
     

Dynamics of Step Doubling: Simulations for a Simple Model and Comparison with
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To interpret recent experiments on the dynamics of step doubling, we have studied a simple model of
this phase transition. With Monte Carlo, we compute the time-dependence of the order parameter
in the limit of rapid diffusion across terraces. Analysis of the data shows that the limiting step is the
time for adjacent steps to touch each other; subsequent “zipping” together happens rapidly. From
this vantage we develop an analytic expression for short times that changes into a phenomenological
one for later times. Using data from two physical systems, we compare this function and another
based on naive assumptions with a third based on chemical rate theory. For the more recent data,
our expression describes the data best. Finally, in the opposite limit in which atoms can only move
along step edges, we show characteristic configurations and compute the structure factor.

I. INTRODUCTION

Reversible structural phase transitions on stepped
metals and semiconductors have attracted increasing at-
tention over recent years. In particular, there have been
several studies of transitions from single- (or monatomic)
height to double-height steps. Over two decades ago,
Lang et al. [1] noted merging of single-height steps
on Pt{554} (or [9(111)×(111̄)]) to form double-height
steps after exposure to oxygen. (With carbon, the
steps tripled!) Thapliyal and Blakely [2] observed sta-
ble double-height steps at temperatures below 623K and
single-height steps at higher temperatures on Ni{332},
i.e.(111)-10◦[11̄0]. They further found that by holding
the surface at about 670K, bulk carbon impurities pre-
cipitated to the surface, producing facets with {111} and
{110} orientations. Evidently the step doubling is pro-
duced by carbon changing the surface free energy rather
than by an entropy effect. (In contrast, in the simplest
picture, as the temperature decreases the extra entropy
of single height steps becomes less important than the
presumably lower energy of double height steps.) Oxy-
gen exposure was again found to lead to step doubling
by Castner and Somorjai [3] for Rh{775} and Haase et
al. [4] for Ni{771}. Step doubling without any impurity,
just as a function of temperature, was reported on vici-
nal Si{001}-(2×1) by Alerhand et al. [5] and on vicinal
Ge{111} by Jung et al. [6]. Recently, Chang and Blakely
[7] also observed step doubling on Ni(111)-5◦[112̄].

It has also been possible to study the dynamics of
these step-doubling transitions. A decade ago Comsa
et al. [8] reported the dynamics of the step doubling
caused by oxygen on Pt{997}. Recently, there has been
renewed interest in this subject. Niu et al. have mea-
sured the time rate of growth of double-height steps on
Ni{977} when exposed to oxygen [9]. Hoogers and King
[10] (henceforth referred to as HK) have reported similar
measurements on oxygen-induced doubling on Rh{332}.

Little theoretical work has been done to understand
the dynamic processes governing these transitions. To
gain insight into the key mechanisms, we performed
Monte Carlo calculations of a simple model of step-
doubling transitions. In computational models, it is easy
to prepare a system in an arbitrary configuration and
then to study the evolution. This procedure amounts
to a thermal quench (or upquench from zero tempera-
ture). By examining the results of these simulations, we
find that the rate-limiting process is the time it takes
for neighboring steps to make contact with each other at
some point, due to their meandering. We produce an an-
alytic expression for the evolution of the order parameter
based on this perspective. We compare the results with
recent experiments. In these experiments the surface is
brought quickly into a regime where double-height steps
are stabilized by dosage with oxygen, thereby changing
essentially the chemical potential rather than the tem-
perature. A major goal in this work is to gain greater
insight into the way in which steps diffuse on surfaces, a
problem that has been of considerable activity in recent
years. Another question is the microscropic role of oxy-
gen in these processes. Our approach will assume that
it rather passively changes relative chemical potentials,
acting like a thermodynamic field and so analogous to
shifting the temperature, rather than participating ac-
tively in the diffusion by etching, pinning, etc. The role
of these effects, not explicitly included, may well need
to be added in future studies. Moreover, in assuming
that the doubling arises from a sudden change in a ther-
modynamic field, we are neglecting kinetic factors such
as deposition rates or transport asymmetries over steps
[11], which might cause doubling during growth or evap-
oration.
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II. SIMULATION AND RESULTS

