Homework #8 — Phys623 — Spring 1999 Victor Yakovenko, Assistant Professor

Deadline: 5 p.m., Friday, April 9, 1999. Office: Physics 2314
Turn in homework in the class or put in Phone: (301)-405-6151
the box on the door of Phys 2314 by 5 p.m. E-mail: yakovenk@physics.umd.edu

Do not forget to write your name and the homework number!
Equation numbers with the period, like (3.25), refer to the equations of Schwabl.
Equation numbers without period, like (5), refer to the equations of this homework.

Molecules (Chapter 15)

Schwabl’s Problem 15.2 can be solved using the so-called elliptical coordinates (see p. 475 of the book by
Baym). I do not ask you to take those integrals.

1. [5 points] Schwabl’s Problem 15.5.

2. [3 points] Schwabl’s Problem 15.7. This potential is called the Lennard-Jones 6-12 potential and is
widely used in molecular physics. The power 6 represents the van der Waals attraction, and the power
12 is selected for mathematical convenience.

Directions: Follow Ch. 15.5. Appendix D of Schwabl may be useful. The value of £ given in Schwabl
is wrong. Instead do the problem for a Ne; molecule where e = 0.003 €V and d = 2.74 A. State which
of the energy levels are excited and which are frozen out at the room temperature.

3. [3 points] The “dissociation energy” required to separate a Dy molecule into two deuterium atoms
(4.54 €V) is not the same as that of an Hs molecule (4.46 V), although the proton and deuteron are
practically indistinguishable to the electrons. Explain why, and use the above information to compute
the zero-point energy of vibration in the Hy and Dy molecules. (Neglect the small nuclear motion in
the atoms and tiny finite nuclear size and hyperfine effects.)

4. [3 points] The rotational spectrum of HBr consists of a series of lines spaced equidistantly at the
energy g9 apart. Find the internuclear distance of HBr.

5. [5 points] Calculate the energy of the van der Waals interaction between two hydrogen atoms in the
ground states (Ch. 15.6) using the variational method. Try the following two variational functions:

Ya(ry,re) = Ciho(r1)ho(r2)(1 + axyx2), (1)

where 1o(r) is the ground-state wave function of the hydrogen atom, C is a normalization constant, «
is a variational parameter. Solution of Problem 5 of Homework 6 and the equation before Eq. (15.51)
may be useful.

6. Thus far we considered molecules that consist of two atoms. Now let us consider a molecule that
consists of an infinite number of atoms spaced periodically at a distance d: a crystal. Let us consider
one-dimensional arrangement for simplicity. The Hamiltonian of a particle is

A= 1+ % v, 2)

where [ is an integer, and Vj(z) = Vp(z — Id) is the potential of one atom displaced to a distance Id.
As a specific example, we will consider the Dirac comb:

A9 o0
szg—u—/\ 3 8z —1d), (3)
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where §(z) is the Dirac delta-function.
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Let us consider the case where the distance between the atoms, d, is substantially greater that the size
of the atomic wave function a. For example, a single Dirac potential Vp(z) = —Ad(x) has the wave

function
Yo(x) = Ve " (4)

where k = Au/h?, and the energy Eo = —h”k?/2u. We consider that case where kd < 1, so the overlap
of the wave functions of different atoms is exponentially small.

Let us construct the wave function in a crystal as a linear superposition of the eigenfunctions of
individual atoms (the so-called LCAO method (linear combination of atomic orbitals) or the tight-
binding approzimation):

W(@) = catulz),  where ¢n(z) = o(z —nd). (5)

Because all wave functions v, (x) have the same energies within their atoms, the coefficients ¢,, should
be determined from some sort of a secular equation. To derive this equation, let us substitute the sum
(5) into the Schrédinger equation

Hy = By, (6)
and take a scalar product of (6) with ¢ (z).

(a) [3 points] Show that this generates the following equation on the coefficients c:

S Wl S Viltbnden = (B = Eo)lem + 3 (mltbuden] ()
n I#m n#Em
(b) [5 points] Show that ) = eihn is an eigenvector of Eq. (7) corresponding to the energy
_ B+(k)
E(k) = Ey+ T o)’ (8)
ak) = > e*™(olyn), 9)
n#0
B = (Yol > Vilth), (10)
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v(k) = D el Y Vilgn). (11)
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Because the atomic wave functions typically decay exponentially (see Eq. (4)), it is sufficient to keep
only the terms with n = +1 and !/ =1 in Eqgs. (9)—(11). Further examination shows that, o and 3 can
be dropped compared with the leading term . So we arrive to the following equation:

E(k) = Ey + 2t cos(k), where ¢ = {(1o|V1|9)1). (12)

The matrix element ¢ is called the transfer integral between the nearest neighboring atomic sites. In
this approximation, the secular equation (7) has the form:

Ecm = E()Cm + t(Cm_H + cm—l); (13)
where the matrix element ¢ “transfers” the particle from site m to the neighboring sites m + 1.

(c) [3 points] For the Dirac comb potential (3) in the case kd <« 1, check the validity of the
approximations that led from Eq. (8) to Eq. (13) and calculate the transfer integral ¢.



