Homework #10 — Phys625 — Spring 2002 Victor Yakovenko, Associate Professor

Deadline: Tuesday, May 7, 2002. Office: Physics 2314
Turn in homework in the class or put it in Phone: (301)-405-6151
the box on the door of Phys 2314 by 10 a.m. E-mail: yakovenk@physics.umd.edu

Web page: http://www2.physics.umd.edu/~yakovenk/teaching/phys625.spring2002

Do not forget to write your name and the homework number!
Equation numbers with the period, like (3.25), refer to the equations of the textbook.
Equation numbers without period, like (5), refer to the equations of this homework.

This is the last homework

Superconductivity (Ch. V)

Because of limited time, in this homework we focus only on the many-body aspects of superconductivity.
So, while it is recommended to read the whole Ch. V, pay particular attention to §39-44 and §51-54.

1. Bogolyubov-de Gennes equations

Let us consider the following model Hamiltonian:
B = [ [ ) €010) + 57 () E0u6) + 90 (0] (1)1 (00 o) 1)

Here & = p?/2m — p ~ vp(p — pr) is the operator of kinetic energy of electrons, and g < 0 is the
interaction constant. Notice that we consider local interaction, thus, because of the Fermi statistics,
only the electrons with opposite spins interact.

Suppose Cooper pairing takes place in the system, and the condensate (| (r)i(r)) # 0 is present.
Here the average is taken over the thermodynamic equilibrium at finite or zero temperature. The
original Hamiltonian (1) can be approximated by the following mean-field Hamiltonian:

2
e = [ [ €010+ 97 () €6006) + A1) 64009 + A0 B 005 (1)~ (2000

(2)
Here we introduced an auxiliary complex function A(r), which should be determined by minimizing the
energy of the system (ﬁ mF) with respect to A(r). We consider a general case where A may depend
on coordinate r, for example because of externally imposed boundary condition. However, in most
common cases A(r) = Ag is a constant independent of r.

(a) [6 points] By minimizing (Hy/r) with respect to A*(r), show that

A(r) = g(y ()i (x) = —g{iby (0)d, (1), 3)

Here the second equation follows from Fermi statistics and demonstrates that the condensate is
antisymmetric with respect to spin, i.e. the pairing is singlet.

By substituting Eq. (3) into Eq. (2), show that
(Hur) = /d37’ [<?/3T+(r) Edr(x) + 97 (1) €y (x) + g (i () (0)) (4 (£) 4 ()
|Ar)?

= [ [ &b @ + it wéde)+ O 0

Eq. (4) is in agreement with Eq. (1) with the average of the quartic term is replaced by the
product of two bilinear averages.
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(b) [4 points] Rewrite Hamiltonian (2) in the following form
. . A(r)|?
Hur :HBdG_/dST%"FZ&M ()
P

where the formal sum Zp &p is taken over all momenta and

; , p £ A )i (x)
fpac = [@riat@.ael (450 29 ) (00 ). )
N ARG
Show that Hamiltonian Hpge can be diagonalized by the Bogolyubov transformation

Dr(r) = [un () Fug + o5 (r) 3, 5]

n

D) =D [un (@) 4ty — vn(r) Ana] (7)

n

where (uy,,v,) are the eigenvectors of the Bogolyubov-de Gennes equation with the eigenvalues

En: .
(s Y205 )=m( %) ®)

A o E, 0 A1
HBdG — Z(WI]JVﬂ,Q) ( 0 _E'n, ) ( ,Q/+2 ) . (9>
n,

n

so that

Show by substituting Eq. (9) into Eq. (5) that

. L L A(r)|?
Hyr =Y Ea(Wiiina + 38 29n,2) + D (~En+ &) — /d?’r %- (10)

In Eq. (10) the first term describes the Bogolyubov quasiparticle excitations, whereas the other
terms represent the ground state energy.

Show that the difference between the ground energies of the superconducting and normal states
is

Bo= B - [@rBOE o5 o oS em v - [ BOE

n &n<0 n

where the factor 2 comes from two spin orientations.

(c) [6 points] Show that the transformation inverse to (7) is
o = [ [u6) 61 0) — i) 91 )]
Ay = / &r [un(r) ¢ () + va(r) z/ST(r)} : (12)

Show that the coefficients v and v must satisfy the following relations:

Sl () (1) + v ()05, ()] = 8(x) — '),

n

D Tun(r)u; (1) = un (x)oy (r)] = 0,

n

/dgr [un (r)uy, (r) + vp(r)v
/d3r [tn (r)vpn (r) — Uy (r)uy (r)] = 0.
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2. BCS theory
Now let us specialize to the spatially uniform case, the index n is simply the momentum, and u,,(r)
and v, (r) are plain waves.