Using standard Monte Carlo methods with the
Metropolis algorithm, we studied step-doubling dynam-
ics in a terrace-step-kink (TSK) model [12], in which
step wandering is the only thermal excitation. We used
a two-dimensional square lattice of dimensions Lx ×Ly,
with screw-periodic boundary conditions in the x̂ direc-
tion to create four steps. Various values of Lx from 32 to
64 were used, so that the initial uniform interstep sepa-
ration ¯̀ was between 8 and 16. Ly was always chosen to
be 80, and periodic boundary conditions were applied in
the ŷ direction. In recent work we found that these sizes
were large enough to show a distinct phase transition
[13]. Moreover, the {977} surface, here of Ni, has ter-
races that are 7 rows wide, the step risers being {100}
microfacets (i.e. A steps on the {111} terrace). The
{332} surface (of Rh) has terraces 5 rows wide, the step
risers being {111} microfacets (i.e. B steps) [14].

The energy of a double-height step per unit length was
chosen to be equal to the energy ε of a single-height step
of same unit length. This Ansatz is the simplest way to
have energetics favor the pairing of steps. Barring some
rather pathological choice of relative kink energies on
the two kinds of steps, entropy will favor having single-
height steps rather than [half as many] double-height
steps. Again for simplicity, we set the energy of a [single]
kink (or anti-kink) on either kind (single height or double
height) of step to have the same energy, ε, neglecting cor-
ner energies as well as the structural difference between
the steps: The goal in this model is to reproduce the rel-
evant physics with the minimum number of parameters.
In the TSK approximation, overhangs of one step over
another are forbidden, and there are no terrace defects
(adatoms or vacancies). We take as our order parameter
Ψ the terrace areas at even heights minus the areas at
odd heights, normalized by the total area [13]. Hence,
in our simulations, if the two pairs of steps each join
completely to form two double-height steps, then |Ψ| is
precisely unity. We formulate our discussion in terms of
unnormalized intensity I ∝ |Ψ|2 in order to make con-
tact more readily with measured data. The model was
studied under two conditions of the order parameter: a)
not conserved, with −1 ≤ Ψ ≤ 1 and b) conserved, with
Ψ = 0.

In case a, appropriate to evaporation/condensation
transport, the system was thought of as being connected
to a reservoir of atoms. Each Monte Carlo time step
(MCS) consisted of 4Ly random selections of sites along
steps at which the step was either incremented or decre-
mented by a unit length (at cost 2ε for initially straight
steps), or left unchanged (i.e. “Glauber dynamics”).
This is the so-called evaporation/deposition mode [15].
In the physical system the reservoir would be provided
by a two-dimensional “gas” of adatoms and/or vacancies

on the terraces diffusing rapidly compared to the attach-
ment/detachment time. By using a reservoir as the in-
termediary, we have excluded any asymmetry in attach-
ment of atoms arriving from above or below the step,
thereby avoiding a kinetic prejudice of the steps toward
or against merging [11]. Note that in the TSK model,
there are no adatoms on the terraces. This simplifica-
tion, which neglects details of the transport of atoms
from step to step, greatly aids in acquiring adequate
statistics in the Monte Carlo runs.

The equilibrium properties of this model were stud-
ied previously by Einstein et al. [13]. Consistent with
that work, we observed a step-doubling phase transi-
tion at a critical temperature Tc ≈ 1.3ε/kB , where kB
is Boltzmann’s constant. This transition was second-
order, in the Ising universality class, reflecting sponta-
neous breaking of symmetry between even-height and
odd-height terraces. If not preempted by a first-order
transition, this behavior presumably occurs for the fcc
metals Ni and Rh where these step doubling transitions
have been observed, as well as on Ge(111) [6,13]. (In
contrast, on vicinal Si(001) surfaces miscut towards a
[110] direction, there is no spontaneous symmetry break-
ing between alternate terraces: symmetry has already
been broken by the (2×1) reconstruction, which pro-
duces dimer rows which run alternatively parallel and
perpendicular to the step edges on successive terraces
separated by single-height steps [16].)

