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We present ab-initio calculations of a variety of different lattice-gas interaction energies between
Cu adatoms on Cu(001) and Cu(111). We find the next-nearest-neighbor (NNN) interactions to
be negligible on Cu(111), explaining the success of the nearest-neighbor (NN) Ising model when
describing the Cu(111) step stiffness. On Cu(001), however, we find that NNN interactions are
roughly (1/7) the attractive NN interaction strength. On both surfaces, we find longer-range pair
interactions to be small, although there are relatively large trio interactions. On Cu(111) these
include two orientation dependent trios composed of adatoms forming a NN-triangle. We calculate
the interaction energies of these trios and show that they can account for the difference in formation
energies between A- and B-steps. On Cu(001), we find the trio interaction composed of adatoms
forming a NN-isosceles right triangle to be quite large and repulsive. This contradicts our theoretical
expectations, which suggest the interaction should be attractive to account for the Cu(001) step
stiffness. Finally, by calculating the bulk energy per atom in multiple ways, we show our calculations
are self-consistent.

PACS numbers: 68.35.Md 71.15.Nc 05.70.Np 81.10.Aj

I. INTRODUCTION

Lattice-gas models provide a powerful and convenient
route to explore how microscopic energies influence the
statistical mechanics of mesoscopic structures on crys-
talline surfaces. Such models underlie most Monte Carlo
(and transfer matrix) simulations. They assume that
overlayer atoms (or other adsorbed units) sit at partic-
ular high-symmetry sites of the substrate, an intrinsic
assumption of epitaxial growth, for example. The pa-
rameters of the model are then the interaction energies
between such atoms and/or the barriers associated with
hops between the high-symmetry positions.

The use of lattice-gas models proceeds in two generic
ways. In the first, one posits a few energies that are likely
to dominate the physics of interest and then computes
with Monte Carlo simulations the desired equilibrium or
dynamic properties, deriving thereby the values of these
energies from fits1. The dangers of this approach are:
a) the properties of interest may be relatively insensitive
to the specific interactions and b) there may be other
interactions that are non-negligible, so that the deduced
energies are effective rather than actual.

The second approach2–5 begins by actually comput-
ing the (many) energies of importance, a task that
is now possible with efficient density-functional-theory
packages such as VASP (the Vienna Ab-initio Simula-
tion Package).6 This process can be used to compute in-
teraction energies between relatively distant neighbors.
One should also compute multi-atom interactions, which
can also be significant.7,8 This approach is appealing
because the calculated interaction energies can be self-
consistently checked for completeness, thereby diminish-

ing the risk discussed in (b) above. Assuming that one
has sufficient computational power to compute all the
interactions that contribute at the level of the desired
precision, there is still the danger that the interactions
depend sensitively on the local environment, making a
simple lattice gas description inadequate.

These caveats notwithstanding, lattice gas models have
been extensively used in the realm of surface physics to
describe such diverse phenomena as phase transitions,
concentration-dependent diffusion, and growth. We have
recently used such a model to compute the orientation
dependence of step stiffness—the inertial parameter for
steps in the step continuum model9—for the (001) and
(111) faces of Cu.10,11 This work illustrates both suc-
cesses and some shortcomings of using a lattice-gas model
with just nearest-neighbor (NN) interactions: whereas
the step stiffness on Cu(111) is well described by NN in-
teractions alone, the step stiffness on Cu(001) requires
the inclusion of next-nearest neighbor (NNN) and per-
haps even trio interactions. In this case, a firm under-
standing of the adatom interactions would be an ideal
way to construct an appropriate theory.

With this goal in mind, we have performed ab-initio
calculations to determine the strengths of interactions
between Cu adatoms on Cu(001) and Cu(111). For these
systems we have tested the applicability of a lattice-gas
model and have determined which interactions are essen-
tial and which can be ignored.

