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Evidence for the exponential distribution of income in the USA
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Abstract. Using tax and census data, we demonstrate that the distribution of individual income in the
USA is exponential. Our calculated Lorenz curve without fitting parameters and Gini coefficient 1/2 agree
well with the data. From the individual income distribution, we derive the distribution function of income
for families with two earners and show that it also agrees well with the data. The family data for the period
1947–1994 fit the Lorenz curve and Gini coefficient 3/8 = 0.375 calculated for two-earners families.

PACS. 87.23.Ge Dynamics of social systems – 89.90.+n Other topics in areas of applied and interdisci-
plinary physics – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The study of income distribution has a long history. Pareto
[1] proposed in 1897 that income distribution obeys a uni-
versal power law valid for all times and countries. Sub-
sequent studies have often disputed this conjecture. In
1935, Shirras [2] concluded: “There is indeed no Pareto
Law. It is time it should be entirely discarded in studies
on distribution”. Mandelbrot [3] proposed a “weak Pareto
law” applicable only asymptotically to the high incomes.
In such a form, Pareto’s proposal is useless for describing
the great majority of the population.

Many other distributions of income were proposed:
Levy, log-normal, Champernowne, Gamma, and two other
forms by Pareto himself (see a systematic survey in the
World Bank research publication [4]). Theoretical jus-
tifications for these proposals form two schools: socio-
economic and statistical. The former appeals to economic,
political, and demographic factors to explain the distri-
bution of income (e.g. [5]), whereas the latter invokes
stochastic processes. Gibrat [6] proposed in 1931 that
income is governed by a multiplicative random process,
which results in a log-normal distribution (see also [7]).
However, Kalecki [8] pointed out that the width of this dis-
tribution is not stationary, but increases in time. Levy and
Solomon [9] proposed a cut-off at lower incomes, which
stabilizes the distribution to a power law.

In this paper, we propose that the distribution of in-
dividual income is given by an exponential function. This
conjecture is inspired by our previous work [10], where
we argued that the probability distribution of money
in a closed system of agents is given by the exponen-
tial Boltzmann-Gibbs function, in analogy with the dis-
tribution of energy in statistical physics. In Section 2,
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we compare our proposal with the census and tax data
for individual income in USA. In Section 3, we derive the
distribution function of income for families with two earn-
ers and compare it with the census data. The good agree-
ment we found is discussed in Section 4. Speculations on
the possible origins of the exponential distribution of in-
come are given in Section 5.

2 Distribution of individual income

We denote income by the letter r (for “revenue”). The
probability distribution function of income, P (r), (called
the probability density in book [4]) is defined so that the
fraction of individuals with income between r and r + dr
is P (r) dr. This function is normalized to unity (100%):∫∞

0
P (r) dr = 1. We propose that the probability distri-

bution of individual income is exponential:

P1(r) = exp(−r/R)/R, (1)

where the subscript 1 indicates individuals. Function (1)
contains one parameter R, equal to the average income:∫∞

0 r P1(r) dr = R, and analogous to temperature in the
Boltzmann-Gibbs distribution [10].

From the Survey of Income and Program Participation
(SIPP) [11], we downloaded the variable TPTOINC (to-
tal income of a person for a month) for the first “wave”
(a four-month period) in 1996. Then we eliminated the
entries with zero income, grouped the remaining entries
into bins of the size 10/3 k$, counted the numbers of en-
tries inside each bin, and normalized to the total num-
ber of entries. The results are shown as the histogram in
Figure 1, where the horizontal scale has been multiplied
by 12 to convert monthly income to an annual figure. The
solid line represents a fit to the exponential function (1).
In the inset, plot A shows the same data with the loga-
rithmic vertical scale. The data fall onto a straight line,
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Fig. 1. Histogram: Probability distribution of individual in-
come from the US. Census data for 1996 [11]. Solid line: Fit
to the exponential law. Inset plot A: The same with the log-
arithmic vertical scale. Inset plot B: Cumulative probability
distribution of individual income from PSID for 1992 [12].

