Homework #7 — Phys625 — Spring 2002Victor Yakovenko, Associate ProfessorDeadline: Thursday, April 11, 2002.Office: Physics 2314Turn in homework in the class or put it in
the box on the door of Phys 2314 by 10 a.m.Phone: (301)-405-6151Web page: http://www2.physics.umd.edu/~yakovenk/teaching/phys625.spring2002E-mail: yakovenk@physics.umd.edu

Do not forget to write your name and the homework number! Equation numbers with the period, like (3.25), refer to the equations of the textbook. Equation numbers without period, like (5), refer to the equations of this homework.

Bose Condensation and Superfluidity (Ch. III)

1. Wave function of the condensate ($\S26$, $\S30$)

Let us consider, as in §30, a slightly non-ideal Bose gas, where almost all of the particles belong to the condensate at zero temperature. Then we can replace the secondquantized particle operator $\hat{\Psi}(\mathbf{r},t)$ (26.1) by the non-operator wave function of the condensate $\Psi(\mathbf{r},t)$ (which is denoted by Ξ in the book). The Hamiltonian of system is obtained by replacing $\hat{\Psi}(\mathbf{r},t) \rightarrow \Psi(\mathbf{r},t)$:

$$H = \int d^3r \, \left(\frac{\hbar^2}{2m} \left|\frac{\partial\Psi}{\partial\mathbf{r}}\right|^2 - \mu|\Psi|^2\right) + \frac{1}{2} \int d^3r \, d^3r' \, |\Psi(\mathbf{r})|^2 U(\mathbf{r} - \mathbf{r}')|\Psi(\mathbf{r}')|^2, \quad (1)$$

where $U(\mathbf{r})$ is the interaction potential.

(a) [2 points] Let us parametrize $\Psi(\mathbf{r}, t)$ by its phase and amplitude:

$$\Psi(\mathbf{r},t) = \sqrt{n(\mathbf{r},t)} e^{i\phi(\mathbf{r},t)}.$$
(2)

Since the Bose gas is only slightly non-ideal, particle density approximately equal to the condensate density: $n \approx n_0$ in Eq. (2).

Substituting (2) into (1), obtain H in terms of $n(\mathbf{r}, t)$ and $\phi(\mathbf{r}, t)$.

(b) [2 points] Consider the uniform case first, where all gradients vanish: $n(\mathbf{r}, t) = n_0$ and $\phi(\mathbf{r}, t) = \text{const.}$

Minimizing $H(n_0)$ with respect to the condensate density n_0 , determine the chemical potential μ necessary to produce the given concentration of particles $n \approx n_0$. What is the sign of μ , when U > 0 (repulsion)? Compare with the sign of μ for noninteracting bosons above Bose condensation temperature. What happens if U < 0 (attraction)?

(c) [4 points] Since $n(\mathbf{r}, t)$ and $\phi(\mathbf{r}, t)$ are canonically conjugated variables (see Eq. (24.7) in §24), obtain the (classical) Hamiltonian equations of motion for $n(\mathbf{r}, t)$ and $\phi(\mathbf{r}, t)$:

$$\frac{\partial n(\mathbf{r},t)}{\partial t} = \frac{\delta H(n,\phi)}{\delta \phi(\mathbf{r},t)}, \qquad \frac{\partial \phi(\mathbf{r},t)}{\partial t} = -\frac{\delta H(n,\phi)}{\delta n(\mathbf{r},t)}$$
(3)

(i.e. substitute Eq. (1) expressed in terms of n and ϕ into Eq. (3)). Interpret the obtained equations physically (see Eq. (26.12)).

- (d) [4 points] Now let us consider small fluctuations near the minimum, i.e. represent $n(\mathbf{r},t) = n_0 + \delta n(\mathbf{r},t)$. Expand Eq. (3) to the first order in $\delta n(\mathbf{r},t)$ and $\phi(\mathbf{r},t)$, and obtain coupled equations of motion for $\delta n(\mathbf{r},t)$ and $\phi(\mathbf{r},t)$. Determine their eigenfrequences ω_k .
- (e) [2 points] Obtain the eigenenergies of excitations $E_k = \hbar \omega_k$ for the following cases
 - Short-range interaction: $\tilde{U}(k) = U_0$,
 - Coulomb interaction (with a neutralizing uniform background of the opposite electric charge): $\tilde{U}(k) = 4\pi e^2/k^2$,

where $\tilde{U}(k)$ is the interaction potential in the momentum representation. Compare results with Eq. (25.10) and the one after Eq. (33.14) in the textbook.

