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Abstract
We study the Heston model, where the stock price dynamics is governed by a
geometrical (multiplicative) Brownian motion with stochastic variance. We
solve the corresponding Fokker–Planck equation exactly and, after integrating
out the variance, find an analytic formula for the time-dependent probability
distribution of stock price changes (returns). The formula is in excellent
agreement with the Dow–Jones index for time lags from 1 to 250 trading
days. For large returns, the distribution is exponential in log-returns with a
time-dependent exponent, whereas for small returns it is Gaussian. For time
lags longer than the relaxation time of variance, the probability distribution
can be expressed in a scaling form using a Bessel function. The Dow–Jones
data for 1982–2001 follow the scaling function for seven orders of magnitude.

1. Introduction
Stochastic dynamics of stock prices is commonly described by
a geometric (multiplicative) Brownian motion, which gives a
log-normal probability distribution function (PDF) for stock
price changes (returns) [1]. However, numerous observations
show that the tails of the PDF decay slower than the log–normal
distribution predicts (the so-called ‘fat-tails’ effect) [2–4].
Particularly, much attention was devoted to the power-law
tails [5, 6]. The geometric Brownian motion model has two
parameters: the drift µ, which characterizes the average
growth rate, and the volatility σ , which characterizes the
noisiness of the process. There is empirical evidence and a
set of stylized facts indicating that volatility, instead of being
a constant parameter, is driven by a mean-reverting stochastic
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process [7, 8]. Various mathematical models with stochastic
volatility have been discussed in the literature [9–15].

In this paper, we study a particular stochastic volatility
model, called the Heston model [11], where the square of
the stock price volatility, called the variance v, follows a
random process known in financial literature as the Cox–
Ingersoll–Ross (CIR) process and in mathematical statistics
as the Feller process [8, 16]. Using the Fourier and Laplace
transforms [14, 16], we solve the Fokker–Planck equation
for this model exactly and find the joint PDF of returns and
variance as a function of time, conditional on the initial value of
variance. While returns are readily known from financial time
series data, variance is not given directly, so it acts as a hidden
stochastic variable. Thus, we integrate the joint PDF over
variance and obtain the marginal PDF of returns unconditional
on variance. The latter PDF can be directly compared with
financial data. We find an excellent agreement between our
results and the Dow–Jones data for the 20 year period of 1982–
2001. Using only four fitting parameters, our equations very
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well reproduce the PDF of returns for time lags between 1 and
250 trading days. In contrast, in ARCH, GARCH, EGARCH,
TARCH, and similar models, the number of fitting parameters
can easily go to a few tens [17].

Our result for the PDF of returns has the form of a
one-dimensional Fourier integral, which is easily calculated
numerically or, in certain asymptotical limits, analytically.
For large returns, we find that the PDF is exponential in log-
returns, which implies a power-law distribution for returns,
and we calculate the time dependence of the corresponding
exponents. In the limit of long times, the PDF exhibits scaling,
i.e. it becomes a function of a single combination of return and
time, with the scaling function expressed in terms of a Bessel
function. The Dow–Jones data follow the predicted scaling
function for seven orders of magnitude.

The original paper [11] solved the problem of option
pricing for the Heston model. Numerous subsequent
studies [13–15,18] compared option pricing derived from this
model and its extensions with the empirical data on option
pricing. They found that the Heston model describes the
empirical option prices much better than the Black–Scholes
theory, and modifications of the Heston model, such as
adding discontinuous jumps, further improve the agreement.
However, these papers did not address the fundamental
question whether the stock market actually follows the Heston
stochastic process or not. Obviously, if the answer is negative,
then using the Heston model for option pricing would not make
much sense. The stock market time series was studied in [15]
jointly with option prices, but the focus was just on extracting
the effective parameters of the Heston model. In contrast,
we present a comprehensive comparison of the stock market
returns distribution with the predictions of the Heston model.
Using a single set of four parameters, we fit the whole family
of PDF curves for a wide variety of time lags. In order to keep
the model as simple as possible with the minimal number of
fitting parameters, we use the original Heston model and do
not include later modifications proposed in the literature, such
as jumps, multiple relaxation time, etc [13–15]. Interestingly,
the parameters of the model that we find from our fits of the
stock market data are of the same order of magnitude as the
parameters extracted from the fits of option prices in [13–15].

2. The model
We consider a stock, whose price St , as a function of time t ,
obeys the stochastic differential equation of a geometric
(multiplicative) Brownian motion in the Itô form [1, 19]:

dSt = µSt dt + σtSt dW
(1)
t . (1)

Here the subscript t indicates time dependence, µ is the drift
parameter, W

(1)
t is a standard random Wiener process3, and σt

is the time-dependent volatility.
Since any solution of (1) depends only on σ 2

t , it is
convenient to introduce the new variable vt = σ 2

t , which is

3 The infinitesimal increments of the Wiener process dWt are normally
distributed (Gaussian) random variables with zero mean and the variance equal
to dt .

called the variance. We assume that vt obeys the following
mean-reverting stochastic differential equation:

dvt = −γ (vt − θ) dt + κ
√

vt dW
(2)
t . (2)

Here θ is the long-time mean of v, γ is the rate of relaxation
to this mean, W

(2)
t is a standard Wiener process, and κ is

a parameter that we call the variance noise. Equation (2)
is known in financial literature as the CIR process and in
mathematical statistics as the Feller process [8,16]. Alternative
equations for vt , with the last term in (2) replaced by κ dW

(2)
t

or κvt dW
(2)
t , have also been discussed in the literature [9].

However, in our paper, we study only the case given by
equation (2).