whose slope gives the parameter R in equation (1). The
exponential law is also often written with the bases 2 and
10: P1(r) ∝ 2−r/R2 ∝ 10−r/R10. The parameters R, R2

and R10 are given in line (c) of Table 1.
Plot B in the inset of Figure 1 shows the data from

the Panel Study of Income Dynamics (PSID) conducted
by the Institute for Social Research of the University of
Michigan [12]. We downloaded the variable V30821 “Total
1992 labor income” for individuals from the Final Release
1993 and processed the data in a similar manner. Shown
is the cumulative probability distribution of income N(r)
(called the probability distribution in book [4]). It is de-
fined as N(r) =

∫∞
r P (r′) dr′ and gives the fraction of

individuals with income greater than r. For the exponen-
tial distribution (1), the cumulative distribution is also
exponential: N1(r) =

∫∞
r P1(r′) dr′ = exp(−r/R). Thus,

R2 is the median income; 10% of population have income
greater than R10 and only 1% greater than 2R10. The
points in the inset fall onto a straight line in the logarith-
mic scale. The slope is given in line (a) of Table 1.

Table 1. Parameters R, R2, and R10 obtained by fitting data
from different sources to the exponential law (1) with the bases
e, 2, and 10, and the sizes of the statistical data sets.

Source Year R ($) R2 ($) R10 ($) Set size

a PSID [12] 1992 18,844 13,062 43,390 1.39×103

b IRS [14] 1993 19,686 13,645 45,329 1.15×108

c SIPPp [11] 1996 20,286 14,061 46,710 2.57×105

d SIPPf [11] 1996 23,242 16,110 53,517 1.64×105

e IRS [13] 1997 35,200 24,399 81,051 1.22×108
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Fig. 2. Points: Cumulative fraction of tax returns vs. income
from the IRS data for 1997 [13]. Solid line: Fit to the exponen-
tial law. Inset plot A: The same with the logarithmic vertical
scale. Inset plot B: Probability distribution of individual in-
come from the IRS data for 1993 [14].

The points in Figure 2 show the cumulative distribu-
tion of tax returns vs. income in 1997 from column 1 of
Table 1.1 of reference [13]. (We merged 1 k$ bins into 5 k$
bins in the interval 1–20 k$.) The solid line is a fit to the
exponential law. Plot A in the inset of Figure 2 shows the
same data with the logarithmic vertical scale. The slope is
given in line (e) of Table 1. Plot B in the inset of Figure 2
shows the distribution of individual income from tax re-
turns in 1993 [14]. The logarithmic slope is given in line
(b) of Table 1.

While Figures 1 and 2 clearly demonstrate the fit of
income distribution to the exponential form, they have the
following drawback. Their horizontal axes extend to +∞,
so the high-income data are left outside of the plots. The
standard way to represent the full range of data is the
so-called Lorenz curve (for an introduction to the Lorenz
curve and Gini coefficient, see book [4]). The horizontal
axis of the Lorenz curve, x(r), represents the cumulative
fraction of population with income below r, and the ver-
tical axis y(r) represents the fraction of income this pop-
ulation accounts for:

x(r) =
∫ r

0

P (r′) dr′, y(r) =

∫ r
0
r′P (r′) dr′∫∞

0
r′P (r′) dr′

· (2)

As r changes from 0 to∞, x and y change from 0 to 1, and
equation (2) parametrically defines a curve in the (x, y)-
space.

Substituting equation (1) into equation (2), we find

x(r̃) = 1− exp(−r̃), y(r̃) = x(r̃)− r̃ exp(−r̃), (3)

where r̃ = r/R. Excluding r̃, we find the explicit form of
the Lorenz curve for the exponential distribution:

y = x+ (1− x) ln(1− x). (4)
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Fig. 3. Solid curve: Lorenz plot for the exponential distribu-
tion. Points: IRS data for 1979–1997 [15]. Inset points: Gini
coefficient data from IRS [15]. Inset line: The calculated value
1/2 of the Gini coefficient for the exponential distribution.