Fig. 1 shows a summary of the calculated interactions
between Cu adatoms on Cu(111); the corresponding in-
teractions on Cu(001) are analogous. The first row shows
the pairwise interactions of interest. Besides NN interac-
tions (of energy E1), we have also considered nth nearest-
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FIG. 1: (Color online) Interactions of interest (only shown for
Cu(111); the interactions on Cu(001) are analogous). Dark
blue spheres represent adatoms, lighter orange spheres rep-
resent substrate atoms, and white spheres represent adatoms
involved in the interactions of interest. Pair interactions are
shown in the top row, and trio interactions are shown in the
bottom row.

neighbor interactions (of energy En) out to n=4. Based
on our previous work,10,11 as described above, we expect
NNN interactions to be negligible on Cu(111), but sig-
nificant on Cu(001).

The second row of Fig. 1 shows the trio-interactions
of interest. These interactions are the non-pairwise part
of the interaction among three nearby adatoms.7,8 These
include the trios (Ea/b) for three NN adatoms forming an
equilateral triangle (for which no Cu(001) counterparts
exist), the trio (Ec) for three collinear adatoms, and the
trio (Ed) for three adatoms forming a NN-isosceles trian-
gle with apex angle 90◦ on Cu(001) and 120◦ on Cu(111)
(the ‘d’ stands for ‘dent’). Based on our previous work,10
we expect Ed to affect the step stiffness on Cu(001) in the
same way as E2 (so that the effective NNN interaction is
E2 + Ed).

As illustrated in the two lower-left sub-figures of
Fig. 1, when one includes the substrate layer upon which
adatoms are adsorbed, the 6-fold symmetry of the ad-
sorption layer is reduced to 3-fold. One should then, at
least in principle, distinguish between the trio interac-
tions Ea and Eb. Whereas Ea triangles are made from
A-microfacets, Eb triangles are made from B-microfacets.
As we noted earlier,11 the difference between Ea and Eb

provides the simplest way to account for the difference
between energies of A- and B-steps within a lattice gas
framework.

The remainder of this paper is divided into three sec-
tions and an Appendix. In the next section we describe
the details of our calculations. In Section III we present
and discuss our results and the implications. Finally, we
summarize and offer concluding remarks in Section IV.
The attached Appendix provides details related to the
error analysis of our computations.

II. METHOD

To accurately gauge the relative size of the Cu adatom-
interactions of interest within the framework of density
functional theory,12,13 we used VASP,6 together with the
supplied Cu ultrasoft-pseudopotential (with a basis en-
ergy cut-off of 17.2 Ry), and the Perdew-Wang ’91 gen-
eralized gradient approximation14 (GGA). To speed up
electronic relaxation, we used the method of Methfessel
and Paxton15 with a width of 0.2 eV.

We modeled the surfaces of Cu(001) and Cu(111) by
constructing two large supercells for each surface, one
containing up to (14x3x2) atoms, the other containing
up to (14x4x2) atoms; we refer to these, respectively, as
(3x2) and (4x2). Using the (3x2) cell, fourth-neighbor
pair interactions and beyond were assumed to be neg-
ligible and therefore ignored, whereas using the (4x2)
cell, for self-consistency, fourth-neighbor pair interactions
were included (and ultimately verified to be negligible).
To assure energy convergence to within a few meV, we
sampled the Cu(111) (4x2) supercell using a (6x12x1)
mesh of k-points, and the Cu(001) (4x2) supercell using
a (5x10x1) mesh. A similar density of k-points was used
for the (3x2) cells. (Because we never directly compared
energies between cells, maintaining the same density of
k-points between cells was irrelevant.)

We began all calculations by filling the first seven layers
of the supercell, thereby producing—when periodically
repeated in the three orthonormal symmetry directions—
a series of seven-layer-thick, parallel slabs buffered by
seven layers of vacuum. Here, as in all calculations, the
slab lattice parameter was fixed at 3.64 Å—the value ob-
tained from a bulk GGA calculation for a (1x1x1) super-
cell sampled using an (11x11x11) mesh of k-points. We
then computed the slab energy in two ways: first with
relaxation constrained to be normal to the surface, and
second with full relaxation. In both cases, we held the
inner three layers of atoms fixed at their calculated bulk
positions, while the outer-layer atoms relaxed until the
net force on them was less than 0.01 eV/Å.

