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Dow-Jones data, 1982-2001
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. S
Define the log-return ry,—¢; = In S—z?
1
Average growth p = (%) = 13% per year.
Subtracting the average growth, define the log-

return fluctuations: xy = ry — ut.

What is P(xz), the probability to have log-return z
after time lag t7 Pi(x) — 6(x) when t — 0.



Dow-Jones data, 1982-2001
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Stochastic differential equation for variance:
The Cox-Ingersoll-Ross or Feller process

The variance, v; = o7, satisfies

dvy = —~(ve — 0)dt + k/v¢ th(Q),
v=relaxation rate, §=average variance, k=noise.
The Fokker-Planck equation for the probability
distribution M¢(v):

ony(v) _ 9 K2 02

- o [—v(v — O) My (v)] + 9% [vMT(v)].

The stationary distribution satisfies %I‘It(v) = 0:

Me(v) x VP exp(—aw), a= 2v/k%, B=ab—1.
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Asymptotic behavior for large log-return x

The tails of the probability distribution P:(x) are
exponential in x:

_I_
Pi(z) ~ e, >0,
et . x <0,

where iiqgt are the singularities of Fi(pgz) in the
complex plane of p, closest to the real axis.
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Conclusions

For the model of
. we calculated the
probability distribution P;(x) of returns x after time
lag t exactly.

In the long-time limit ~t > 2, the probability
distribution P;(x) has the scaling form

K1(z)

Pi(x) = P«(2) where 2z = a\/mQ + (ct)?.

The relaxation time is 1/y = 22 days ~ 1 month.

For large log-returns x, the probability distribu-
tion P;(x) has exponential tails in z. The slopes
of the tails decrease with time and then saturate
when ~t > 1.

We found an excellent agreement with the Dow-
Jones data for 1982—2001 from ¢t = 1 day to t =
250 days (= 1 year). The scaling holds for seven
orders of magnitude.



