Homework #9 — Phys625 — Spring 2002 Victor Yakovenko, Associate Professor

Deadline: Thursday, April 25, 2002. Office: Physics 2314
Turn in homework in the class or put it in Phone: (301)-405-6151
the box on the door of Phys 2314 by 10 a.m. E-mail: yakovenk@physics.umd.edu

Web page: http://www2.physics.umd.edu/~yakovenk/teaching/phys625.spring2002

Do not forget to write your name and the homework number!
Equation numbers with the period, like (3.25), refer to the equations of the textbook.
Equation numbers without period, like (5), refer to the equations of this homework.

Generalized Susceptibilities at Finite Temperature (Ch. IV)

1. Analytical continuation from Matsubara to real frequencies

Read the handouts: §123 from Statistical Physics, Part 1 by Landau and Lifshitz (Volume 5 of the
Theoretical Physics Course), which introduces the generalized susceptibility, and 3.3.1 from Quantum
Theory of Many-Body Systems by Zagoskin, which introduces the Kubo formula. In the first hangout,
carefully study the first three pages; the rest is optional.

()

(b)

[4 points] The dynamical susceptibility x(w) is given by the Kubo formula [see Eqgs. (3.73) and
(3.77) of Zagoskin]:

xw) =i | "t e A, B(1))r 1)

where ¢ and w are the real time and frequency, A(t) and B (t) are the operators in the Heisenberg
representation, and the averaging is performed over the Gibbs distribution with the temperature
T. Notice the similarity with Eq. (36.2) for the retarded Green’s function, except Eq. (1) has
commutator instead of anticommutator.

The Matsubara susceptibility xas(iwy,) is defined as

s , . .
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where 7 and iw, are the Matsubara time and frequency, A(r) and B(r) are the operators in
the Matsubara representation, and 7, is chronological ordering with respect to 7. Notice the
similarity with Eq. (37.3) for the Matsubara Green’s function.
Prove that

X (iwn) = X1 (iwn), ®3)
thus x(w) can be obtained from x s (iw,,) by analytical continuation from the discrete points iw,,
on the positive imaginary semi-axis of complex w to the real axis of w.
Notice the similarity between Egs. (3) and (37.12). In order to prove Eq. (3), use the method of
formal expansion over a complete set of exact energy eigenstates, similar to §36 and $37. If you
cannot solve this problem, go to the next part.

[4 points] Consider the case where the operators A and B are bilinear in creation and destruction
operators:

A(t) = ZAkleii(EkiEl)t&Z,_&l, B(t) = ZBkleii(EkiEl)tdﬁdl. (4)
kl kl

where Aj; and By, are the matrix elements of A and B between the energy eigenstates k and .

Substituting Eq. (4) into Eq. (1) and performing the thermal averaging for non-interacting parti-
cles, show that
f(E) — f(Em)

5
w— E; + Ey, +1i0’ (5)

X(w) = Z A By,
el

where f(F) is the thermal Fermi or Bose distribution function.
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Notice the similarity between Eq. (5) and Eq. (5) of HWS, provided the indices k and [ represent
the momenta p and q. It is clear that Eq. (5) can be obtained from Eq. (5) of HWS8 by the
analytical continuation i€2,, — w + 0.

2. Electron spin resonance (ESR)

Let us consider a 3D electron gas with the Fermi momentum ppg in a magnetic field. Here we consider
only the effect of the magnetic field on the electron spins and ignore the orbital effect.

Suppose a magnetic field By is applied along the z axis. First, the field By is considered to be finite
and not a small perturbation. The energies of electrons with spins up and down (relative to the z axis)
experience the Zeeman split:

e1(p) = p*/2m — upBo, e1(p) = p*/2m + ppBo. (6)
Suppose an additional small magnetic field B (¢) rotates in the (z,y) plane:
B, (t) = B, coswt, By (t) = B sinwt. (7)
The field (7) produces the following perturbation in the Hamiltonian:
Hy(t) = —pp$L -Bi(t) = —pup(Bre®")f i — Bre ™)), (8)
where § = 1/3§0'a,g1/33 is the spin operator of electrons, and o,z are the Pauli matrices.

(a) [4 points] Using Eq. (5), calculate the dynamical susceptibility x| (w) with respect to B, which
is defined as
SJ_:XJ_((U)BJ_. (9)
How does x 1 (w) depend on temperature? What is the resonance frequency? Does the resonance
exist for positive and negative w, i.e. for B (t) rotating clockwise and counterclockwise?
Calculate the total spectral weight of absorption (dissipation) of energy (see Eq. (123.11)):

< d
/ X 9 Imy(w). (10)
0 2
(b) [4 points] Now let us consider the case where B, = 0, and By is considered as a (static)
perturbation:
s, = x.Bg- (11)

Calculate x.. Does it depend on temperature?

3. Transition temperature of the Peierls instability

Let us consider an external potential U(r) acting as a perturbation on electrons:

H = / d*r U(r)i(r). (12)

Then, the density response function
n(q) = x(a) U(a) (13)

is given by Eq. (8) of HWS. According to Eq. (3), the static susceptibility is equal to both x s (iw, = 0)
and x(w = 0). Eq. (13) could be also written at a finite frequency w, but here we are interested in the
static case.

Let us consider 1D electron gas with the Fermi momentum kr. In the following calculations, use the
linearized dispersion law for electrons.

(a) [4 points] Using Eq. (8) of HWS, calculate the response function x in Eq. (13) at ¢ = 2kp at
temperature T for noninteracting electrons.
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(b) [4 points] Suppose electron interact with an amplitude g. Considering the following series of
diagrams:

S R e

where the circle represents the interaction vertex g, calculate the renormalized susceptibility y at
q = 2kr. Determine the temperature T, where x diverges. Interpret the result.

4. [6 points] Transition temperature of superconducting transition

Let us consider response of a (3D) electron gas to a fictitious perturbation h that creates electron pairs
with the opposite momenta:

. Ak
i = / s ht ) (k) + e (14)

In principle, we could take h to be a function of k and the total momentum of the electron pair, and
give h a more complicated spin structure (see §54). However, here we consider only the simplest case
of the singlet s-wave pairing, where h is a constant.

Let us define the (static) response function to the perturbation (14) as follows:
(W (kv (=k)) = xh. (15)

Then, for electron interacting with the amplitude g, the generalized susceptibility is given by the
following sequence of diagrams:

e

Notice that arrows are parallel in this figure, whereas they are antiparallel in the previous figure.

Determine the temperature T, where y diverges. Interpret the result. Does the divergence occur for
positive or negative g (repulsion or attraction)? Compare with the Peierls instability.