R drops out, so equation (4) has no fitting parameters.
The function (4) is shown as the solid curve in

Figure 3. The straight diagonal line represents the Lorenz
curve in the case where all population has equal income.
Inequality of income distribution is measured by the Gini
coefficient G, the ratio of the area between the diagonal
and the Lorenz curve to the area of the triangle beneath
the diagonal: G = 2

∫ 1

0
(x − y) dx. The Gini coefficient

is confined between 0 (no inequality) and 1 (extreme in-
equality). By substituting equation (4) into the integral,
we find the Gini coefficient for the exponential distribu-
tion: G1 = 1/2.

The points in Figure 3 represent the tax data dur-
ing 1979–1997 from reference [15]. With the progress of
time, the Lorenz points shifted downward and the Gini
coefficient increased from 0.47 to 0.56, which indicates in-
creasing inequality during this period. However, overall
the Gini coefficient is close to the value 0.5 calculated
for the exponential distribution, as shown in the inset of
Figure 3.

3 Income distribution for two-earners families

Now let us discuss the distribution of income for families
with two earners. The family income r is the sum of two
individual incomes: r = r1 + r2. Thus, the probability dis-
tribution of the family income is given by the convolution
of the individual probability distributions [16]. If the latter
are given by the exponential function (1), the two-earners
probability distribution function P2(r) is

P2(r) =
∫ r

0

P1(r′)P1(r − r′) dr′ =
r

R2
e−r/R. (5)
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Fig. 4. Histogram: Probability distribution of income for fam-
ilies with two adults in 1996 [11]. Solid line: Fit to equation (5).
Inset histogram: Probability distribution of income for all fam-
ilies in 1996 [11]. Inset solid line: 0.45P1(r) + 0.55P2(r).

The function P2(r) (5) differs from the function P1(r) (1)
by the prefactor r/R, which reflects the phase space avail-
able to compose a given total income out of two individ-
ual ones. It is shown as the solid curve in Figure 4. Unlike
P1(r), which has a maximum at zero income, P2(r) has a
maximum at r = R and looks qualitatively similar to the
family income distribution curves in literature [5].

From the same 1996 SIPP that we used in Section 2
[11], we downloaded the variable TFTOTINC (the total
family income for a month), which we then multiplied by
12 to get annual income. Using the number of family mem-
bers (the variable EFNP) and the number of children un-
der 18 (the variable RFNKIDS), we selected the families
with two adults. Their distribution of family income is
shown by the histogram in Figure 4. The fit to the func-
tion (5), shown by the solid line, gives the parameter R
listed in line (d) of Table 1. The families with two adults
and more than two adults constitute 44% and 11% of all
families in the studied set of data. The remaining 45%
are the families with one adult. Assuming that these two
classes of families have two and one earners, we expect the
income distribution for all families to be given by the su-
perposition of equations (1) and (5): 0.45P1(r)+0.55P2(r).
It is shown by the solid line in the inset of Figure 4
(with R from line (d) of Tab. 1) with the all families data
histogram.

By substituting equation (5) into equation (2), we
calculate the Lorenz curve for two-earners families:

x(r̃) = 1− (1 + r̃)e−r̃, y(r̃) = x(r̃)− r̃2e−r̃/2. (6)

It is shown by the solid curve in Figure 5. Given that
x − y = r̃2 exp(−r̃)/2 and dx = r̃ exp(−r̃) dr̃, the Gini



588 The European Physical Journal B

0 10 20 30 40 50 60 70 80 90 100%
0

10

20

30

40

50

60

70

80

90

100%

C
um

ul
at

iv
e 

pe
rc

en
t o

f f
am

ily
 in

co
m

e

Cumulative percent of families

1950 1960 1970 1980 1990
0

0.2

0.375

0.6

0.8

1

Year

Gini coefficient  ≈ 38

Fig. 5. Solid curve: Lorenz plot (6) for distribution (5). Points:
Census data for families, 1947–1994 [17]. Inset points: Gini
coefficient data for families from Census [17]. Inset line: The
calculated value 3/8 of the Gini coefficient for distribution (5).

coefficient for two-earners families is: G2 = 2
∫ 1

0
(x −

y) dx =
∫∞

0
r̃3 exp(−2r̃) dr̃ = 3/8 = 0.375. The points in

Figure 5 show the Lorenz data and Gini coefficient for fam-
ily income during 1947–1994 from Table 1 of reference [17].
The Gini coefficient is very close to the calculated value
0.375.

