it continuous in the neighbor­
hood of every point, if the representation is continuous. This allows then, to 
justify (63a). It follows from (63a) that Q(p, 1 )r, = or, . 
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Let us choose1
" now a basic Po arbitrarily. We can consider then the subgroup 

of all homogeneous Lorentz transformations which leave this po unchanged. 
For all elements X, 'of this "little group," we have 

:L QCpo, x>r,QCpo, ,).,., = ± Q(po, ~'>r" 
(64) ~ 

q(X)q(t) = ± q(Xt), 

where g(X) is the matrix q(X)r. = Q(po, X)r~ · Because of the unitary character of 
Q(A), the Q(po, A)r~ is unitary matrix and q(X) is unitary also. 

If we consider, according to the last paragraph of Section 5, the group formed 
out of the translations and unimodular two-dimensional matrices, rather than 
Lorentz trahsformations, the ± sign in (64) can be replaccJ by a + sign. In 
this case, X and ' arc unimodular two-dimensional matrices and the little group 
is formed by those matrices, the corresponding Lorentz trausformations X, i to 
which leave Po unchanged Xpo = ipo = Po . 

Adopting this interpretation of (64), one can also ~cc , eonversely, that the 
representation q(X) of the little group, together with thP rla~s and P of the 
representation of the whole group, determines the latter representation, apart 
from a similarity transformation. In order to prove this, let us define for every 
p a two-dimensional unimodular matrix a(p) in such a way that the correspond­
ing Lorentz transformation 

(65) ii(p)po = P 

brings Po into p. The a(p) can be quite arbitrary except of being an almost 
everywhere continuous function of p, especially continuous for p = p0 and 
a(po) = 1. Then, we can set 

(66) 
d(a(p)-1)<P(Po, t) = <P(p, t), 

d(a(p))cp(p, t) = <P(Po, t). 

This is equivalent to setting in (58) 

(66a) Q(p, a(p)) = 1 

and can be achieved by a similarity t.ransformation which replaces <P(P, r) by 
L. Q(po, a(p)-

1
)r.<f'(p, 71). As the matrix Q(po, a(p) - 1

) is unitary, this is a 
unitary transformation . It does not affect, furthermore , (53) since it containsp 
only as a parameter. 

A~:..ouming this transformation to be carried out, (66) will be valid and will 
define, together with the d(X), all the remaining Q(p, A) uniquely. In fact, 
calculating d(i\)<P(P, t), we can decompose A into three factors 

(67) A = a(p) . a(p) - 1 Aa(A-1p) . a(A- 1p) - 1 
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The second factor {3 = a(p )-1 A a(,\ -lp) lwlongs int.o t 111' little group : rr(p ) - 1 

A(;(,\ - 1 p)po = a(p) - IA,.,\ - 'p = a(p)- 1p = po . \\'e f':ln write, tll('reforc 
(f. - 'p = p') . 

d(A)tp(p, I) = d(a(p))d({3)d(a(]/)) - 1<P(p, I) 

(67a) = d({3)d(a(p')) - 1tp(po ' n 
= L q(f3)r.d(a(pT')<p(po, '!) = L q({3)r.,tp(p', 'J). . " 

This shows that all representations of the whole inhomogeneou~ Lorentz group 
are equivalent which have the same P and the same representation of the little 
group. Further than this, the same holds even if the representations of the 
little group are not the same for the two representations hllt only r.qui,·alent 
to each other. Let us asstime q,(A) = sq2(A)s-•. Then by replacing tp(p, I) by 
I:. s(r, IJ)<p(p, 17) we obtain a new form of the reprcscnt.ati01~ for which (53) still 
holds but q2({j) for the little group is n~placed by q1({3). Then, by the trails­
formation just described (Eq. (66)), we can bring d(A) for both into the form 
(67a). The equivalence of two rcpr~sentations of the litt.lr. group must. be 
defined as the existence of a unitary transformation which transforms them into 
each other. (Only unitary transformations arc used for the whole group, abo) . 

On the other hand, if the representations of the whole group arc cquival<'nt, 
the representations of the little group ar<' equivalent also : the represPntation 
of the whole group determines the rcprPsPntation of the little group up to a 
similarity transformation uniquely. 

The representation of the little group was definPd as the set of matrices 
Q(po, X)r. if the representation is so transformed that (53) and (66a) hold. 
Having two equivalent. representations D and SDS- ' = Do for both of which (53) 
and (66a) holds, the unitary transformation S bringing the first into the second 
must leave all displacement. operators inYariant. Hence, it must have the form 
(.57a), i.e., operate on the r only and depend on p o~ly as on a parameter. 

(68) Stp(p, r) = L S(p)r.<P(p, ..,). 

Denoting the matrix Q for the two representations by Q and Q0
, the coqdition 

SD(A) = D0 (A)S gives that . 