(a) [2 points] Using representation 4 (r) = 37, ey, show that Eqs. (7) and (12) become

A o Jus

ak,) = Uk Vk,1 + Vk Vi 25

At ook A

Ay, ] = UkV k2~ Uk Vi,11 (13)
Yk,1 = Uk Qk,1 — Vk &J_rkyla

”A/tkg = Uk &tk,l + Uk Gk, 1 (14)

(b) [4 points] Show that the Bogolyubov-de Gennes equation (8) becomes

( 211 _ék > ( _u:;k ) ~ ( ’UF(kA_* kr) —Q}F(k‘A_ p) ) ( _“:;k > _Ek( _“:]‘k ) (15)

Find the eigenvalues and eigenfunctions of Eq. (15) compare the answers with the textbook.

(c) [4 points] Calculate the energy (11) of the system per unit volume at zero temperature

Eo &Pk Ao

— = — (—E, + — 16

v (2’/T)3 ( k |£k|) g ) ( )
By minimizing Ey with respect to Ag, find Ay at zero temperature. Express the condensation
energy Fy/V at zero temperature in terms of Ag. Compare the answer with the textbook.
(Remember that in our notation g < 0.) This calculation is similar to the Peierls Problem 2 of
HW 6.

(d) [2 points] Show that Hamiltonian (10) (counted from the normal ground-state energy) becomes

. d3k . .
Hur = V/ 2 Er(e1 %1 + o h,2) + Eo (17)
Show that at a finite temperature the energy of the system is
E d3k |Al?
== | —={12f(Ey) — 1|E} - — 18
5 = [ e RS — 1B+ 6} - 2 (18)

where f(Ej) is the Fermi distribution function. By minimizing (18) with respect to A with the
fixed occupation numbers f(FEj), obtain an equation for A. Compare with the textbook.

(e) [4 points] Show that the wave function |¥) of the ground state of Hamiltonian (17) can be
written as

|¥) = H(Uk + delt,Taik,l)|0>’ (19)
k

where |0) is a completely empty state without any particles.

You need to show that i 1,2
the eigenvalues Fj.

U) =0, and 4, ; ,|¥) are the eigenstates of Hamiltonian (17) with

3. [4 points] Using the Landau criterion (23.3), determine the critical velocity of flow and the critical
current density for a superconductor with the gap A at zero temperature. Sketch what happens to the
spectrum of excitations at the critical velocity.

4. FElectrodynamic response

In the presence of vector potential A(r) = Aqe’@™, the kinetic energy of the system becomes (p —
eA/c)?/2m. Thus, the Hamiltonian (2) experiences the following perturbation:

2
. e . e
_ -t - A2 PRNEEN
H =—— E Ay kakJrq’Uak,[,, Hy = Ay 5 E ay, G, (20)
me ? £
o

2m
k,o
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The current j = —3(H)/SA consists of two terms, corresponding to the two terms in Eq. (20):

. € ~ s H _ezp
-1511) - % Zk<alt+q,oak,o>a J¢(12) = 7Aq ch’ (21)
k,o

where we consider static response at the wave vector q, p is the total concentration of electrons, and

(1)

o is the spin index. The average in jq ' must be calculated using H, as the perturbation.

()

(b)

(c)

[4 points] Show that H, can be expressed in terms of the Bogolyubov operators in the following
way

Hi =53 Aq -k [(ukuicrq + 0kkrq) (i q19k1 — NipqoTk2)

+ (VkUktq — ukvk+q>('71j+q,1:/1j,2 — Yi+q,27k,1)] (22)

Show that the so-called coherence factor of case II are

(ut +vv")? = % (1 + %) , (wv —vu')? = % (1 - %) . (23)

[4 points] Let us consider the case ¢ — 0. Then, H; = —e D ko Ao k[(’yzlfyk’l - 4/;24/1(72)],
ie.

Ey1— Ex1 — iAO -k, Ex2 — Ex + iAo k. (24)
me me
Show that the current is
2
(1) _ € 4 A At A V) A 26 of
jo’=— Xk:k (B ier) = Giéahez) » =3 zk:k (A - k}a—Ek, (25)

where f is the Fermi distribution function.
Thus, show that

. e%ps
Jo= — q mCQ 3 (26)
where the superfluid density is ps = p — pn and the normal density is
1 of Pn / <L of
= ——— [ dkk* ==, — -2 dé —. 27
p 3m2m / OE; p 0 J oF (27)

Describe qualitatively the behavior of ps and p, at T — 0 and T" — T,.

[4 points] Using Eq. (22) as a perturbation, obtain an a relation between jq and Ag for ¢ # 0.
Describe qualitatively how this expression can be obtained also from the Feynman diagrams for
a superconducting system.