4 Discussion

Figures 1 and 2 demonstrate that the exponential law
(1) fits the individual income distribution very well. The
Lorenz data for the individual income follow equation (4)
without fitting parameters, and the Gini coefficient is close
to the calculated value 0.5 (Fig. 3). The distributions of
the individual and family income differ qualitatively. The
former monotonically increases toward the low end and
has a maximum at zero income (Fig. 1). The latter, typi-
cally being a sum of two individual incomes, has a maxi-
mum at a finite income and vanishes at zero (Fig. 4). Thus,
the inequality of the family income distribution is smaller.
The Lorenz data for families follow the different equation
(6), again without fitting parameters, and the Gini coeffi-
cient is close to the smaller calculated value 0.375 (Fig. 5).
Despite different definitions of income by different agen-
cies, the parameters extracted from the fits (Tab. 1) are
consistent, except for line (e).

The qualitative difference between the individual and
family income distributions was emphasized in refer-
ence [14], which split up joint tax returns of families into
individual incomes and combined separately filed tax re-
turns of married couples into family incomes. However,
references [13] and [15] counted only “individual tax re-
turns”, which also include joint tax returns. Since only a

fraction of families file jointly, we assume that the latter
contribution is small enough not to distort the tax re-
turns distribution from the individual income distribution
significantly. Similarly, the definition of a family for the
data shown in the inset of Figure 4 includes single adults
and one-adult families with children, which constitute 35%
and 10% of all families. The former category is excluded
from the definition of a family for the data [17] shown in
Figure 5, but the latter is included. Because the latter con-
tribution is relatively small, we expect the family data in
Figure 5 to approximately represent the two-earners dis-
tribution (5). Technically, even for the families with two
(or more) adults shown in Figure 4, we do not know the
exact number of earners.

With all these complications, one should not expect
perfect accuracy for our fits. There are deviations around
zero income in Figures 1, 2, and 4. The fits could be im-
proved there by multiplying the exponential function by
a polynomial. However, the data may not be accurate
at the low end because of underreporting. For example,
filing a tax return is not required for incomes below a
certain threshold, which ranged in 1999 from $2,750 to
$14,400 [18]. As the Lorenz curves in Figures 3 and 5
show, there are also deviations at the high end, possibly
where Pareto’s power law is supposed to work. Neverthe-
less, the exponential law gives an overall good description
of income distribution for the great majority of the popu-
lation.

5 Possible origins of exponential distribution

The exponential Boltzmann-Gibbs distribution naturally
applies to the quantities that obey a conservation law,
such as energy or money [10]. However, there is no fun-
damental reason why the sum of incomes (unlike the sum
of money) must be conserved. Indeed, income is a term
in the time derivative of one’s money balance (the other
term is spending). Maybe incomes obey an approximate
conservation law, or somehow the distribution of income
is simply proportional to the distribution of money, which
is exponential [10].

Another explanation involves hierarchy. Groups of peo-
ple have leaders, which have leaders of a higher order,
and so on. The number of people decreases geometrically
(exponentially) with the hierarchical level. If individual
income increases linearly with the hierarchical level, then
the income distribution is exponential. However, if income
increases multiplicatively, then the distribution follows a
power law [19]. For moderate incomes below $100,000, the
linear increase may be more realistic. A similar scenario is
the Bernoulli trials [16], where individuals have a constant
probability of increasing their income by a fixed amount.

We are grateful to D. Jordan, M. Weber, and T. Petska
for sending us the data from references [13,14], and [15], to
T. Cranshaw for discussion of income distribution in Britain,
and to M. Gubrud for proofreading of the manuscript.
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