We take the Wiener process appearing in (2) to be
correlated with the Wiener process in (1):

dW
(2)
t = ρ dW

(1)
t +

√
1 − ρ2 dZt, (3)

where Zt is a Wiener process independent of W
(1)
t , and ρ ∈

[−1, 1] is the correlation coefficient. A negative correlation
(ρ < 0) between W

(1)
t and W

(2)
t is known as the leverage

effect [8, p 41].
It is convenient to change the variable in (1) from price

St to log-return rt = ln(St/S0). Using Itô’s formula [19], we
obtain the equation satisfied by rt :

drt =
(

µ − vt

2

)
dt +

√
vt dW

(1)
t . (4)

The parameter µ can be eliminated from (4) by changing the
variable to xt = rt − µt , which measures log-returns relative
to the growth rate µ:

dxt = −vt

2
dt +

√
vt dW

(1)
t . (5)

Where it does not cause confusion with rt , we use the term
‘log-return’ also for the variable xt .

Equations (2) and (5) define a two-dimensional stochastic
process for the variables xt and vt [11, 14]. This process is
characterized by the transition probability Pt(x, v|vi) having
log-return x and variance v at time t given the initial log-return
x = 0 and variance vi at t = 0. Time evolution of Pt(x, v|vi)

is governed by the Fokker–Planck (or forward Kolmogorov)
equation [19]

∂

∂t
P = γ

∂

∂v
[(v − θ)P ] +

1

2

∂

∂x
(vP )

+ ρκ
∂2

∂x ∂v
(vP ) +

1

2

∂2

∂x2
(vP ) +

κ2

2

∂2

∂v2
(vP ). (6)

The initial condition for (6) is a product of two delta functions

Pt=0(x, v|vi) = δ(x)δ(v − vi). (7)

The probability distribution of the variance itself, �t(v) =∫
dx Pt (x, v), satisfies the equation

∂

∂t
�t(v) = ∂

∂v
[γ (v − θ)�t(v)] +

κ2

2

∂2

∂2v
[v�t(v)], (8)
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Figure 1. The stationary probability distribution �∗(v) of variance
v, given by equation (9) and shown for α = 1.3 from table 1. The
vertical line indicates the average value of v. Inset: the
corresponding stationary probability distribution �(σ)

∗ (σ ) of
volatility σ given by equation (10).

which is obtained from (6) by integration over x. Feller [16]
has shown that this equation is well-defined on the interval
v ∈ [0, +∞) as long as θ > 0. Equation (8) has the stationary
solution

�∗(v) = αα


(α)

vα−1

θα
e−αv/θ , α = 2γ θ

κ2
, (9)

which is the gamma distribution. The parameter α in (9) is the
ratio of the average variance θ to the characteristic fluctuation
of variance κ2/2γ during the relaxation time 1/γ . When
α → ∞, �∗(v) → δ(v − θ). The corresponding stationary
PDF of volatility σ is

�(σ)
∗ (σ ) = 2αα


(α)

σ 2α−1

θα
e−ασ 2/θ . (10)

Functions (9) and (10) are integrable as long as α > 0. The
distributions �∗(v) and �

(σ)
∗ (σ ) are shown in figure 1 for the

value α = 1.3 deduced from the fit of the Dow–Jones time
series and given in table 1 in section 8.

3. Solution of the Fokker–Planck
equation
Since x appears in (6) only in the derivative operator ∂/∂x, it
is convenient to take the Fourier transform

Pt(x, v|vi) =
∫ +∞

−∞

dpx

2π
eipxxP t,px

(v|vi). (11)

Inserting (11) into (6), we find

∂

∂t
P = γ

∂

∂v
[(v − θ)P ]

−
[
p2

x − ipx

2
v − iρκpx

∂

∂v
v − κ2

2

∂2

∂v2
v

]
P . (12)

Equation (12) is simpler than (6), because the number of
variables has been reduced to two, v and t , whereas px only
plays the role of a parameter.

Since equation (12) is linear in v and quadratic in ∂/∂v, it
can be simplified by taking the Laplace transform over v

P̃t,px
(pv|vi) =

∫ +∞

0
dv e−pvvP t,px

(v|vi). (13)

The partial differential equation satisfied by P̃t,px
(pv|vi) is of

the first order[
∂

∂t
+

(

pv +

κ2

2
p2

v − p2
x − ipx

2

)
∂

∂pv

]
P̃ = −γ θpvP̃ , (14)

where we introduced the notation


 = γ + iρκpx. (15)

Equation (14) has to be solved with the initial condition

P̃t=0,px
(pv|vi) = exp(−pvvi). (16)

The solution of (14) is given by the method of
characteristics [20]:

P̃t,px
(pv|vi) = exp

(
−p̃v(0)vi − γ θ

∫ t

0
dτ p̃v(τ )

)
, (17)

where the function p̃v(τ ) is the solution of the characteristic
(ordinary) differential equation

dp̃v(τ )

dτ
= 
p̃v(τ ) +

κ2

2
p̃2

v(τ ) − p2
x − ipx

2
(18)

with the boundary condition p̃v(t) = pv specified at τ = t .
The differential equation (18) is of the Riccati type with
constant coefficients [21], and its solution is

p̃v(τ ) = 2

κ2

1

ζe(t−τ) − 1
− 
 − 

κ2
, (19)

where we introduced the frequency

 =
√


2 + κ2(p2
x − ipx) (20)

and the coefficient

ζ = 1 +
2

κ2pv + (
 − )
. (21)

Substituting (19) into (17), we find

P̃t,px
(pv|vi)

= exp

{
−p̃v(0)vi +

γ θ(
 − )t

κ2
− 2γ θ

κ2
ln

ζ − e−t

ζ − 1

}
.