(68n) L S(p)r.Q(p, A),., = L Q0 (p, A)r.S(A _, p),., 

l1olds, for every A, for almost every p. Setting A = a(p,) we can fet p approach 
p, in such a way that (68a) remains valid . Since Q is a continuous function of p 
both Q(p, :\)and Q0 (p, A) will approach thPir limiting value 1 :t follows that 
t.herr. is no domain in which 

(69) S(p,) = S(a(p,) - 'p,) = S(po) 

wm.ld not hold , i.e ., that (69) holds for almost. every p, . Since all our equation~ 
must hold only for almost every p, the S(p)r, can be assumed to be independent 

192 E. WIONER 

of p and (68a) then to hold for every p also. It then follow:; that the representa­
tions of the little group in D and Do are transformed into each other by Sr •. 

The definition of the little group involved an arbitrarily chosen momentum 
,·ector pu . It is rlcar, however, that the little groups corresponding to two 
different momentum Yectors po and p are holomorphic. In fact they can be 
tran;;forml'd into each other by a(p): If A is an element of the little group 
leaYing p inYariant then a(p)- 1 Aa(p) = {3 is an element of the litt.le group which 
leaYcs p0 invariant. \Ve can see furthermorP from (67a) that if ,\is in the little 
group C"orrcsponding to 71 , i.e. Ap = p thPn the representation matrix q({3) of 
the little group of p0 , corresponding to {3, is identical with the representation 
matrix of the little group of p , corresponding to A = a(p){Ja(p)-

1
• Thus when 

charaeterizing a representation of the whole inhomogeneous Lorentz group by P 
and the representati'Jil of the little group, it is not necessary to say which po is 
left invariant by the little J!:Wilp. 

D. 

Lastly wP shull dl'termine the constitution of the little group in the different 
cases. 

1+. In case l + we can take for po the vector with the componenttl 0, 0, 0, 1. 
ThP little group which leaves this invariant obviously contains all rotations 
in thr space of the first three coordinates. This holds for the little group of all 
representations of the nrst class. 

00 . In case 00 , the little group is the whole homogeneous Lorentz group. 
-I . In case P = -I the Po f'an be assumed to have the components 1, 0, 0, 0. 

The little group then eontainsall transformations which leave the form - x~ -x! 
+ .r! invariant, i.e ., is the 2 + 1 dimensional homogenPous Lorentz group. The 
same holds for all representations with P < 0. 

0+. The determination of the litt!P group for P ~ 0+ is somewhat more 
complicated . It can be done, however, rather simply, for the group of uni­
modular two dimensional matrices. The Lorentz transformation corresponding 

to the matrix II; ! I! with aA - be = l brings the vector with the components 
. I . I h , , , , I •a :r, . .r2 , x3 , x. , mto t te vector w1t 1 t e components x1 , x, , xa , x4 , w tere 

(70) il a b ~~~~ Xt + X3 

i c d I x1- ix2 
x, + 1·x, J! /' a• c*ll = 11 x: + x.; x; + ix; II · 

I I b* d* I , . , , , x. - Xa , x, - u :2 X4 - X3 

The condition that a null-vector Po, say with the components 0, 0, I, I be invari­
ant is easily found to be I a 1

2 
= I, c = 0. Hence the mo~t gerwral elem~nt of the 

little group can be written 

(71) 
II 

e -;fl12 (x + iy )e;/l/2'11. 
. 0 e;fl/2 ' 
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with real x, y, {J and 0 ~{J< 4Jr. The gmtcral Plemcnt (71) can be written as 
t(x , y) o(fJ) where 

· e 
(7Ia) t(x, y) = ~ ~· I x + iy jl 

I 0 I il; 
I . . 
.,-i8/% 0 lj 

o(fJ) = ! o ci8/2 i 

The multiplic.ation rules for these are 

(7Ib) t(x, y)t(x', y') = t(x + x', y + y'), 

(7Jc) o({J)t(x, y) = t(x COS {J + y sin {J, - X sin {J + y COS {J)o({J), 

(7Id) o(fJ)o(fJ') = o(fJ + fJ') . 

One could restrict the variability domain of fJ in o(fJ) from 0 to 21r. As o(211') 
commutes with all elements of the little group, it will he a constant and from 
o(21r)

2 = lJ(h) = I it can be o(21r) = ± 1. Hence o(fJ + 21r) = ±OCfJ) and 
inserting a± into equation (ild) one could restrict {J to 0 ~ fJ < 211'. 

These equations are analogous to the equations (52) - (52D) and show that the 
little group is, in this case, isomorphic with the inhomogeneous rotation group of 
two dimensions, i.e. the two dimensional Euclidean group. 

It may be mentioned that the Lorentz transformations corresponding to 
t(x, y) have elementary divisors, and ronst.itute all transformations of cla.o;;s e) 
in 4B, for which v. = Po . The transformations o(tj)" can be considered to he 
rotations in the ordinary three dimensional space, about the direction of the 
space part of the vector Po . It is possible, then, to prove equations (7 I) also directly . 