Next we placed adatoms on the top and bottom of the
slab. The seven-layer slab is (just) thick enough that
through-substrate interactions16 between the adatoms
are insignificant, causing uncertainties no greater than
30meV. (See Appendix for details.) An alternative would
be to put adatoms on just one side of the slab,4,17,18
which would allow thinner slabs to be used for the sub-
strate. (Since we are considering homoepitaxy, presum-
ably there would be minimal charge-transfer effects re-
quiring correction,16) We then recomputed the total en-
ergy in the same ways as before, allowing for both full
and constrained (perpendicular to the surface) relax-
ation. We repeated this procedure for a variety of adatom
arrangements. This allowed us to construct a set of in-
dependent equations that we could solve to obtain the
various interaction energies of interest.

To illustrate our technique, Fig. 2 depicts all Cu(001)
calculations. The figure shows the top (001) surface of
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FIG. 2: (Color online) A summary of calculations performed
for Cu(001). Each sub-figure corresponds to a different ar-
rangement of adatoms (dark-orange spheres) on the substrate
(light-gray spheres) with total energy given by a different lin-
ear combination of adatom interaction energies. When taken
together, any six equations can be solved to determine the six
energies of interest.

the aforementioned seven-layer slab (the [yellow] boxed
region representing the top of the supercell); the lighter
gray spheres represent surface atoms while the darker [or-
ange] spheres represent adatoms. Although the bottom
of the cell is not shown, we constructed it to be identical
to the top.

The upper-left subfigure shows the arrangement of
adatoms used in our first calculation. For this arrange-
ment, the top and bottom surface of each supercell con-
tains one adatom, so that the energy per supercell —
after subtracting off the slab energy—is E0 + E3, where
E0 is the energy of introducing and adsorbing an atom
on a clean substrate. Interactions beyond third neighbors
are neglected, but interactions between supercell images
up to third-neighbors are scrupulously included.

The top-middle subfigure shows the arrangement of
adatoms used in our second calculation. Here, the top
and bottom of each supercell contains two NN adatoms.
Summing over all intra- and inter-supercell interactions
as before, the energy of this configuration (again minus
the slab energy) is 2E0 + E1 + 3E3.

Continuing in this way, we generated six more equa-
tions with the introduction of just three more unknowns:
E2, Ec and Ed. In total, then, we were left with eight
independent equations, of which we could choose any six
to solve simultaneously for the six interaction energies of
interest. By comparing solutions from different sets of

equations, we could self-consistently check our energies
and also roughly estimate—by noting the variation in
values—the error in the calculations. (See the Appendix
for more details.)

In much the same way—as illustrated in Fig. 3—we
calculated adatom interaction energies for the Cu(111)
(3x2) cell, the only noteworthy difference being the eval-
uation of the NN-trio interaction energies, Ea/b. Instead
of eight, there were now ten independent equations (only
nine are shown in Fig. 3—the missing configuration is
identical to the middle subfigure with up-pointing trian-
gles instead of down-pointing, so that Ea is replaced with
Eb), of which we could choose any eight to solve for the
eight interaction energies of interest.

Finally, the entire process was repeated for the (4x2)
cells. Although most of the configurations remained un-
changed, the inclusion of E4 required a few additions and
minor modifications in order to obtain the proper number
of independent equations.

FIG. 3: (Color online) A summary of calculations performed
for Cu(111). As in Fig. 2, each sub-figure corresponds to a
different arrangement of adatoms (dark-orange spheres) on
the substrate (light-gray spheres) with total energy given by
a different linear combination of interaction energies. Here,
however, because the triangle trio interactions depend on ori-
entation, there is an interaction energy Ea for down-pointing
triangles and Eb for up-pointing triangles. When taken to-
gether, any eight equations can be solved to determine the
eight energies of interest. (Note that the up-pointing trio ar-
rangement is not shown above.)
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III. RESULTS AND DISCUSSION

