Homework #3 — Phys623 — Spring 1999 Victor Yakovenko, Assistant Professor

Deadline: 5 p.m., Wednesday, February 24, 1999. Office: Physics 2314
Turn in homework in the class or put in Phone: (301)-405-6151
the box on the door of Phys 2314 by 5 p.m. E-mail: yakovenk@physics.umd.edu

Do not forget to write your name and the homework number!
Equation numbers with the period, like (3.25), refer to the equations of Schwabl.
Equation numbers without period, like (5), refer to the equations of this homework.

The Variational Principle (Chapter 11.2)

Using the variational principle, one finds the energy and the wave function of the ground state by
minimizing the following expression (see Eq. (11.16)):
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where the primes denote derivatives in z. Integrating the first term in denominator by parts, Eq. (1) can be
equivalently written as (show this!)
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I strongly recommend you to use form (2), rather than form (1). In form (2) you need less derivatives to

take, and the kinetic energy term is manifestly positive. You could use Mathematica or a similar program
to take the integrals and, perhaps, even to minimize E(pu).

E(p) (2)

1. Adapted from Qualifier, August 1990 and 1980, II-1.

Heavy quark (q) and its antiquark () interact by linearly rising potential U(r) = or, where r is the
distance between the particles, and form a bound state called quarkonium.

(a) [5 points] Using the variational method, find (approximately) the energy and the wave function
of the ground state.

(b) [5 points] By definition, the Airy function Ai(z) satisfies the equation
[d?/dz® — z]Ai(z) =0 3)

and vanishes when z — +o00. It oscillates when £ < 0 and vanishes at a sequence of points x,
called the zeros of the Airy function:

Ai(z,) =0, 2 =-2.338, 2,=-4.088, =z3=-5521, ... (4)

Express the energy levels of quarkonium in terms of the zeros x,, of the Airy function. Compare
the exact ground-state energy with the value found by the variational method in Part 1a.

(c) [3 points] Using the WKB method, find approximate expressions for the Airy function in the
limit |z| > 1 and for the energy levels E,, of quarkonium in the limit n > 1.

2. Consider a one-dimensional potential well of a given shape U(x) with the characteristic depth Uy and
width a which obey the following inequality:")

h? /ma® > Uy, (5)

where m is the mass of a quantum particle moving in this potential. (Such a well is called shallow.)

DThe presence of the parameters Up and a does not imply that the shape of the potential well is rectangular. The word
“characteristic” indicates that these are the parameters that characterize the overall size of the potential U(x), which may have
an arbitrary shape.
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(a) [5 points] Using the variational method, find an expression for the ground state energy of the
particle. Compare the ground state energy with Uy. Is the ground state a bound one? What is
the characteristic localization length of the ground state wave function? Compare it is with a.

(b) [5 points] Consider the same problem in two-dimensional and three-dimensional cases. Applying
the variational method, draw a conclusion whether a shallow well has a bound state in these cases.
(see Hints)

(c) [3 points] Consider now a deep potential well for which condition (5) is reversed. Does it have a
bound state in one, two, and three dimensions? What is the characteristic energy of the ground
state (in terms of Up)?

. [5 points] Let us consider the energy functional of a quantum particle:
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where the first term represents the kinetic energy and the second term the potential energy.

By applying the calculus of variations, show that the wave function v (z) that minimizes functional
(6) satisfies the Schrédinger equation
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where Ej is the ground state energy. When minimizing functional (6), bear in mind that there is only
one particle in a state ¢ (z), thus the wave function ¢ (x) must be normalized to one:

/ de [y(a)|? = 1. (8)

For this reason, you need to minimize H {¢(x)} under constraint (8), which requires to use the Lagrange
multipliers. Alternatively, you may avoid using the Lagrange multipliers by minimizing
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without restriction (8).

. Consider a quantum particle of mass m moving in one dimension and interacting with a real (not
complex) field ¢(x), so that the total energy functional of the system is

(0@, 00} = [do (@) [-20 2t o) ) + 0} (10)

where 1 (z) is a normalized wavefunction of the particle and a > 0 is a constant. The ground state of
the system is determined by minimizing functional (10) with respect to both ¢(z) and ¢(z).

(a) [3 points] By applying the calculus of variations, minimize functional (10) exactly with respect
to ¢(z) and find the energy functional in terms of ¢ (z) only: Ha{¢(z)}.

(b) [5 points] Use some trial function ¢(z) to minimize Ho{t¢(x)}. What are the energy of the
ground state, the width of the wave function ¢(z), the width and the depth of the corresponding
potential ¢(x)?

(c) [5 points] Apply variational approach to the same problem in two and three dimensions. Is there
a bound state in these cases? If so, what are its characteristics?

(d) [5 points] Using the calculus of variations, find an exact equation for the function ¢y(z) that
minimizes Ha{¢)(z)}.
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(e) [7 points] Solve this equation exactly in one-dimensional case and find ¢y(z). The integrals that
appear in the solution can be taken exactly. If you don’t know how to calculate them, consult
tables of indefinite integrals. Compare your results with the solution of Problem 4b.

In solid state physics, the field ¢(x) may represent phonons, (z) electrons, and functional (10) the
electron-phonon interaction. A bound state of the electron and the phonon field is called a polaron.
From mathematical point of view, it is a soliton, a localized solution of non-linear differential equations.

Hints and Comments

2b In this problem, you are required to present only naive variational conclusions. Technically, the vari-
ational method can prove the existence of a bound state, but cannot prove the absence of a bound
state. The variational conclusion about existence of a bound state in a shallow well is correct in
three-dimensional case, but is wrong in two dimensions. This can be shown using different methods.
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