7. THE REPRESENTATIONS OF THE LITTLE GROUPS 

A. Representations of the three dimensional rotation group by unitary 
transformations. 

The representations of the three dimensional rotation group in a space with a 
finite member of dimensions are well known. There is one irreducible represent.a­
tion with the dimensions I, 2, 3, 4, · · · each, the represent.ations with an odd 
number of dimensions are single valued, those with an even number of dimen­
sions are two-valued. These representations will be ~enoted by Dw(R) where 
the dimension is 2j + 1. Thus for single valued representations j is an integer, 
for double valued representations a half integer. Every finite dimensional 
representation can be decomposed into these irreducible representations. 
Consequenf.ly those representations of the Lorentz group with positive P in 
which the representation of the little group- a.-> defined by (64)- has a finite 
number of dimensions, can be decomposed into such representations in which 
the representation of the little group is one of the well known irreducible repre­
sentations of the rotation group. This result will hold for all representations 
of the inhomogeneous Lorentz group with positive P, since we shall show that 
even the infinite dimensional representations of the rotation group can he 
decomposed into the same, finite, irreducible representations. 
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In tl1e following, it is more appropriate to consider the subgroup of the two 
dimensional unimodular group which corresponds to rotations , than the rot.ation 
group itself, as we can restrict ourselves to single valued representations in this 
case (cf. equations (52)). From (70), one easily sees18 that the condition for 

II: ! II to leave the vector with the components 0, 0, 0, I invariant is that it 

shall be unitary. It is, therefore, the two dimensional unimodular unitary 
group the representations of which we shall consider, instead of the representa­
tions of the rotation group. 

Let us introduce a discrete coordinate system in the representation space 
and denote the coefficients of the unitary representation by q(R).,. where R i..:. a 
two dimensional unitary transformation . The condition for the unit.ary 
character of the representation q(R) gives 

(72) L q(R):xq(R).~ = Ox~; L q(R):xq(R).x = o •• , 
X 

(72a) L I q(R).x 1
2 = I; L! q(R).x 1

2 
= I . 

X 

This show also that I q(R).x I ~ 1 and the q(R).x are therefore, as functions of R, 
square integrable: 

f I q(R).x 1
2 

dR 

exists if f · · · dR is the well known mvariant integral in group space. Since 
this is finite for the rotation group (or the unimodular unitary group), it can be 
normalized to 1. We then have 

(73) L f I q(R).x 12 
dR = L f I q(R).x It dR = I. 

X 

The (2j + l)iD<')(R)u form, 28 a complete set of normalized orthogonal functions 
for R. We set 

(74) q(R).x = L Ci~1 D(il(Rh1. 
ikl 

We shall calculate now the integral over group space of the product of D<'\R):1 
and 

(75) q(RS).~ = L q(R).xq(Sh~ . 
X 

The sum on the right converges uniformly, as for (72a) 

.. ("' .. )i (.. )i t; I q(R).xq(Sh~ I ~ t; I q(R).x 12 x~ I q(Sh-12 ~ 6,1 q(Sh,.l 2 

can be made arbitrarily small by choosing an N, independent of R, making the 
last expression small. Hence, (75) can be integrated term by term and gives 

(76) f v<i>cm:~q(RS).,.dR = 'L f v<i> (R):~q(R).xq(Sh,.dR . 
X 

'"H . Weyland F . Pet er, Math . Annal. 97,737 , 1927 . 
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Subst.it.uting L n<i'(NS), .. ., D1
'

1
(,)

1
)., for D1i'(R) 41 on<' obtains 

(77) I: n<''<s-·>:,[ I n<"<Hs): .. q(HS) .• dR = 2:: q(Sh. I n' i'un.:,qcm.~r~tr 
~ 

In tiJ(' inYariant intc·gral on tiH' ll'ft of (77), /(<'an h<' suhstitul<'d for RS and 
\H' outain, for (74) and Ill(' unitary l'h:uart!'r 

(7H) .L D1''(S), •. c;~ ... = L: q(Sh.c;.~,. 
~ 

:\1ultiplying (78) hy D1
h

1(S)7 •. the int<'gration 011 thP right side ean I><' C'arri<'d 
out term by tPrm again. sinl'l' the stllll CJ\'!'r >. nmYPTg!'s uniformly 

,. ( "" "' )l ( "' )I ~.I c;~,q(sL. i ~-- {;. 1 Ci~-~~~ x~ 1 q(8h.l ~ ~ (:;_I c;~.l 2 
. 

Thi,.: f'an IJ!' made arbitrarily small, as <'\·en L L (2j + 1 )- 1 
I c;~~ 1

2 
convNgrs, 

~ i~l 

for (74) ami (72a). The integra1ion of (78) yirlcls thus 

(79) L CjZtC~~n =. OjAOtiCtn• 
A 

From q(R)q(E) = q(R) follows q(E) = 1 and then q(lr 
1
) 

This, wit.h the similar <'quation for D!i1(R) givcH 

I: c;~,D(jlcu- ·)~-~ = q(R- ').~ = q(R):. 
jkl 

q(U) - • q(f?) I. 