Starting from an initial configuration with straight,
uniformly- spaced, single-height steps (so Ψ = 0), we
monitored the time dependence of the order parameter
for different values of the temperature T. In Fig. 1 we
plot the square of the order parameter as a function of
the Monte Carlo time for two different temperatures, one
above Tc and one below Tc.

In our picture of the dynamics, the rate-determining
process in step doubling is the wandering of single-height
steps until neighboring steps touch at one point. Once
the subsequent doubling is achieved at one point of the
pair of steps, they relatively quickly “zip” together. The
time evolution of Ψ2 in a single Monte Carlo run is shown
in Fig. 2. The steep rise in its value from 0+ to 1−

supports this physical picture.
As a first guess at a reasonable functional form for

Ψ2(t), we note that the order parameter increases rapidly
at the outset and eventually appears to saturate at the
equilibrium value associated with the final temperature.
(See, however, comments at the end of section 4.) At
least qualitatively we can describe this behavior as an
exponential approach to the asymptotic limit. Since the
rate-determining process is the increasing of meandering
until the steps touch somewhere, we naively sought to
match the initial growth of the order parameter to the
root mean square deviation of the step at early times.
When the meandering is produced by the attachment
and detachment of adatoms and/or vacancies (rather
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than diffusion along the step), this deviation is propor-
tional to the one-fourth power of elapsed time [17]. Then
the squared order parameter, and so the intensity, should
grow initially as the square root of elapsed time. Com-
bining this crude criterion with the exponential behavior
leads to the trial fitting expression

I1(t) = A
[
1− exp

(
−
√
t/t0

)]
(1)

The corresponding fits are included in Fig. 1.
To gain a more fundamental understanding of the

doubling process, we studied the distribution of times
tc until the order parameter rose steeply. For a run
such as illustrated in Fig. 2, tc was taken as the time
when Ψ2 reached 0.90. (This high threshold, rather than
Ψ2 = 1/2, was chosen to limit inclusion of doubling fluc-
tuations in the data set.) The distribution times tc ob-
tained from 104 runs is displayed in Fig. 3. In the sim-
plest approximation, positions on the step are viewed
as random walkers in one dimension (viz. the direction
perpendicular to the mean step direction), and contact
is made when the walker first travels a distance of or-
der `. In this perspective, our problem is to determine
the first passage time of an unrestricted walker. Letting
t1 ≡ ¯̀2/2D, where D is the effective diffusion constant
of the walker, we can write Feller’s [21] expression for
the distribution of first-passage times as

f(t) = (
t1
πt

)1/2 exp(−t1/t) (2)

This expression is fit to the Monte Carlo data in Fig. 3
by adjusting the vertical and horizontal “scales” so that
the peak of the solid curve coincides with that of the
data. We see that this simple viewpoint accounts for
the short-time behavior of the data but predicts a slower
decay beyond the peak of the distribution. Thus, for long
times, the simple picture overestimates the chance that
a single-height step can survive without making contact
at some point with its neighbor. In this regime, the
argument of the exponent in eqn. (2) is large, so that the
exponential is essentially unity; thus, f(t) is dominated
by the power of t. By comparison with the numerical
data, we find t−2 provides a reasonable description of
the long-time decay of f(t). The dashed curve in Fig. 3
is obtained by using an expression of the form of eqn.
(2), but with the exponent of t augmented to 2, again
adjusted so that the peak coincides with that of the data.
We can then replicate the data by using the dashed curve
below the peak and the dotted curve above it, giving a
somewhat empirical f̃(t).

We have skirted the issue of which two steps deter-
mine tc: in our system there are four single-height steps
initially. Close examination of configurations during sev-
eral runs provides evidence that it is the touching of the
second pair that is associated with the sharp rise in the
order parameter. In retrospect, we found small features

related to the merging of the first pair of steps, but this
process provides at most a modest amount of ordering
which may fade as the steps rearrange themselves. Thus,
the characteristic length which enters the equation for
t1 should be larger than `, perhaps tending toward 2` in
the limit of many steps. Since we have not attempted
to interpret D microscopically, a small change in the
characteristic length makes no difference in the present
analysis.