(22)
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4. Averaging over variance
Normally we are interested only in log-returnsx and do not care
about variance v. Moreover, whereas log-returns are directly
known from financial data, variance is a hidden stochastic
variable that has to be estimated. Inevitably, such an estimation
is done with some degree of uncertainty, which precludes a
clear-cut direct comparison between Pt(x, v|vi) and financial
data. Thus we introduce the reduced probability distribution

Pt(x|vi) =
∫ +∞

0
dv Pt (x, v|vi) =

∫
dpx

2π
eipxxP̃t,px

(0|vi),

(23)
where the hidden variable v is integrated out, so pv = 0.
Substituting ζ from (21) with pv = 0 into (22), we find

Pt(x|vi) =
∫ +∞

−∞

dpx

2π
exp

(
ipxx − vi

p2
x − ipx


 +  coth (t/2)

)

× exp

(
−2γ θ

κ2
ln

(
cosh

t

2
+





sinh

t

2

)
+

γ
θt

κ2

)
.

(24)

To check the validity of (24), let us consider the limiting
case κ = 0. In this case, the stochastic term in (2) is absent,
so the time evolution of variance is deterministic:

vt = θ + (vi − θ)e−γ t . (25)

Then process (5) gives a Gaussian distribution for x,

P
(κ=0)
t (x|vi) = 1√

2πtvt

exp

(
− (x + vt t/2)2

2vt t

)
, (26)

with the time-averaged variance vt = 1
t

∫ t

0 dτ vτ . On the other
hand, by taking the limit κ → 0 and integrating over px in (24),
we reproduce the same expression (26).

Equation (24) cannot be directly compared with financial
time series data, because it depends on the unknown initial
variance vi . In order to resolve this problem, we assume that
vi has the stationary probability distribution �∗(vi), which
is given by (9). Thus we introduce the PDF Pt(x) by
averaging (24) over vi with the weight �∗(vi):

Pt(x) =
∫ ∞

0
dvi �∗(vi)Pt (x|vi). (27)

The integral over vi is similar to the one of the gamma function
and can be taken explicitly. The final result is the Fourier
integral

Pt(x) = 1

2π

∫ +∞

−∞
dpx eipxx+Ft (px) (28)

with

Ft(px) = γ θ

κ2

t

− 2γ θ

κ2
ln

[
cosh

t

2
+

2 − 
2 + 2γ


2γ
sinh

t

2

]
. (29)

The variable px enters (29) via the variables 
 from (15)
and  from (20). It is easy to check that Pt(x) is real, because
Re F is an even function of px and Im F is an odd one. One
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Figure 2. Probability distribution Pt(x) of log-return x for different
time lags t . Points: the 1982–2001 Dow–Jones data for t = 1, 5, 20,
40, and 250 trading days. Solid curves: fit of the data with
equations (28) and (29). For clarity, the data points and the curves
for successive t are shifted up by the factor of 10 each. Inset: the
1990–2001 Dow–Jones data points compared with the same
theoretical curves.

can also check that Ft(px = 0) = 0, which implies that Pt(x)

is correctly normalized at all times:
∫

dx Pt (x) = 1. The
simplified version of equation (29) for the case ρ = 0 is given
in appendix A.

Equations (28) and (29) for the probability distribution
Pt(x) of log-return x at time t are the central analytical result
of the paper. The integral in (28) can be calculated numerically
or, in certain regimes discussed in sections 5–7, analytically.
In figure 2, the calculated function Pt(x), shown by solid
curves, is compared with the Dow–Jones data, shown by
dots. (Technical details of the data analysis are discussed in
section 8.) Figure 2 demonstrates that, with a fixed set of the
parameters γ , θ , κ , µ, and ρ, equations (28) and (29) very well
reproduce the PDF of log-returns x of the Dow–Jones index
for all times t . In the log–linear scale of figure 2, the tails of
ln Pt(x) versus x are straight lines, which means that the tails
of Pt(x) are exponential in x. For short times t , the distribution
is narrow, and the slopes of the tails are nearly vertical. As the
time t progresses, the PDF broadens and flattens.

5. Asymptotic behaviour for long time t

Equation (2) implies that variance reverts to the equilibrium
value θ within the characteristic relaxation time 1/γ . In this
section, we consider the asymptotic limit where time t is much
longer than the relaxation time: γ t � 2. According to (15)
and (20), this condition also implies that t � 2. Then
equation (29) reduces to

Ft(px) ≈ γ θt

κ2
(
 − ). (30)

446



QUANTITATIVE FI N A N C E Probability distribution of returns in the Heston model with stochastic volatility

Let us change the variable of integration in (28) to

px = ω0

κ
√

1 − ρ2
p̃x + ip0, (31)

where

p0 = κ − 2ργ

2κ(1 − ρ2)
, ω0 =

√
γ 2 + κ2(1 − ρ2)p2

0 . (32)

Substituting (31) into (15), (20), and (30), we transform (28)
to the following form:

Pt(x) = ω0e−p0x+�t

πκ
√

1 − ρ2

∫ ∞

0
dp̃x cos(Ap̃x)e

−B
√

1+p̃2
x , (33)

where

A = ω0

κ
√

1 − ρ2

(
x + ρ

γ θt

κ

)
, B = γ θω0t

κ2
, (34)

and

� = γ θ

2κ2

2γ − ρκ

1 − ρ2
. (35)

According to formula 3.914 from [22], the integral in (33) is
equal to BK1(

√
A2 + B2)/

√
A2 + B2, where K1 is the first-

order modified Bessel function.
Thus, equation (28) in the limit γ t � 2 can be represented

in the scaling form

Pt(x) = Nte
−p0xP∗(z), P∗(z) = K1(z)/z, (36)

where the argument z =
√

A2 + B2 is

z = ω0

κ

√
(x + ργ θt/κ)2

1 − ρ2
+

(
γ θt

κ

)2

, (37)

and the time-dependent normalization factor Nt is

Nt = ω2
0γ θt

πκ3
√

1 − ρ2
e�t . (38)

Equation (36) demonstrates that, up to the factors Nt and e−p0x ,
the dependence of Pt(x) on the two arguments x and t is given
by the function P∗(z) of the single scaling argument z in (37).
Thus, when plotted as a function of z, the data for different x

and t should collapse on the single universal curve P∗(z). This
is beautifully illustrated by figure 3, where the Dow–Jones data
for different time lags t follow the curve P∗(z) for seven orders
of magnitude.