(80) I: c~~: n<'>cm:k = I: c~~: n<'>cu-•>.~, 

or 

(81) 

Ott the other band q(E).~ 

(82) 

ikl ikl 

c;~~ = c~~:. 
o,A yields 

I: Cj~k = o,~. 
jk 

These formulas s11ffice for t.hc reduction of q(R). Let us choose for every 
finite irreducible rrprPsentation D<i

1 
an index k, say k. = 0. We define then, in 

t.he original space of the rPpresentation q(R) Yertors v<•ill with tlw component:-; 

c;i,, c;i~, cj~,, .... 
The vect.ors v<•iO for different. j or l are orthogonal, t.he sralar product of thMe 
with the samej and lis independent of l. This follows from (79) and (81) 

(X3) ( IOJ'I ' ) (•jl)) ""cvX* C'~ ""C'~ c~• t t c•• V , V :::= L_, j'kl' jl-l = L..J jkl j'['/: = Ojj'·fJU' jkk· 
~ A 

The v1
';0 for all K, j, l, form a complrtr !'rt of Yertors. In order to show this, 

it. is sufficient to form , for r,·rry v, ~ linrar comhination from them, t.lw v rom­
porwnt of whic·h is 1, all otiJPr romponrnl!' 0_ This lir)('ar comhin~tion is 

(81) "" C" c.;o L ;tkl' . 
" I 
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In fart, tlw X component of (8--t) is, ou account of (7!3) and "(82) 

(85) I: c;;(c;~, = :E c;~, = a.~. 
• j I i l 

However, two ,, with thr samr j ami l but different first indices " arc not 
orthogonaL We can choose for <'\-WY j anl, say l = 0 and go through the v~ctors 
v0 ;o1, v12

;
0
', ••• and, following S<·hmidt's method, orthogonaliz<' and normalize 

them. The vectors ohtainrd in this way shall be denoted by 

(86) 
(njOJ "" j (~jO) u• = L... a.Av . 

~ 

Then, since aeeol'ding to (83) the sealar products (v'' 111
• vcx;n) do not depend on l, 

the vectors 

(86a) (nj/) "' j (~ill w = L OC.,AV 
~ 

will he mutually orthogonal and normalized also imd the vectors w<•ill for all 
11, j, l will form a complete srt of orthonormal vrctors. The same holds for the 
set of the conjugate complex vectors w<•iO* . Using these vectors as coor­
dinate axes for the original representation q(R), we shall find that q(R) is com­
pletely red\}ced. The v component of the vector q(R)v<•it>* ohtained b} applying 
q(H) on v<•ill* is 

(87) L q(R),,.(v<•ill*),. = L q(R),,.Cj~,. ,. ,. 
The right side is uniformly convergent. Hence, its product with (2h + 1) 

D<A 1 (R)~" cau be integrated term by term giving 

(88) L f (2h + l)D(Al(R)7. q(R).,.C';~t dR I: c:7 .. Ci~t = oA;ot.c;:k. ,. ,. 
Thus we have for almost all R 

(8Ra) L q(R) •• (v<•ill*). L c;:tD(j)(R)il = L D(jJ(R)il(v(•jil*). I 

,. 

or 

(88b) q(R)!/.'0 * = L Du'(R);Iv<•iil*. 

Since both sides are supposed to he strongly eontinuom; functions of R, (88b) 
holds for every R. In (86a), for cvrry n, the sumntation must be carried out 
only over a finite number of>.. We ran writl' thcrrfon· illlmcdiatcly 

(H9) q(U)w<•i/J* = L D 1''(ll);,u•<"i''* . 

This proves that the origiual representation dC'co111posf!s in the coordinate system 
of thew into well known finite irredtu.: iblc rr.prrsPnl:tlions D 1

'
1(R). Since thew 

form a complete orthonormal set of vectors, the transition corresponds to a 
unitary transfonnat ion : 



tiNlTARY REPRESENTATIONS Ot' LOIH:STZ GROt'l' 1!17 

Thi~ completP~ the proof of thl' l'omplrtP mlurihility of all (fiuitl' and infinite 
dimPnsional) rq>rl'sentation~ of tlH• rotation group or unimodular unitary 
group. It. is rl!·ar al~o that thl' ~arne eon~idl'ration applies for all clo~<'d j!;roups, 
i.r., when<'n;r tlw invariant inl<'gral f dR conn·rgrs. 

The result for thP inhomog<'rwous Lorentz group is: For every pm.;itive numeri­
cal value of P, the rf•pre~Pntations of the little group can be, in an irrP(hrcible 
reprcs<'ntation , only the Dl01

, D'1>, Dll 1
, ••• , bot.h for P+ and for P_. All these 

representatious havr been found already by ~lajorana and hy Dirac and for 
positive P there arc nonr in addition to these . 