2. Charged Bose gas

Consider Bose particles in 3D with the parabolic dispersion law $\varepsilon_k = k^2/2m$, concentration n, and electric charge e, moving in a neutralizing uniform background of the opposite electric charge.

(a) [6 points]

Show that the spectrum of excitation has the form

$$E_k \approx \sqrt{\varepsilon_k^2 + (\hbar \Omega_{pl})^2}, \qquad \Omega_{pl}^2 = 4\pi n e^2/m$$
 (4)

where Ω_{pl} is the plasma frequency (see HW 2). Obtain Eq. (4) by making the Bogolyubov transformation as in §25 and compare with your result in Problem 1e.

(b) [4 points]

Calculate the so-called *depletion parameter*, the difference between the total density and the density of the condensate:

$$n - n_0 = \int \frac{d^2k}{(2\pi)^3} v_k^2,\tag{5}$$

where v_k is the parameter of the Bogolyubov transformation (see §25, particularly the derivation of Eq. (25.17)). The answer should be expressed as a product of dimensional factors and a dimensionless convergent integral that can be calculated numerically.

(c) [4 points]

Derive a formula for the ground-state energy E_0 of the system, similar to Eq. (25.13), and calculate E_0 . The answer should be expressed as a product of dimensional factors and a dimensionless convergent integral that can be calculated numerically.

(d) [6 points]

Calculate Green's functions, as in §33, and determine the excitations eigenenergies from the poles of Green's functions. Compare the result with Problem 2a.

(e) [4 points]

Show that Green's functions can be represented in the form (compare with Eq. (33.14)):

$$G(\omega,k) = \frac{u_k^2}{\omega - E_k + i0} - \frac{v_k^2}{\omega + E_k - i0}, \quad F(\omega,k) = -\frac{u_k v_k}{\omega - E_k + i0} + \frac{u_k v_k}{\omega + E_k - i0},$$
(6)

where u_k and v_k are the coefficients of the Bogolyubov transformation:

$$u_k^2 = \frac{\varepsilon_k + n_0 \dot{U}_k}{2E_k} + \frac{1}{2}, \quad v_k^2 = \frac{\varepsilon_k + n_0 \dot{U}_k}{2E_k} - \frac{1}{2}$$
(7)

Using Eq. (6), show that Eq. (31.6) gives the same result for the depletion factor as Eq. (25.17) based on the Bogolyubov transformation.

- **3.** Following §23, for the system considered in Problem 2,
 - (a) [2 points] Determine the critical velocity.
 - (b) [2 points] Crudely estimate the temperature dependence of the the normal density $\rho_n(T)$ at low temperatures.
- 4. Moving Bose condensate

Suppose Bose condensation occurs in a state with momentum q, so that the wave function of the condensate if $\Psi(bfr,t) = \sqrt{n_0}e^{i\mathbf{q}\cdot\mathbf{r}}$. According to Eq. (26.12), this means that the condensate moves with velocity $\mathbf{v} = \mathbf{q}/m$.

(a) [6 points] Using either the Bogolyubov transformation as in §25, or determining the self-energies and Green's function as in §33, determine the eigenspectrum $E_{\mathbf{k}}$ of the excitations. Consider the case of short-range interaction $\tilde{U}(k) = U_0$.

What conservation of momentum tells us about the momenta of particle pairs created from the condensate?

What is μ in this case? (Do not forget to include the kinetic energy of moving condensate.)

Sketch the spectrum $E_{\mathbf{k}}$ as a function of k, for k parallel and antiparallel to q. What happens to the spectrum when the velocity v approaches to the critical velocity?

(b) [4 points] How does depletion factor depend on the velocity v (for v less than critical)?

Calculate the total momentum of the system and show that it is equal to $nm\mathbf{v}$, not $n_0m\mathbf{v}$, i.e. all particle carry the momentum, not just the condensate.