In the limit z � 1, we can use the asymptotic
expression [22] K1(z) ≈ e−z

√
π/2z in (36) and take the

logarithm of P . Keeping only the leading term proportional
to z and omitting the subleading term proportional to ln z, we
find that ln Pt(x) has the hyperbolic distribution [2, p 14]

ln
Pt(x)

Nt

≈ −p0x − z for z � 1. (39)

Let us examine equation (39) for large and small |x|.

	��

	��

	���

	���

	���

	��


�	� �
 �� �� �� � � � � 
 	�
�

	������
�������
�������
�������

������
	�������
	�������
��������
��������

#�$�%��������"�	&
�����	�����	&&�����	

'
��
��
(
��
�)
��
�*
��
��
��
��
��

�
���
��
+*
��
��
��

�

Figure 3. Renormalized probability density Pt(x)ep0x/Nt plotted
as a function of the scaling argument z given by (37). Solid curves:
the scaling function P∗(z) = K1(z)/z from (36), where K1 is the
first-order modified Bessel function. Upper and lower sets of points:
the 1982–2001 and 1990–2001 Dow–Jones data for different time
lags t . For clarity, the lower data set and the curve are shifted by the
factor of 10−2.

In the first case |x| � γ θt/κ , equation (37) gives z ≈
ω0|x|/κ

√
1 − ρ2, so equation (39) becomes

ln
Pt(x)

Nt

≈ −p0x − ω0

κ
√

1 − ρ2
|x|. (40)

Thus, the PDF Pt(x) has the exponential tails (40) for large log-
returns |x|. Notice that, in the considered limit γ t � 2, the
slopes d ln P/dx of the exponential tails (40) do not depend on
time t . Because of p0, the slopes (40) for positive and negative
x are not equal, thus the distribution Pt(x) is not symmetric
with respect to positive and negative price changes. According
to (32), this asymmetry is enhanced by a negative correlation
ρ < 0 between stock price and variance.

In the second case |x + ργ θt/κ| 	 γ θt/κ , by Taylor-
expanding z in (37) near its minimum in x and substituting the
result into (39), we get

ln
Pt(x)

N ′
t

≈ −p0x − ω0(x + ργ θt/κ)2

2(1 − ρ2)γ θt
, (41)

where N ′
t = Nt exp(−ω0γ θt/κ2). Thus, for small log-returns

|x|, the PDF Pt(x) is Gaussian with the width increasing
linearly in time. The maximum of Pt(x) in (41) is achieved at

xm(t) = −γ θt

2ω0

(
1 + 2

ρ(ω0 − γ )

κ

)
. (42)

Equation (42) gives the most probable log-return xm(t) at
time t , and the coefficient in front of t constitutes a correction
to the average growth rate µ, so that the actual growth rate is
µ̄ = µ + dxm/dt .

As figure 2 illustrates, ln Pt(x) is indeed linear in x

for large |x| and quadratic for small |x|, in agreement
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Figure 4. The fraction Gt of the total probability contained in the
Gaussian part of Pt(x) versus time lag t . Inset: time dependence of
the probability density at maximum Pt(xm) (points), compared with
the Gaussian t−1/2 behaviour (solid curve).

with (40) and (41). As time progresses, the distribution,
which has the scaling form (36) and (37), broadens. Thus, the
fraction Gt of the total probability contained in the parabolic
(Gaussian) portion of the curve increases, as illustrated in
figure 4. (The procedure of calculating Gt is explained in
appendix B.) Figure 4 shows that, at sufficiently long times, the
total probability contained in the non-Gaussian tails becomes
negligible, which is known in the literature [2]. The inset in
figure 4 illustrates that the time dependence of the probability
density at maximum, Pt(xm), is close to t−1/2, which is
characteristic for a Gaussian evolution.

6. Asymptotic behaviour for large
log-return x

In the complex plane of px , function F(px) becomes singular
at the points px where the argument of the logarithm in (29)
vanishes. These points are located on the imaginary axis
of px and are shown by dots in figure 5. The singularity
closest to the real axis is located on the positive (negative)
imaginary axis at the point p+

1 (p−
1 ). Because the argument

of the logarithm in (29) vanishes at these two points, we can
approximate F(px) by the dominant, singular term: F(px) ≈
−(2γ θ/κ2) ln(px − p±

1 ).

For large |x|, the integrand of (28) oscillates very fast as
a function of px . Thus, we can evaluate the integral using
the method of stationary phase [21] by shifting the contour
of integration so that it passes through a saddle point of the
argument ipxx + F(px) of the exponent in (28). The saddle
point position ps , shown in figure 5 by the cross, is determined

�

�/
	 �

�/
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��
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'�����
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��

��

Figure 5. Complex plane of px . Dots: the singularities of Ft(px).
Circled crosses: the accumulation points ±iq±

∗ of the singularities in
the limit γ t � 2. Cross: the saddle point ps , which is located in the
upper half-plane for x > 0. Dashed line: the contour of integration
displaced from the real axis in order to pass through the saddle point
ps .

by the equation

ix = −dF(px)

dpx

∣∣∣∣
px=ps

≈ 2γ θ

κ2




1

ps − p+
1

, x > 0,

1

ps − p−
1

, x < 0.