B. Representations of the two dimensional Euclidean group 

This group, 8.':! pointed out in Section 6, has a gTeat similarity with the inhomo­
geneous Lorentz group. It is possible, again24

, to introduce "momenta", i.e. 
variables~ • ., and 11 instead of the sin such a way that 

(90} t(x, Y)IP(Po, ~ • .,, 11) ""' e"•E+niiP(Pe, ~ • .,, 11). 

Similarly, one can define again operators R(fj) 

(91} 

where 

(91a} 

R(fJ)IP(Po' ~ • .,, 11) = IP(Po ' r . .,·, v}, 

r = ~ cos {j - ., sin {J, 

,, = ~ sin {J + ., cos {J. 

Then 6(fj)/l(fj) - 1 = S(fj) will commute, on account of (71c), with t(x, y) and 
again contain t ., as parameter only. The equation corresponding to (57a) is 

(92) o(/J)I{'(po, ~ • .,, v) = L S(fJ) ... <P(po, f, .,', w). .. 
One can infer from (90) and (92) again that the variability domain of~ • ., can be 
restricted in such a way that all pairs t ., arise from one pair ~o , 'lo by a rotation, 
according (9"1a). We have, therefore two e68entially different cases: 

a.} 

b.) 

~~ + '1
1 = z ~ 0 

~~ + .,' = Z = 0, . i.e. f ~ " = 0. 

The positive definite metric in the ~ • ., space excludes the other possibilities of 
section 6 which were made possible by the Lorentzian metric for the momenta, 

necessitated hy (55). 
Case b) can be settled very easily: The "little group" is, in this case, the 

group of rotations in a plane and we a,re interested in one and two valued 
irreducible reprcsl'ntations. These are all one dimensional (e;'~) 

(93) S({J) = e;'~ 

where s is integer or half integer. These representlltions were also all found by 
Majorana and by Dirac. For s = 0 ,,.c have simply the equation DIP = 0, 
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for s = ± ~ Dirac's electron c4uation without mass, for .~ = ±I :\1axwcll's 
electromagnetic equations, ell' 

In 1 ~3se a) the littlf: g;roup consists only of tlH· unit matrix and the matrix 

!i - l 0 
'1
1 f I d' . I . J I '1'1 . I p 1 o t 1c two Hncnsiorw lmtmoou ar group. us group ms two 

·I 0 -1 . . . 
irreducible ~epresentations, as (1) and ( -1) can corn•spond to the above two 
dimensional matrix of the little group. Thi;; gin·s two nPw representations of 
the whole inhomogeneous Lorentz gr;oup, eorm-;ponding to every numerical 
value of z. Both the."le sets belong to class 0 ~and two similar new sets belong 
to class o_ . 

1'he final result is thus as follows : The reprc~cntations P+i of the fin;t subclass 
P +can be charaet.crized by thP two numbers P and j . From the:-;e Pis positive, 
otherwise arbitrary, while j is an integer or a half integer, positive, or zero. 
The same holds for the subclass P _ . There ar<' thr<'<' kinds of representations 
of the subclass 0+ . Tl10se of the first kind 0+, can be chametcrizPd by a number 
s, which ean be eitlwr an integer or a half integer, positivc, negative or zero. 
Those of the second kind 0+(2:) are single valued and can he Pharacterizcd by an 
arbitrary positive number Z, those of the third kind O~(Z) arc douhle-valued 
and also can be characterized by !:1. positive Z. Thc samc holds for the subclass 
0_ . The representations of the other classes (Oo and P with P < 0) have not. 
been determim;d. 

8. REPRESENTATIONS OF THE ExTENDED LoRENTZ GROUP 

A. 
As most wave equation~ arc invariant undPr a wid<'r group than the one 

investigated in the pre\·ious sections, and as it i~ wry probable that the laws of 
physics arc all invariant under this wider g;roup, it sPPrns appropriate to investi­
gate now how the results of the previous ~cctions will be modified if we go over 
from the "restricted Lorentz group" defirwd in sPction 4A, to the extended 
Lorentz group. This extended Lorentz group contains in addition to the 
translations all the homogeneous transformations X satisfying (10) 

(10') XFX' = f' 

while the homogeneous transformations of seetion 4A were rrstrictcd by two 
more conditions. From (10') it follows that the determinant of X can he + 1 or 
-1 only. If its -1 , Ute dct1~rminant of X, = X F is +I . If the four-four 
clement of X 1 is negative, that of X 2 = -X1 is positive. It is dear, therefor!', 
that if X is a matrix of ll11' extended Lorentz group, 1>nc of the matrices X, 
XF, -X, -XF is in the 1'1':-;lrictcd Lorentz group. For F2 

= I, conver~ely, all 
homogeneous transformations of tlw extended Lorentz group ean be ohtained 
from the homop;pncotts tran~formntions of the restricted group l>y multiplication 
with one of the inutri c<'s 

(!J4) 1, F, -1, -F. 
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The group elements eorre:;ponding to these transformations will be denoted by 
E, F, I, IF. The restricted group contains those clements of the extended 
group which can be reached continuously from the unity. Jt follows that the 
transformation of an element L of the restricted group by F, I, or IF gives again 
an clement of the restricted group. This is, therefore, an im·ariant subgroup 
of the extended Lorentz group. In order to find the representations of the 
extended Lorentz group, we shall use again Frob!'niu:;' m!'thod. 1