If we assume that the steps zip together instantly when
they make first contact, we can write down the order
parameter immediately using Ψ2

z(t) ∝
∫ t

0
f̃(t′)dt′. Then

using eqn. (3) we see that

Ψ2
z(t) ∝ Γ(−1

2
, t1/t), (3)

where Γ(a, x) is an incomplete gamma function, at small
t, while at high t it is proportional to Γ(1, t3/t), where t3
is a fitting parameter. For simplicity, we switch abruptly
between the two functions at the time t2 at which
they intersect, determined implicitly by Γ(− 1

2 , t1/t2) =
Γ(1, t3/t2). Hence, the resulting functional form has
three adjustable parameters, A, t1, and t3:

Iz(t) = A

[
Γ(−1

2
, t1/t)Θ(t2 − t) +

Γ(1, t3/t)
Γ(− 1

2 , t1/t2)
Γ(1, t3/t2)

Θ(t− t2)
]
, (4)

where Θ is the unit step function. We defer, until after
comparison with experimental data, a discussion of the
implications of the approximations involved in producing
this equation.

As a third possibility, we also consider the analytic
form proposed by HK [10] in the context of trying to
explain their experimental data, to be discussed in the
next section, in which the doubling is produced by chang-
ing the chemical potential (via oxidation) rather than
the temperature (viz. quenching). HK’s model is based
on chemical kinetics rather than a microscopic model:
the driving mechanism is similar to the one driving the
chemical reaction kinetics of two atomic species in a fluid
medium. HK propose the following specific functional
form:

IHK = A

[
1− 1

1 + (t/tHK)

]2

, (5)

where t−1
HK in their discussion is a rate constant. Their

derivation focuses on fractional occupancy by Rh atoms
of single-height steps, double-height steps, and interme-
diate sites involved in transport. For each of these three
quantities, a differential equation expresses its change
in terms of the [average] value of the three; correlations
are treated in the simplest approximation that they are
products of densities. Implicitly, then, it seems that
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steps which are not nearest neighbors could pair. A one-
dimensional model, it does not distinguish between two
totally dissimilar step configurations that have the same
value of Ψ but should evolve in different ways. Since step
fluctuations were shown above and in previous work by
Bartelt et al. [17] to play an important role in how steps
interact [18] and how they evolve toward equilibrium
[19,20], a one-dimensional model should have some prob-
lems accounting for the step-doubling process. In fact,
HK do note that at lower temperatures, where mean-
field approximations describe the correlations less well,
the fit is improved if the exponent in eq. (5) is reduced
from 2.

As shown in Fig. 4, all the times in our approximants
evidently satisfy the same scaling form:

ti ∝ ¯̀4, i = 0, 1, 2, 3. (6)

The proportionality constants, of course, depend on the
microscopic process in each case, e.g. on the overall rate
of attachment or detachment of atoms at the steps for t0.
The exponent 4 of ¯̀4 is consistent with previous results
of Bartelt et al. [17] for step propagation by exchange
with a reservoir.

Note that, in broaching the first-passage-time prob-
lem, the Ansatz of a random walker in 1-D neglects the
important contribution of the step stiffness in reducing
the fluctuations. ¿From the definition of t1 ≡ `2/2D, we
might expect t1 ∝ `2. This power is inconsistent with
that of eq. (6). Evidently the stiffness of the steps
restrains the fluctuations, leading to the higher power.
Ultimately, t1 is determined by fluctuations not just of
isolated positions of the step but of large regions. In
any case, we note that in the limit of infinite stiffness,
the step problem becomes one-dimensional again, with
a characteristic time again ∝ `2.

The distinctions between the predictions of the three
expressions for Ψ2 are clearest at early times. Because of
the key role of thermal fluctuations of the step edges in
the evolution toward doubling, the small time behavior
(i.e., t ¿ t0) is, according to eq. (1), Ψ2

1 ∝ (t/t0)1/2

[17]. On the other hand, according to eq. (3), Ψ2
z ∝

t3/2 exp(−t1/t), a much smoother onset. These initial
doldrums may be an artifact of the assumption that the
steps are uniformly spaced at the outset, so that some
time is needed for steps to move close to each other. In
an experiment, some close approaches should exist be-
fore the quench. Finally, the HK expression gives an
intermediate behavior: Ψ2

HK ∝ (t/tHK)2 at small t. At
the other extreme, Ψ2

1 approaches saturation like a com-
pressed exponential and Ψ2

z like t−2, just like Ψ2
HK .