The results of our calculations are listed in Table I.
Only data for full relaxation are shown because data
for constrained relaxation do not differ in any significant
way: Specifically, data for the fully relaxed Cu(001) (3x2)
cell differed from their vertically relaxed counterparts by
no more than 13 meV, and often by less than 5 meV (the
differences typically in proportion to the size of the in-
teraction). Provided the system is not in a metastable
state, this observation corroborates the description of Cu
surface energetics using a lattice gas model, where one
assumes atoms sit at preferential, high-symmetry posi-
tions. In other words, while relaxation from these pre-
ferred positions inevitably occurs, the amount of relax-
ation negligibly changes the various interaction energies
of importance. We therefore only require a finite number
of ‘typical’ or ‘average’ interactions to fully describe the
system, making a lattice-gas model appropriate.19

Besides the interaction energies discussed earlier, esti-
mates for E0, the energy of introducing and adsorbing
an atom on a clean substrate, and Es, the surface energy
per atom, on both Cu(001) and Cu(111) are included
(Es was calculated by comparing slab energies of varying
thickness, as discussed in the literature.20) The surface
energies compare well with previous results; in particu-
lar, Spĭsák21 found the surface energy of Cu(001) to be
606 meV/atom, while Wang et al.22 found it to be 582
meV/atom. Our estimate of 600 meV/atom agrees with
both. Similarly, Wang22 estimated the surface energy of
Cu(111) to be 462 meV/atom, in nearly exact agreement
with our result.

The accuracy of our calculations is further confirmed
by the excellent overall agreement between results us-
ing the (3x2) and (4x2) cells, where energies would typ-
ically differ because of a difference in k-point sampling.
Furthermore, the agreement between cells suggests that
longer-range interactions are negligible: a different cell
size means that adatoms are arranged in a different geom-
etry, which implies that a different number of long-range
interactions are ignored. If the long-range interactions
are significant, the calculated energies should differ from
one cell size to the other. Because they do not differ, the
long-range interactions are most likely negligible (unless
they happen to cancel each other), confirming our origi-
nal assumption.

We begin the discussion of our computed lattice-gas
energies with the pair interactions. We find E1 to be
the most attractive on both surfaces. This result could
be anticipated, since stable adatom islands are often ex-
perimentally observed on these surfaces. Furthermore,
the strength of the interaction is stronger on Cu(001)
than on Cu(111). This result is consistent not only with
bond-order-bond-strength arguments23 applied to the di-
rect part of the interaction (adatoms have six nearest
neighbors on Cu(111) compared to four on Cu(001)), but
also with the general result for the semiempirical em-
bedded atom method (EAM) formalism that the leading

E(meV)
Cu(001) Cu(111)

(3x2) (4x2) (3x2) (4x2)

Es 600 600 462 465

E0 -3149±16 -3146±14 -2922±15 -2920±12

E1 -332±16 -335±12 -314±19 -323±11

E2 -47±9 -43±6 4±12 1±12

E3 -3±9 -13±8 5±6 3±3

E4 – 2±4 – -1±3

Ea – –
117±23 101±23

Eb 83±23 79±23

Ec -14±11 -16±18 -22±11 -25±13

Ed 51±11 54±11 -11±11 9±23

TABLE I: Calculated adatom interaction energies (in meV)
on Cu(001) and Cu(111). Here Ei (i=1,2,3,4) is the ith neigh-
bor interaction, Eix (x=a, b, c, d) are trio interactions as de-
picted in Fig. 1 (with Ed corresponding to a right isosceles
triangle for the (001) substrate), E0 is the energy of intro-
ducing an adsorbed adatom on an empty substrate, and Es

is the surface energy per atom, with corresponding units of
meV/atom. See Appendix for a discussion of error bars.

contribution to the indirect (substrate-mediated) part of
the interaction is attractive (negative) and proportional
to the number of shared NN substrate atoms: two for
Cu(001) and one for Cu(111).8

Moving on to higher-order interactions, we find E2 to
be a negligible fraction of E1 on Cu(111), whereas it
is a significant (1/7)E1 on Cu(001). As before, this is
consistent with EAM findings; after all, NNN share no
substrate atoms on Cu(111), while they share a single
substrate atom on Cu(001). Furthermore, this explains
why the NN lattice-gas model does not adequately de-
scribe the orientation dependence of the step stiffness on
Cu(001), but successfully describes the same property on
Cu(111).10,11 In essence, whereas NNN interactions can
be ignored in the latter case, they cannot be in the for-
mer.