" 

We shall denote the operators corresponding in a representation to the 
homogeneous transformations (94) by d(E) = I, d(F), d(I), d(I F) . For deriving 
t.he equations (52) it was ncc!'ssary only to assume the existence of· the trans­
formations of the restricted group, it was not necessary to assume that these are 
the only transformations. These equations will hold, therefore, for elements 
of the re;;tricted group, in tepresentations of the extended group also. We 
normalize the inddcrminate factors in d(F) and d(l) so that their squares 
become unity. Tlwn we have d(F)d(l) = wd(l)d(F) or d(I) = wd(F)d(l)d(F) . 
Squaring this, on<> obtains w2 

= ± 1. We can set, therefore 

(95) 
d(l F) = d(I)d(F) = ±d(F)d(l) 

d(F) 2 = d(I)! = I ; d(IF)2 = ±1. 

Finally, from 

(96) d(/t')D(L1)d(F) = w(L1)D(FL1F) 

we obtain, multiplying this with the similar equation for L2 

w(/,J)w(/,2) = w(L1~) 

which, gives w(/,) = I as the inhomogeneous Lorentz group (or the group used 
in (52B)-(52D)) ha.<; the only one dimcn:-;ional representation by the unity (1). 
In this wRy, we obtain 

(96a) 

(96b) 

(96c) 

d(F)D(L)d(F) = D(FLF), 

d(I)D(L)d(l) = D(ILI), 

d(IF)D(l..,)d(IF) - 1 
= D(IFLFI). 

B. 
Giv<>n a representation of the exl.<>nded Lorentz group, one can perform the 

transformations de"f'rib<>d in tiCetion tiA, by considering the elements of the 
rPsl rict!'d J!:roup only. \Ve ;;hall ron!;iu!'r here only such representations of the 
Pxtmded ~roup. for whieh, after having introduced the momenta, all representa­
tions of the rest rif't<'d group arr either in class 1 or 2, i.e. P ~ 0 but not Oo. 
Following I hc·n t h<> prorcdurr:' of section 6, one can find a set of wave functions 
for which tllf' op<>rators D(L) of the restricted group have one of the forms, given 
in sPdion 6 as irrPrhwiblc representations. We shall proceed, next to find the 
operator d(F) . For the wave functions belonging to a.n.irreducible D(L) of the 
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restricted group, we can introduce a complete set of orthonormal functions 
Y..1(p, n, Y..2(p, t), · · · . We then have 

(97) D(L)Y,..(p, t) = L D(L),..Y,.,.(p,!). ,. 
The infinite matrices D(L),.. defined in (97) arc unitary and form a representation 
which is equivalent to the representation by the operators D(L). The D(L), 
d(F) are, of course, operators, but the D(L),.. are components of a matrix, 
i.e. numbers. We can now form the wave functions d(F)Y,.1, d(F)Y,.2 , d(F)Y,.~, ... 
and apply D(L) to these. For (96a) and (97) we have 

D(L)d(F)Y,.. = d(F)D(FLF)Y,., 

(97a) = d(F) L D(FLF),..Y,.,. ,. 
= L D(FLF),..d(F)Y,.,.. ,. 

The matrices D
0

(L),.. = D(FLF),.. give a representation of the restricted group 
(FLF is an element of the restricted group, we have a new representation by an 
automorphism, as discussed in section 6B). We shall find out whether D 0 (L) is 
equivalent D(L) or not . The translation operation in Do is · 

(98) T 0 (a) = d(F)T(a)d(F) = T(Fa) 

which, together with (53) shows that Do has the same P as D(L) itself. In 
fact, writing 

(99) ulii'<P. n = IP(Fp, n 
one has U!

1 
= ll1 and one easily calculates U1T 0 (a)U1 = T(a) . 'Similarly for 

U1d 0 (A)U1 one has 

Uld
0
(A)UIIP(P, t) = Uld(FAF)UIIP(P, t) 

(99a) = d(FAF)UJIP(Fp, n = LQ(Fp, FAF)r,UIIP(FA-1p, '!) 
' 

= L Q(Fp, F AF)r,IP( A -I p, 71). 
• 

This means that the similarity transformation with U1 brings 7'0 (a) into T(a) 
and d

0

(A) into Q(Fp, F AF)P(A). Thus the representation of the "little group" 
in U1d0 (A)U1 is 

q0 {">..) = Q(Fpo, FXF). 

For this latter matrix, one obtains from (67a) 

(100) 
q

0
(X) = Q(Fpo, FXF) = q(a(Fpo)- 1FXFa(Fpo)) 

= q(Xo) 
where ">..