(43)
For a large |x|, such that |xp±

1 | � 2γ θ/κ2, the saddle point
ps is very close to the singularity point: ps ≈ p+

1 for x > 0
and ps ≈ p−

1 for x < 0. Then the asymptotic expression for
the probability distribution is

Pt(x) ∼
{

e−xq+
t , x > 0,

exq−
t , x < 0,

(44)

where q±
t = ∓ip±

1 (t) are real and positive. Equation (44)
shows that, for all times t , the tails of the probability
distribution Pt(x) for large |x| are exponential. The slopes
of the exponential tails, q± = ∓ d ln P/dx, are determined by
the positions p±

1 of the singularities closest to the real axis.
These positions p±

1 (t) and, thus, the slopes q±
t depend

on time t . For times much shorter than the relaxation time
(γ t 	 2), the singularities lie far away from the real axis.
As time increases, the singularities move along the imaginary
axis toward the real axis. Finally, for times much longer
than the relaxation time (γ t � 2), the singularities approach
limiting points: p±

1 → ±iq±
∗ , which are shown in figure 5 by

circled crosses. Thus, as illustrated in figure 6, the slopes q±
t

monotonically decrease in time and saturate at long times:

q±
t → q±

∗ = ω0

κ
√

1 − ρ2
± p0 for γ t � 2. (45)

The slopes (45) are in agreement with equation (40) valid for
γ t � 2. The time dependence q±

t at short times can also be
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Figure 6. Solid curve: the slope q+
t = −d ln P/dx of the

exponential tail for x > 0 as a function of time. Points: the
asymptotic approximation (46) for the slope in the limit γ t 	 2.
Dashed line: the saturation value q+

∗ of q+
t for γ t � 2, equation (45).

found analytically:

q±
t ≈ 2

κ

√
γ

t
for γ t 	 2. (46)

The dotted curve in figure 6 shows that equation (46) works
very well for short times t , where the slope diverges at t → 0.

7. Asymptotic behaviour for short time t
For a short time t , we expand the equations of section 3
to the first order in t and set pv = 0. The last term in
equation (22) cancels the penultimate term, and equation (18)
gives p̃v(0) = t (p2

x − ipx)/2. Substituting this formula
into (22) and taking the integral (23) over px , we find

Pt(x|vi) = 1√
2πvit

exp

(
− (x + vit/2)2

2vit

)
. (47)

Equation (47) shows that, for a short t , the probability
distribution of x evolves in a Gaussian manner with the initial
variance vi , because variance has no time to change.

Substituting (47) and (9) into (27), we find

Pt(x) = αα


(α)

e−x/2

√
2πθt

∫ ∞

0
dṽi ṽ

C−1
i e−Aṽi−B/ṽi (48)

where ṽi = vi/θ , A = α+θt/8, B = x2/2θt , andC = α−1/2.
According to formula 3.471.9 from [22], the integral in (48)
is 2(B/A)C/2KC(2

√
AB) for Re A > 0 and Re B > 0, where

KC is the modified Bessel function of the order C. Taking into
account that A ≈ α (because t 	 16γ /κ2 for short t), we
obtain the final expression

Pt(x) = 21−αe−x/2


(α)

√
α

πθt
yα−1/2Kα−1/2(y), (49)

where we introduced the scaling variable

y =
√

2αx2

θt
= 2

√
γ

κ

|x|√
t
. (50)

In the limit y � 1, using the formula Kν(y) ≈ e−y
√

π/2y

in (49), we find

Pt(x) ≈ 21/2−α


(α)

√
α

θt
yα−1e−y for y � 1. (51)

Equations (50) and (51) show that the tails of the distribution
are exponential in x, and the slopes d ln P/dx are in agreement
with equation (46).

In the opposite limit y 	 1, the small argument expansion
of the Bessel function can be found from the following
equations [23]:

Kν(y) = π

2

I−ν(y) − Iν(y)

sin(νπ)
,

π

sin(πν)
= 
(ν)
(1 − ν),

(52)

and

Iν(y) ≈
(

y

2

)ν ∞∑
k=0

(y2/4)k

k!
(ν + k + 1)
. (53)

Substituting (53) into (52), we find in the case 1/2 � α < 3/2

Kα−1/2(y) ≈ 
(α − 1/2)

2

(
y

2

)−α+1/2

+

(−α + 1/2)

2

(
y

2

)α−1/2

. (54)

Substituting (54) into (49), we obtain

Pt(x) ≈ 
(α − 1/2)


(α)

√
α

2πθt

[
1 − λ

(
y

2

)2α−1]
, (55)

where we introduced the coefficient

λ = |
(−α + 1/2)|

(α − 1/2)

. (56)

Equation (55) can be written in the form

ln Pt(x) − ln Pt(0) ≈ −λ

(
y

2

)2α−1

for y 	 1. (57)

We see that ln Pt(x) approaches x = 0 as a power of x lower
than 2 (for 1/2 � α < 3/2). The slope d ln P/dx at x → 0 is
zero for α > 1 and infinite for α < 1.