Rounding out our analysis of the pair interactions, we
find E3 and E4 to be very small on both surfaces, con-
sistent with the agreement between the (3x2) and (4x2)
results. (Recall that we did not include E4 in the (3x2)
calculations. Earlier calculations2 also found E3 to be
essentially negligible on (111).) Notice, however, that
even though these interactions are quite small, the gen-
eral trend |En| > |En+1| is predominantly preserved.

In the only systematic semiempirical investigation of
Cu/Cu(001) (or, for that matter, Cu/Cu(111)) pair in-
teractions of which we are aware, Levanov et al.24 found
values in remarkably decent agreement with ours: E1 =
-0.32 eV, E2 = -0.04 eV, and E3 = +0.01 eV.

We next consider the trio interactions, beginning with
the observation that the largest trio interactions Ea and
Eb are equilateral triangular in geometry and repulsive
in nature, a result which agrees with a similar study on
Ag(111)4. The collinear trio, Ec, on the other hand, is
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FIG. 4: (Color Online) When the atoms (dark orange spheres)
are separated along the dashed line to create an A- and B-step
pair, a number of bonds are broken. In the process, atom 1
shows that two NN bonds (E1) are broken per atom, atom 2
shows that two NN trio bonds (Ea/b) are broken per atom,
and atoms 3 and 4 show that four collinear trio bonds (Ec)
are broken per atom.

attractive and not as significant, being of moderate to
small size on both surfaces.

As we discussed earlier, the difference between Ea and
Eb can account for the difference in the formation ener-
gies of A- and B-steps. Here we find Eb . Ea, suggesting
B steps are marginally more favorable than A-steps. If
we further assume, as our calculations suggest, that only
E1, Ea/b, and Ec are non-negligible interactions (specif-
ically, interactions having a magnitude greater than 5
meV when averaged between the two cell sizes), then
from bond breaking arguments, the formation energies
per atom of A- and B-steps, EA and EB , can be written:

EA = −E1 − 1
3
Ea − 2

3
Eb − 2Ec (1)

EB = −E1 − 2
3
Ea − 1

3
Eb − 2Ec. (2)

Notice that EA + EB = −2E1 − Ea − Eb − 4Ec, that
is, to form an A- and B-step pair, two NN bonds must
be broken per atom, along with six trio bonds: one Ea,
one Eb, and four Ec (see Fig. (4)). Combining Eqs. (1)
and (2) with our results (where we average between the
(3x2) and (4x2) cell calculations), we find EA ' 277±23
meV/atom, while EB ' 267 ± 23 meV/atom, so their
ratio is 1.04 ± 0.12. These estimates agree with previ-
ous results of 0.27 and 0.26 eV, respectively, by Feibel-
man using a much larger cell.25 Within error bars, these
estimates are also in accord with recent semiempirical
EAM calculations that found the two values to be 263
and 265 meV,26 with a ratio consistent with earlier EAM
deductions.27 All these calculations are consistent with
measurements by Giesen,28 who reports ratios of 1.011
and 0.98; controversy remains as to whether the ratio
is marginally larger or smaller than unity. Thus, as a
whole, this simple lattice gas model appears to be quite
successful.

We now consider the calculated strengths of the re-
maining interactions Ed. Although they are relatively
small on Cu(111), they are fairly sizable and repulsive on
Cu(001). Based on our previous theory,10 we expect Ed

to renormalize E2 on Cu(001) so that E2 +Ed ' 1/4 E1.
Surprisingly, though, we find E2+Ed ' 0! Thus, whereas
the inclusion of our calculated attractive E2 interactions
help explain the discrepancy between theory and experi-
ment with regards to the orientation dependence of step-
stiffness, the inclusion of our calculated repulsive Ed in-
teractions magnify the discrepancy.

