Density Matrix from the Entangled Space
and time

Let us start with the ground-state wave function
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This form is separable in the z and ¢ variables.
When boosted, this wave function becomes squeezed to
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where tanh(n) = v/c, and the space and time variables become entan-
gled.

This exponential form can be expanded in terms of the oscillator
function, and the result is
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where ¢,z is the k-th excited state wave function. Indeed, this form is
identical with that for the two-mode squeezed state in quantum optics,
where the two photons are entangled with each other.

If the z and t variables are both measurable, we can construct the
density matrix
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However, there are at present no measurement theories which ac-
commodate the time-separation variable . This time separation vari-
able belongs to Feynman’s rest of the universe, and is hidden in the
present form of quantuem mechanics.

Thus, we can take the trace of the p matrix with respect to the ¢
variable. Then the resulting density matrix is
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In terms of the hadronic velocity, this density matrix can be written as
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The standard way to measure this ignorance is to calculate the
entropy defined defined as

S ==Tr(pln(p)).
With the density matrix p,(z, 2’) given above, the entropy becoms

S = (Cosh2 17) In (cosh2 17) — (sinh2 n) In (sinh2 17) .



Hadronic Temperature

The ground-state oscillator can be excited in various ways. It can be
thermally excited, and the density function takes the form
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where hw and k are the oscillator energy separation and Boltzmann’s
constant respectively. This form of the density matrix is well known.

If the temperature is measured in units of hw/k, the above density
matrix can be written as

pr(z,2') = (1 - e_l/T) > e T (2)05(2).

If we compare this expression with the density matrix coming from the
entangled space and time, we are led to
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and to
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The temperature can be calculated as a function of the hadronic veloc-
ity.

Let us look at the velocity dependence of the temperature again.
It is almost proportional to the velocity from tanh(n) = 0 to 0.7, and
again from tanh(n) = 0.9 to 1 with different slopes.