8. Comparison with the Dow–Jones time
series
To test the model against financial data, we downloaded daily
closing values of the Dow–Jones industrial index for the period
of 20 years from 1 January 1982 to 31 December 2001 from
the web site of Yahoo [24]. The data set contains 5049 points,
which form the time series {Sτ }, where the integer time variable
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Table 1. Parameters of the Heston model obtained from the fit of the Dow–Jones data using ρ = 0 for the correlation coefficient. We also
find 1/γ = 22.2 trading days for the relaxation time of variance, α = 2γ θ/κ2 = 1.3 for the parameter in the variance distribution
function (9), and x0 = κ/γ = 5.4% for the characteristic scale (A.4) of x.

Units γ θ κ µ

1/day 4.50 × 10−2 8.62 × 10−5 2.45 × 10−3 5.67 × 10−4

1/year 11.35 0.022 0.618 0.143

τ is the trading day number. We do not filter the data for short
days, such as those before holidays.

Given {Sτ }, we use the following procedure to extract
the probability density P

(DJ)
t (r) of log-return r for a given

time lag t . For fixed t , we calculate the set of log-returns
{rτ = ln Sτ+t /Sτ } for all possible times τ . Then we partition
the r-axis into equally spaced bins of width �r and count
the number of log-returns rτ belonging to each bin. In this
process, we omit the bins with occupation numbers less than
five, because we consider such small statistics unreliable. Only
less than 1% of the entire data set is omitted in this procedure.
Dividing the occupation number of each bin by �r and by the
total occupation number of all bins, we obtain the probability
density P

(DJ)
t (r) for a given time lag t . To find P

(DJ)
t (x), we

replace r → x + µt .
Assuming that the system is ergodic, so that ensemble

averaging is equivalent to time averaging, we compare
P

(DJ)
t (x) extracted from the time series data and Pt(x)

calculated in previous sections, which describes ensemble
distribution. In the language of mathematical statistics, we
compare our theoretically derived population distribution with
the sample distribution extracted from the time series data. We
determine parameters of the model by minimizing the mean-
square deviation

∑
x,t | ln P

(DJ)
t (x) − ln Pt(x)|2, where the

sum is taken over all available x and t = 1, 5, 20, 40, and
250 days. These values of t are selected because they represent
different regimes: γ t 	 1 for t = 1 and 5 days, γ t ≈ 1 for
t = 20 days, and γ t � 1 for t = 40 and 250 days. As figures 2
and 3 illustrate, our expression (28) and (29) for the probability
density Pt(x) agrees with the data very well, not only for the
selected five values of time t , but for the whole time interval
from 1 to 250 trading days. However, we cannot extend this
comparison to t longer than 250 days, which is approximately
1/20 of the entire range of the data set, because we cannot
reliably extract P

(DJ)
t (x) from the data when t is too long.

The values obtained for the four fitting parameters (γ , θ ,
κ , µ) are given in table 1. We find that our fits are not very
sensitive to the value of ρ, so we cannot reliably determine it.
Thus, we use ρ = 0 for simplicity, which gives a good fit of
the data. On the other hand, a nonzero value of ρ was found
in [25] by fitting the leverage correlation function introduced
in [26] and [13–15] by fitting the option prices.

All four parameters (γ , θ , κ , µ) shown in table 1 have the
dimensionality of 1/time. The first line of the table gives their
values in units of 1/day, as originally determined in our fit.
The second line shows the annualized values of the parameters
in units of 1/year, where we utilize the average number of
252.5 trading days per calendar year to make the conversion.
The relaxation time of variance is equal to 1/γ = 22.2 trading
days = 4.4 weeks ≈1 month, where we took into account that
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Figure 7. Time dependence of the Dow–Jones index shown on a
log–linear scale. The straight line represents the average exponential
growth in time.

1 week = 5 trading days. Thus, we find that variance has a
rather long relaxation time, of the order of one month, which
is in agreement with the conclusion of [25].

The effective growth rate of stock prices is determined by
the coordinate rm(t) where the probability density Pt(rm) is
maximal. Using the relation rm = xm + µt and equation (42),
we find that the actual growth rate is µ̄ = µ − γ θ/2ω0 ≈
µ−θ/2 = 13%/year. (Here we took into account that ω0 ≈ γ ,
because γ � κ/2 in equation (32).) This number coincides
with the average growth rate of the Dow–Jones index obtained
by a simple fit of the time series {Sτ } with an exponential
function of τ , as shown in figure 7. The effective stock growth
rate µ̄ is comparable with the average stock volatility after one
year σ = √

θ = 14.7%. Moreover, as figure 1 shows, the
distribution of variance is broad, and the variation of variance
is comparable to its average value θ . Thus, even though the
average growth rate of the stock index is positive, there is
a substantial probability

∫ 0
−∞ dr Pt (r) = 17.7% of having a

negative return for t = 1 year.
According to (45), the asymmetry between the slopes of

exponential tails for positive and negative x is given by the
parameter p0, which is equal to 1/2 when ρ = 0 (see also the
discussion of equation (A.1) in appendix A). The origin of this
asymmetry can be traced back to the transformation from (1)
to (4) using Itô’s formula. It produces the term 0.5vt dt in the
rhs of (4), which then generates the second term in the rhs
of (6). The latter term is the only source of asymmetry in x

of Pt(x) when ρ = 0. However, in practice, the asymmetry
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of the slopes p0 = 1/2 is quite small (about 2.7%) compared
with the average slope q±