Beyond the tabulated interactions, we also estimated
the size of more distant neighbor triangular trio inter-
actions on Cu(001) (interactions we could easily include
because we calculated the energies of more configurations
than unknowns for self-consistency). In particular, we
looked at the isosceles triangle trio composed of two NNN
legs and a third-nearest-neighbor hypotenuse and the
right-triangle trio with one NN leg and one third-nearest-
neighbor leg. In both cases, the interaction strengths
were negligibly small, of order 5 meV.

Finally, we can obtain the bulk energy per atom Ebu

from the calculated lattice-gas interaction energies. To
do so, we note that an extra layer of atoms in the slab
can be thought of as the addition of a bulk layer or an
adsorbed layer. In the first case, the additional energy is
just the number of atoms N in the new layer times Ebu.
In the second case, the energy is N times E0 plus the sum
of all significant lateral lattice-gas interaction energies
(again, interactions having a magnitude greater than 5
meV when averaged between the two cells.) Equating
these and dividing by N gives

Ebu ' E0 + 2E1 + 2E2 + 2E3 + 2Ec + 4Ed, (3)

for Cu(001) and

Ebu ' E0 + 3E1 + Ea + Eb + 3Ec, (4)

for Cu(111). While there are many other longer-range
and multiadatom interactions, they are expected not only
to become very small but also to tend to cancel each
other.8 Thus, how well these estimates of Ebu agree pro-
vides a practicable gauge of self-consistency. Not only
are the right-hand-sides of both equations independently
equal, but they are independently equal to Ebu: a quan-
tity that was, itself, independently calculated when we
determined the slab lattice parameter (using a (1x1x1)
supercell sampled with (11x11x11) k-points). There we
found Ebu=-3763 meV/atom. This agrees quite well
(considering the error) with Eqs. (3) and (4), which
give, respectively, Ebu=-3741 ± 48 meV/atom and Ebu=-
3760 ± 35 meV/atom (averaged between (3x2) and (4x2)
cells). The self-consistency of these calculations corrob-
orates the general success of the lattice-gas model.
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IV. CONCLUSIONS

We have calculated from first principles a variety of dif-
ferent Cu adatom interaction energies on both Cu(001)
and Cu(111). For the most part, our calculations have
confirmed our expectations. First, we have shown that
the computed interaction energies are robust with respect
to small, lateral relaxations of the adatoms: an important
requirement for a successful lattice-gas theory. Second,
we find E2 interactions to be negligible on Cu(111) but
significant on Cu(001), explaining why the NN lattice gas
model successfully describes the orientation dependence
of the Cu(111) step stiffness, but fails for Cu(001). Third,
we have used our calculated lattice-gas interaction ener-
gies to determine the formation energies of Cu(111) A-
and B-steps. The resulting estimates for the formation
energies agree well with the literature. Fourth, we have
shown that for Cu on Cu, as expected, adatom pair inter-
actions drop off quickly with distance, and only the geo-
metrically smallest trio interactions are relevant. Finally,
we have shown that our calculations for the lattice-gas
interaction energies are self-consistent and, when taken
together, can be used to accurately find the bulk energy
per atom Ebu.

Considering these successes, the the relatively large
value of Ed on Cu(001) was unexpected. When this re-
pulsive interaction is included in a theory of the orien-
tation dependence of step stiffness, it renormalizes E2

to zero (since the right-triangle trio produces an effective
value of E2 that is E2 + Ed, as argued in Ref. 10). To the
extent that this value of Ed is reliable,29 there remains
a discrepancy between the NN-Ising theory and exper-
iment a mystery. One possible explanation is the ex-
istence of other significant many-body interactions that
make the calculated Ed effective rather than actual. It
is interesting to note, for example, that Ebu is slightly
underestimated by the Cu(001) lattice-gas interactions,
suggestive of a too repulsive Ed. Considering the overall
self-consistency of our results, however, such many-body
interactions are most likely negligible. Another possi-
ble explanation we are currently exploring suggests that
calculated trio interaction energies can vary significantly
between LDA and GGA calculations, whereas pair in-
teractions remain unchanged. We are currently looking
further into this issue for Pt on Pt systems,29 where more
asymmetry between A- and B-steps exists, and where re-
sults for kink-formation energies (which are directly re-
lated to Ea and Eb) are known to be worse for GGA than
for LDA.25,30

