Homework #3 — Phys625 — Spring 2002 Victor Yakovenko, Associate Professor

Deadline: Thursday, February 21, 2002. Office: Physics 2314
Turn in homework in the class or put it in Phone: (301)-405-6151
the box on the door of Phys 2314 by 10 a.m. E-mail: yakovenk@physics.umd.edu

Web page: http://www2.physics.umd.edu/~yakovenk/teaching/phys625.spring2002

Do not forget to write your name and the homework number!
Equation numbers with the period, like (3.25), refer to the equations of the textbook.
Equation numbers without period, like (5), refer to the equations of this homework.

Green’s Functions of Noninteracting Particles (§§7-11)

In this homework, we consider noninteracting particles characterized by a Hamiltonian H , which has a
complete set of one-particle energy eigenfunctions 1, (r) with the eigenvalues ,: Hbp(r) = p1,(r).

1. [4 points] Complete basis

Starting from the definition of Green’s function (7.10) and the expansion ) (r, t) = S, Un(p)e i En—mity,
perform the Fourier transform in time and derive the following expression for Green’s function:

,(/)n(rl) Q/J;(I‘Q)
w—¢en+p+i0sgn(e, —p)’

G(w,r1,r2) = Z (1)

n

where p is the chemical potential.

Check that function (1) satisfies the equation (w — H + p) G(w,r1,r2) = 0(r1 — r2). Thus, G =
(w—H + p+i0sgnw)™t.

2. [8 points] Green’s functions of fermions in D = 1 and 3

Using Eq. (1) in the basis of plane waves with momenta p and performing integration over p, calculate
Green’s function G(w,r; — rg) of an ideal Fermi gas in the dimensions D = 1 and 3. In each case,
do the calculations for the parabolic dispersion e(p) = p?/2m and for the approximate dispersion
e(p) = vp(p — pr), which is valid near the Fermi surface, and compare the results. Describe the wave
vector of Green’s function oscillations.

3. Density oscillations in 1D

Consider 1D electron gas occupying semi-infinite space = > 0 with impenetrable boundary at = = 0.
The energy dispersion is £(p) = p?/2m.

(a) [4 points] Calculate Green’s function G(w, 1, x2). To satisfy the vanishing boundary condition
at x = 0, you can use the basis functions sin(pz) in Eq. (1) or the method of images.

(b) [4 points] Using the formula

dw

=3 @

n(x) = fZi/G(w,x,x) e 0w

calculate electron density n(z). Compare the period of oscillation in z (the so-called Friedel
oscillations) with the average distance between electrons.

Hint: You may either integrate G(w,z,x) found in Part 3a over w, or integrate Eq. (1) over w
first and then over p.

4. Bound state in 1D

(a) [4 points] Now let us add a static potential U(r), so that the Hamiltonian of the system becomes
H = Hy+ U(r). Show that Green’s function satisfies the integral equation

G(w,r1, 1) = Go(w,r] —13) —|—/d3r’ Go(w,r1 — ) U(r") G(w, 1, 1), (3)



(b)
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where G is the unperturbed Green’s function for U = 0.

Hint: Use the equation (w — H + ) G(w,r1,1r2) = 8(r; — 13).

[6 points] Let us apply Eq. (3) to the 1D case with the potential U(x) = —vd(z), where v > 0.
Using this equation, determine the energy o and the wave tg(x) of the bound state. (For
simplicity, set u = 0.)

Hint: When w — &g, the term n = 0 in Eq. (1) diverges, whereas the other terms can be
neglected, thus G(w, 1, x2) = Yo(x1)Y§(z2)/(w — o). The unperturbed Green’s function Gy is
finite at w — e¢ < 0, so the first term in the r.h.s. of Eq. (3) can be also neglected. Thus Eq. (3)
becomes (derive it!)

Yo(z) = —Goleo, ) 710 (0). (4)
Setting = 0 in Eq. (4) gives an equation for g < 0, then Eq. (4) gives ¢ (x).

5. Friedel oscillations and RKKY

()

(b)

(c)

[8 points] Let us treat the potential U(r) in Eq. (3) as a small perturbation. It gives the following
corrections to Green’s function dG and to electron density dn:

0G(w,r1,1r2) = /dgr’ Go(w,r1 — ") U(r") Go(w,r’ —r2), (5)
[dw o 3.7 2 / /
on(r) = —2i o € d°r' Gi(w,r — ") U(x'). (6)
77
For a point-like perturbation (an impurity), U(r) = vd(r). In this case, Eq. (6) gives

on(r) = —2i'y/ ;l—:; e Y G2 (w, ). (7)

Substituting Green’s functions found in Part 2 into Eq. (7), calculate dn(r) for D = 3 and 1 using
both the parabolic dispersion £(p) = p?/2m and for the approximate dispersion ¢(p) = vr(p—pr).
Comment on the Friedel oscillations and the behavior of on(r) at r — 0 and oc.

[2 points] Suppose there is a magnetic impurity at r = 0, which has exchange interaction with
electron gas:

Hy_s=JS-58(0), (8)
where S is the spin of the impurity, and §(r) is the spin operator of electrons, which is taken at
the point r = 0. Selecting the spin quantization axis along S, the electron spin operator can be
written as §,(r) = w?' (r)r(r) — wj'(r)d)l (r).

Calculate the average spin density s,(r) = (3,(r)) at the distance r from the impurity. You don’t
need to do any new calculations; just use the results of Part 5a.

[2 points] Suppose there are two magnetic impurities located at r; and ra, which do not interact
between themselves directly, but have exchange interaction (8) with electrons:

Hy s=JSq- §(I‘1) +JSs- é(!‘g). (9)

Calculate how the effective interaction f(r; — ro) between the two impurity spins via exchange
with the electron gas depends on |r; — ra:

A

Heff = f(]:‘l — I‘g) S1 . Sg. (10)

You don’t need to do any new calculations; just use the results of Part 5b. Eq. (10) is called the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.