0 

is obtained from X by transforming it with Fa(FTJo). 
The representations D 0 (L) and D(L) arc equivalent if the representation 

· ' 
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q(>.) is equivalent to the representation which coordinates q(X0
) to X. The 

a(Fpo) is a transformation of the restricted group which brings Po into a(Fpo)Po = 
Fpo . (Cf. (65).) This transformation is, of course, not uniquely determined 
but if a(FPo) is one, the most general can be written as a(Fpo)t, where 'Po = Po 
is in the little group. For q(,-1 a(Fp0)-

1 A a(FPo)t) = q(t)-1 q(a(FPo)-1 A a{FPo)) 
q(t), the freedom in the choice of a(FPo) "only amounts to a similarity trans­
formation of q0 (X) and naturally does not change the equivalence or non equiva­
lence of q0 (X) with q(X). 

For the case P + , we can choose Po in the direction of the fourth axis, with 
components 0, 0, 0, l. Then FPo = Po and a(Fp0) a: l. The little group is the 
group of rotations in ordinary space and FXF = ~. Hence q0 (>,) = q(X) and 
D 0 (A) is equivalent to D(A) in this case. The same holds for the representa-
tions of class P _ . ·· 

For 0+ we can assume that Po has the components 0, 0, 1, 1. Then the 
components of Fpo are 0, 0, -1, l. For a(FPo) we can take a rotation by 1r 

about the second axis and Fa(FPo) will be a diagonal matrix with diagonal 
elements 1, -1, 1, l, i.e., a refle~tion of the second axis. Thus if X is the trans­
formation in (70), >.0 = a(Fp0)-

1FXFa(FPo) is the transformation for which 

(101) )..0 )..Ot = . ( 
Xc + Xa X1 - iz,) (X~ + X~ X; - ix;) 
X1 + ix, X4 - X1 X; + ix; . X~ - X~ 

This is, however, clearly .>.0 = >.*. Thus the operators of q
0(X) are obtained 

from the operators q(X) by (cf. (7la)) 

f(x, y) = t(x, -y) 
(lOla) · 

f(f3) = &( -{3). 

For the representations 0+• with discrete s, the q0(X) and q(X) are clearly inequiva­
lent as &0((3) = (e-i'~) and &(fj) = (e;'"), except for 3 = 0, when they are equiva­
lent. For the representations O+(Z), o:(:::), the q0(X) and q(X) are equivalent, 
both in the single valued and the double valued case, as the substitution 'I -+ - 'I 

transforms them into each other. The same holds for representations of the 
class 0_ . If D0(L) and D(L) are equivalent ' 

(102) U-1D0(L)l.f = D(L), 

the square of U commutes with all D(L). As a consequence of this, U
2 

must 
be a constant matrix. Otherwise, one could form, in well known manner," 
an idempotent which is a function of U2 and thus commutes with D(L) also. 
Such an idempotent·would lead to a reduction of the representation D(L) of the 
restricted group. As a constant is free in U, we can set . 

(I02a) U
2

""' 1 

n J. von Neumann, Ann. of Ma~h . 31. 1!11 . 1931; ref. 2. D . 89 . 

202 E. WIGNER 

c. 
Returning now to equation (97a), if D0(L) = D(FLF) and D(L) are equi\·alent 

(P > 0 or 0+, 0_ with continuous Z or s = 0) there is a unitary matrix (T~·, 
corresponding to (·,such that 

(102b) 
I: D(FiF).~r·~· =I: c·.~n<L>~· 
~ ~ 

I: l·.~t·~· = "··. 
~ 

Let us now consider the funetions 

(103) '{). = "'· + L l·~,ri(F)Y,~. 
~ 

Applying D(L) to the~e 

D(L)'{). = D(L)Y,, + L ("~,D(L)rf(F)Y,~ 
~ 

= D(L)Y,, + L {"~,d(F)D(Fl.F)f~ 
(103a) ~ 

= L D(L)~.f~ + L { '~.d(F)D(FLF).~"'· 
~ ~· 

~ D(L)~. ("'~ + ~ F.~d(F)Y,,) L D(L)~·'P~· 
~ 

Similarly 

d(F)'{). = d(F).f, + I: c~·"'~ 
(103b) 

~ 

= I: c~ .. ("'~ + I: r·.,.d(F)f,) = I: u,..'{)~. . . ,. 
Thus the wave functions 'P transform according to the representation in which 
D(L),., corresponds to Land[:~· to d(F). The same holds for the wave functions 

(104) '{); = "'· - L f!,.,d(F)Y,,.' 
" 

except that in this rasP (- (-',.,) corresponds to d(F). TheY,. and d(F)Y,. can be 
expressed by the 'P and 'P'· If the Y, ai\d d(F)Y, WNc linearly independent, the 
'P and '{)1 will be linearly independent also. If the d(F)Y, were linear combinations 
of the Y,, either the 'P or the 'P' will Yanish. 

If we imagine a unitary rcprPscntation of the group formed by the Land FL 
in the form in which it i,.; completdy rrduccd out as a rcprrsentat.ion of the group 
of restricted transformations L, the above procedure will lrad to a rcdudion 
of that part of the reprf'scntation of the group of the /,and F/,, for which D(L) 
and D(FLF) arP cqui,·alrnt. 