In closing, we believe first-principle calculations such
as the ones described here will prove useful in determin-
ing the limits of lattice gas models applied to all sorts
of systems. Although we began with strong expecta-
tions based on previous theory and experiment, the con-
sistency of our results shows that the problem can be
worked in reverse; that is, based on first-principle cal-
culations, we can determine what kinds of interactions
need to be included in the system to make a successful

lattice-gas model.
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APPENDIX

In Table I energies are listed with error bars. Here,
the source of error was predominantly due to interac-
tions between adatoms through the substrate. Whereas
increasing the slab thickness would have reduced this
error, the required computational time would have in-
creased significantly.16 Instead, we effectively reduced er-
ror by averaging results over a set of self-consistent cal-
culations. More precisely, we calculated the energies of
more adatom arrangements than were necessary to solve
for the interaction energies of interest. By choosing dif-
ferent sets of arrangements to solve for the same interac-
tion energies, we could self-consistently check our results
while at the same time estimate error. Typically, interac-
tion energies changed little from one set of arrangements
to another, though differences could be on the order of
10-30 meV. We therefore assumed each total-energy cal-
culation carried an error of 30 meV. With this assump-
tion, the propagation of error was easily calculated.

As an example, using the first six adatom arrange-
ments shown in Fig. 2, we could simultaneously solve
the corresponding six equations for the six interaction
energies of interest. Assuming the six configurations cor-
respond to energies Ei ± 30 meV, i=1,2,. . .6, then, for
example, E1 is

E1 =
1
12

(5ES − 10E1 + 2E2 + E4 + 4E5 + 2E6), (5)

where ES±30meV corresponds to the energy of the slab
without any adatoms. The error in this estimate is there-
fore

4E1 =
1
12

√
52 + 102 + 22 + 1 + 42 + 22 4E (6)

= 1.02 4E, (7)

where 4E ≡ 30 meV. Similarly, solving for E2 gives

E2 =
1
4
(ES − 2E1 + E4), (8)
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with corresponding error

4E2 =
1
4

√
1 + 22 + 1 4E (9)

= 0.61 4E. (10)

Continuing in this way, we estimated the error of all
the calculated interaction energies of interest. We then
repeated the process for different sets of six arrangements
of adatoms. Of course, different sets yield different errors.
By averaging over results from sets of arrangements with
the least error (which inevitably agreed the most), we
reduced the error even further.

One potential danger of using this method of error
analysis is the presence of systematic error that doesn’t

average to zero. Of course, were this the case, we would
expect all calculated interaction energies to be systemat-
ically renormalized by an error-dependent, fixed amount.
Considering we have calculated many interaction energies
to be approximately zero, we know that the systematic
error is most likely negligible. Furthermore, we estimated
Ebu in two ways: first, using Eqs. (3) and (4), and, sec-
ond, using a single-atom, bulk supercell that contains
neither adatoms nor a substrate. Because the two ways
of calculating Ebu are so dissimilar, we can safely assume
systematic error, if any exists, is different between the
two. Because the two estimates agree remarkably well,
the systematic error again is most likely negligible.
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21 D. Spĭsák, Surf. Sci. 489, 151 (2001).
22 X. Wang, Y. Jia, Q. Yao, F. Wang, J. Ma, and X. Hu,

Surf. Sci. 551, 179 (2004).
23 H. S. Johnston and C. A. Parr, J. Am. Chem. Soc. 85,

2544 (1963).
24 N. A. Levanov, A. A. Katsnel’son, A. É. Moroz, V. S.
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