∗ ≈ ω0/κ ≈ 1/x0 = 18.4.
By fitting the Dow–Jones data to our formula, we

implicitly assumed that the parameters of the stochastic process
(γ , θ , κ , µ) do not change in time. While this assumption
may be reasonable for a limited time interval, the parameters
generally could change in time. The time interval of our fit,
1982–2001, includes the crash of 1987, so one might expect
that the parameters of the fit would change if we use a different
interval. To verify this conjecture, in figures 2 and 3, we
also compare the data points for the time interval 1990–2001
with the theoretical curves produced using the same values for
the parameters as shown in table 1. Although the empirical
data points in the tails for long time lags decrease somewhat
faster than the theory predicts, the overall agreement is quite
reasonable. We find that changing the values of the fitting
parameters does not visibly improve the agreement. Thus,
we conclude that the parameters of the Heston stochastic
process are essentially the same for the 1980s and 1990s.
Apparently, the crash of 1987 produced little effect on the
probability distribution of returns, because the stock market
quickly resumed its overall growth. On the other hand, our
study [35] indicates that the data for the 2000s do not follow our
theoretical curves with the same fitting parameters. The main
difference appears to be in the average growth rate µ, which
became negative in the 2000s, as opposed to +13%/year in the
1980s and 1990s. Unfortunately, the statistics for the 2000s
is limited, because we have only a few years. Nevertheless,
it does seem to indicate that in the 2000s the stock market
switched to a different regime compared with the 1980s and
1990s.

9. Discussion and conclusions
We derived an analytical solution for the PDF Pt(x) of log-
returns x as a function of time lag t for the Heston model
of a geometrical Brownian motion with stochastic variance.
The final result has the form of a one-dimensional Fourier
integral (28) and (29). (In the case ρ = 0, the equations have
the simpler form presented in appendix A.) Our result agrees
very well with the Dow–Jones data, as shown in figure 2.
Comparing the theory and the data, we determine the four
(non-zero) fitting parameters of the model, particularly the
variance relaxation time 1/γ = 22.2 days. For time longer
than 1/γ , our theory predicts the scaling behaviour (36)
and (37), which the Dow–Jones data indeed exhibit over seven
orders of magnitude, as shown in figure 3. The scaling
function P∗(z) = K1(z)/z is expressed in terms of the first-
order modified Bessel function K1. Previous estimates in
the literature of the relaxation time of volatility using various
indirect indicators range from 1.5 [8, p 80] to 73 days for the
half-life of the Dow–Jones index [7]. Since we have a good fit
of the entire family of PDFs for time lags from 1 to 250 trading
days, we believe that our estimate, 22.2 days, is more reliable.
A close value of 19.6 days was found in [25].

An alternative point of view in the literature is that the time
evolution of volatility is not characterized by a single relaxation
rate. As shown in appendix C, the variance correlation function

C
(v)
t (C.4) in the Heston model has a simple exponential

decay in time. However, the analysis of financial data [2,
p 70] indicates that the correlation function has a power-law
dependence or superposition of two (or more) exponentials
with relaxation times of less than one day and more than
a few tens of days. (A large amount of noise in the data
makes it difficult to give a precise statement.) Reference [27]
argues that volatility relaxation is multifractal and has no
characteristic time. However, one should keep in mind that
the total range (C.2) of variation of C

(v)
t is only about 77%

of its saturation value, not many orders of magnitude. As
figures 2 of [28] and [27] show, the main drop of C

(v)
t takes

place within a reasonably well-defined and relatively short
time, whereas residual relaxation is stretched over a very long
time. In this situation, a simple exponential time dependence,
while not exact, may account for the main part of relaxation
and give a reasonable approximation for the purposes of our
study. Alternatively, it is possible to generalize the Heston
model by incorporating more than one relaxation time [14].

As figure 2 shows, the probability distribution Pt(x) is
exponential in x for large |x|, where it is characterized by
the time-dependent slopes d ln P/dx. The theoretical analysis
presented in section 6 shows that the slopes are determined
by the singularities of the function Ft(px) from (29) in the
complex plane of px that are closest to the real axis. The
calculated time dependence of the slopes d ln P/dx, shown
in figure 6, agrees with the data very well, which further
supports our statement that 1/γ = 22.2 days. Exponential
tails in the probability distribution of stock log-returns have
been noticed in literature before [2, p 61], [29]. However,
time dependence of the slopes has not been recognized and
analysed theoretically. As shown in figure 2, our equations
give the parabolic dependence of ln Pt(x) on x for small x

and linear dependence for large x, in agreement with the data.
Qualitatively similar results were found in [30] for a different
model with stochastic volatility and in agreement with the
NYSE index daily data. It suggests that the linear and parabolic
behaviour is a generic feature of the models with stochastic
volatility. In [6], the power-law dependence on x of the tails of
Pt(x) was emphasized. However, the data for S&P 500 were
analysed in [6] only for short time lags t , typically shorter than
one day. On the other hand, our data analysis is performed for
time lags longer than one day, so the results cannot be directly
compared.

Deriving Pt(x) in section 4, we assumed that variance
v has the stationary gamma-distribution �∗(v) (9). This
assumption should be compared with the data. There have
been numerous attempts in the literature to reconstruct the
probability distribution of volatility from the time series
data [31, 32]. Generally, these papers agree that the
central part of the distribution is well described by a log–
normal distribution, but opinions vary on the fitting of the
tails. Particularly, [32] performed a fit with an alternative
probability distribution of volatility described in [2, p 88].
Unfortunately, none of these papers attempted to fit the
data using equation (10), so we do not have a quantitative
comparison. Taking into account that we only need the
integral (27), the exact shape of �∗(v) may not be so important,
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and equation (9) may give a reasonably good approximation
for our purposes, even if it does not fit the tails very precisely.