If D(L),., and D0(L)~. arc inPquivalf'nt, thP V'• and d(F)Y,, = y,; are or­
thogonal. Thi~ is again a gPnrralization of the similar rule for finite unitary 
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representations. 28 One can see this in the following way: DenotinJ!; Jf., = 

(Y,., Y,~) one has 

Hence 

(105) 

.H .. = (.f., y,;) = W(L)Y,., D(L)Y,;) 

L D(L):.D0(Lh.M,.~; 
,.A 

M = D(L) 1MD 0 (L). 

D(L)M = MD0 (L); M 1D(L) = D0 (L)M 1• 

From these, one t>asily infers that M M 1 commutes with D(L), and M 1M com­
mlltes with D0 (L). Hence both are constant matrices, and if neither of them is 
zero, M and M 1 are, apart from a constant, unitary. Thus D(L) wmlld hP 
equivalent D0 (L) which is contrary to supposition. Hence MM 1 = 0, M = 0 
and theY, are orthogonal to the d(F)Y, ~ Y,'. Together, they gi\·e a representa­
tion of the group formed by the restricted Lor('ntz group and F. If they do not 
form a complete set, the reduction can be continued as before. 

One sees, t.lms , that introducing the operation F "doubles" the number of 
dimfmsions of the irrf'ducible reprcsf'ntations in which the I itt IP group was the two 
dimensional rotation group, while it does not incrca..o;;e the underlying linear 
manifold in the other cases. This is analogous to what happens, if onp adjoins 
the reflection operation t.o the rotation groups themsel\'es. 29 

D. 
The operations d(l) can be determined in the same manner as ·the d(F) were 

found. A complete set of orthonormal functions corresponding to an irreducible 
representation of the group formed by the L and FL shall be denoted by .ft, 
Y,2 , • • • • For this, we shall a:-sume (97) again, although the D(L) contained 
therein is now not necessarily irreducible for the restricted group alone but 
contains, in case of 0+• or 0_, and finites, both sand-s. We shall set, furthermore 

(106) d(F)Y,. = L d(F),..Y,,.. ,. 
WP ean form then the functions d(l).ft, d(l)Y,2 , • • • • The consideration, con­
tainPd in (97a) shows that these transform according to D(J Ll),.. for the trans­
formation L of the restricted group: 

(I 06a) D(L)d(l)Y,. = L D(ILI),..d(I)Y,,.. ,. 
Clt'oosing for L a pure translation, a consideration analogous to that performec. 
in (98) shows that the set of momenta in the rPpresentation L --+ D (I LI) has the 
opposite sign to the set of moment.a in the representation D(L). If the latter 

" Cf. e .g. E . Wignf'r, ref. 4, Chapter X II. 
" I. Schur, Sitz . d. kon. Preuss. Akad. pagrs 189,297, 1924. 
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belongs to a positi,·e :-;ubclass, the former belongs to the corresponding negative 
sulwla~s and rorn-ersely Thus the adjunction of the transformation I always 
leads to a "doubling" of thP. number of states, the states of "n!'gative energy" are 
attached to th<' system of possible slates. One can describe all states Y,

1
, 

.f2 , · . . , d(l).ft , d(/}Y,~ , · · · by introducing momenta Pt , P2 , Pl , p, and 
restricting the ,-ariability domain of p by the condition lp, PI = P alone 
without stipulating a definite sign for p, . 

:\s we saw before. th ~: d(/).ft , d(l)•h, are orthogonal to the origiP.al set of 
wa\·<' function;; .ft , .f2 . · · · . The result of the application of the operations 
D(l,) and d(F) to thf' .ft , >h . · · · (i.e., the representation of the group formed by 
the L, FL) wa,;; gin•n in part C. The D(l,)d(l)t/'. are given in (l06a) . On 
:t('count of tltf' norrH:~Iization of d(l) we can spt 

(106b) 
d(l)d(I)Y,. = "'· . 

For d(F)d(l)Y,, we han· two pos;;ibilities, according to the two possibilities in 
(95). WC'canC'ith!'rsC't 

( 107) d(F)d(I)Y,. = d(I)d(F)Y,. = L rf(F)p,d(l).f,. ' ,. 
or 

(10/a) d(F) .rf(l)Y,. = -d(l)d(F)Y,. = - L d(F)p.d(I)Y,,.. ,. 
~I rictly speaking, WC' thus obtain two diff!'rC'ut representations. The system of 
,.;tatC's satisfying (107) muld be distinguished from the system of states for which 
(lOla) is mlid, howeYcr, only if we could really perform the transition to a new 
coordinate system by the transformation /. As this is, in reality, impossible, 
the representations distinguished by (107) and (lOla) are not different in the 
same sense as the previously described representations are different. 

I am much indebted to the Wisconsin Alumni Research Foundation for their 
aid enabling me to compiPte this research. 
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