Although we tested our model for the Dow–Jones index,
there is nothing specific in the model which indicates that it
applies only to stock market data. It would be interesting to see
how the model performs when applied to other time series, for
example, the foreign exchange data [33], which also seem to
exhibit exponential tails. Study [35] indicates that our Pt(x)

also works very well for the S&P 500 and Nasdaq indices
for the 1980s and 1990s. However, in the 2000s the average
growth rate µ of the stock market changed to a negative value,
which complicates separation of fluctuations from the overall
trend.
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Appendix A. The case ρ = 0
As explained in section 8, we fit the data using ρ = 0 for
simplicity. In this case, by shifting the variable of integration
in (28) px → px + i/2, we find

Pt(x) = e−x/2
∫ +∞

−∞

dpx

2π
eipxx+Ft (px), (A.1)

where α = 2γ θ/κ2,

Ft(px) = αγ t

2
− α ln

[
cosh

t

2
+

2 + γ 2

2γ
sinh

t

2

]
, (A.2)

and

 =
√

γ 2 + κ2(p2
x + 1/4) ≈ γ

√
1 + p2

x(κ
2/γ 2). (A.3)

Now the function Ft(px) is real and symmetric: Ft(px) =
Ft(−px). Thus, the integral in (A.1) is a symmetric function
of x, and the only source of asymmetry of Pt(x) in x is
the exponential prefactor in (A.1), as discussed at the end of
section 8.

In the second equation (A.3), we took into account that,
according to the values shown in table 1, κ2/4γ 2 	 1.
Introducing the dimensionless variables

t̃ = γ t, x̃ = x/x0, p̃x = pxx0, x0 = κ/γ,

(A.4)
equations (A.1)–(A.3) can be rewritten as follows:

Pt(x) = e−x/2

x0

∫ +∞

−∞

dp̃x

2π
eip̃x x̃+Ft̃ (p̃x ), (A.5)

where ̃ = √
1 + p̃2

x and

Ft̃ (p̃x) = αt̃

2
− α ln

[
cosh

̃t̃

2
+

̃2 + 1

2̃
sinh

̃t̃

2

]
. (A.6)

It is clear from (A.4)–(A.6) that the parameter α determines
the shape of the function Pt(x), whereas 1/γ and x0 set the
scales of t and x.

In the limit t̃ � 2, the scaling function (36) for ρ = 0 can
be written as

Pt(x) = Nte
−x/2K1(z)/z, z =

√
x̃2 + t̄2, (A.7)

where t̄ = αt̃/2 = tθ/x2
0 and Nt = t̄et̄ /πx0. Notice that

equation (A.7) has only two fitting parameters, x0 and θ ,
whereas the general formula (A.5) and (A.6) has three fitting
parameters. As follows from (39), for x̃ � t̄ and x̃ � 1,
Pt(x) ∝ exp(−|x|/x0), so 1/x0 is the slope of the exponential
tails in x.

Appendix B. Gaussian weight
Let us expand the integral in (A.1) for small x:

Pt(x) ≈ e−x/2(µ0 − 1
2µ2x

2), (B.1)

where the coefficients are the first and the second moments of
exp[Ft(px)]

µ0(t) =
∫ +∞

−∞

dpx

2π
eFt (px), µ2(t) =

∫ +∞

−∞

dpx

2π
p2

xeFt (px).

(B.2)
On the other hand, we know that Pt(x) is Gaussian for small
x. So, we can write

Pt(x) ≈ µ0e−x/2e−µ2x
2/2µ0 , (B.3)

with the same coefficients as in (B.1). If we ignore the
existence of fat tails and extrapolate (B.3) to x ∈ (−∞, ∞),
the total probability contained in such a Gaussian extrapolation
will be

Gt =
∫ +∞

−∞
dx µ0e−x/2−µ2x

2/2µ0 =
√

2πµ3
0

µ2
eµ0/8µ2 . (B.4)

Obviously, Gt < 1, because the integral (B.4) does not take
into account the probability contained in the fat tails. Thus, the
difference 1 − Gt can be taken as a measure of how much the
actual distribution Pt(x) deviates from a Gaussian function.

We calculated the moments (B.2) numerically for the
function F given by (A.2), then determined the Gaussian
weight Gt from (B.4) and plotted it in figure 4 as a function
of time. For t → ∞, Gt → 1, i.e. Pt(x) becomes Gaussian
for very long time lags, which is known in the literature [2].
In the opposite limit t → 0, Ft(px) becomes a very broad
function of px , so we cannot calculate the moments µ0 and µ2

numerically. The singular limit t → 0 is studied analytically
in section 7.

Appendix C. Correlation function of
variance
The correlation function of variance is defined as

C
(v)
t = 〈vt+τ vτ 〉 =

∫ ∞

0
dvi

∫ ∞

0
dv v�t(v|vi)vi�∗(vi).

(C.1)
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It depends only on the relative time t and does not depend
on the initial time τ . The averaging 〈· · ·〉 is performed over
the ensemble probability distribution, as written in (C.1), or
over the initial time τ for time series data. Equation (C.1) has
the same structure as in the influence-functional formalism
of Feynman and Vernon [34], where �t(v|vi) represents the
conditional probability propagator from the initial value vi to
the final value v over the time t , and �∗(vi) represents the
stationary, equilibrium probability distribution of vi .

Using equations (C.1) and (9), it is easy to find the limiting
values of C

(v)
t :

C(v)
∞ = 〈v〉2 = θ2,

C
(v)
0 = 〈v2〉 = θ2

(
1 +

1

α

)
= θ2(1 + 0.77),

(C.2)

where we used the numerical value from table 1.
Differentiating equation (C.1) with respect to t and

using equation (8), we find that C
(v)
t satisfies the following

differential equation:

dC
(v)
t

dt
= −γ (C

(v)
t − θ2). (C.3)

Thus, C
(v)
t changes in time exponentially with the relaxation

rate γ :

C
(v)
t = θ2

(
1 +

e−γ t

α

)
. (C.4)
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