III. COMPARISON WITH EXPERIMENT

In this section we discuss experimental data by HK
[10] and by Niu et al. [9], hereafter NKGKS, particularly

checking how well the increase of the scattering intensity
with time is fit by eq. (1).

Having put the three viewpoints in perspective, we
now compare the results. Fig. 5 shows the time evolu-
tion of the intensity measured by HK for three different
temperatures along with their model fits (to eq. (5)) and
the fits obtained from eqs. (1) and (4). The fits from
the naive model underlying eq. (1) are marginally better
than those of the HK model, while the fits using eq. (4)
are evidently poorer. The fits to the other three data sets
from Fig. 5 of HK [10] give similar results and hence are
not shown here. (Note, however, that the approximant in
eq. (4) contains three adjustable parameters, one more
than the other two cases; as discussed before eq. (4), t2
is not free.) In contrast, in Fig. 6 we show a sample trace
from unpublished work by NKGKS. Here the situation
is reversed. The fit to eq. (4) is best, that to eq. (5)
slightly worse, and that to eq. (1) notably worse. Evi-
dently the zipping model gives a better account of Niu
et al.’s data than of HK’s. It is not clear what underlies
the difference between the two experimental results. We
do note that the vicinal surfaces have different step-riser
microstructures ({111} for HK, {100} for NKGKS), and
the chemical activities are not the same.

Unfortunately, in the very-early-time regime in which
the theoretical predictions differ most clearly, the experi-
mental data may often represent a poorly-controlled situ-
ation, since the oxygen does not instantly adsorb to alter
the surface energetics. Thus, the experimental data may
show slower initial growth than if an “instant quench”
were possible, leading to a artificially higher power of t
in the best fit to data. In the late-time regime, the ex-
perimental approach to saturation may be hindered by
various kinds of surface defects.

IV. DISCUSSION

In this section we discuss in greater detail the ap-
proximations of the microscopic model, the thermody-
namic limit, and the relationship to the decay of one-
dimensional profiles.

As implied above, the approximation that the steps
are initially straight will give a narrower distribution of
first-passage times than occur in reality, where there is
a distribution of spacings at equilibrium [22], gaussian
if the energetic repulsions between steps are significant,
broader (approximately squared cosine) when only en-
tropic repulsions enter, as in the model analyzed in this
paper. Thus, at early times the actual order parameter
should rise faster than in our approximation. However,
we believe that the functional form will not change, just
a prefactor, as was found for the autocorrelation function
of perpendicular fluctuations of specified points along a
step [17,23,24].
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In a thermodynamic limit of very wide systems (large
Ly), but with fixed mean step spacing, the “instant-
zipping” approximation must eventually break down.
Even initially, the equilibrium fluctuations of the steps
must lead to contact between neighbors at some points
along their “world lines.” The doubling process becomes
a sort of dewetting problem in which segments of pairs
of single-height steps shrink away [25]. On lattices of the
size used in this study, we have seen no evidence of such
a wetting regime, and we do not believe it occurs in the
experiments, either.

The treatment of the later time period is obviously
rather ad hoc. The more rapid decrease than expected
from one-dimensional walkers seems to be an indica-
tion of the two-dimensional nature of the problem: it
would be more difficult for a portion of a step, tied to
a long “string,” to remain isolated from its counterparts
on neighboring steps for exceptionally long times. The
difficulty of formulating a simple expression may be a
consequence of being in a complicated cross-over regime
from the Ising-like step-doubling regime to the wetting
regime just mentioned.

The subtleties of this problem are mirrored in the
rather similar problem of the decay of one-dimensional
profiles below the roughening temperature, i.e. surfaces
with an initially periodic variation of the local orienta-
tion relative to a facet orientation, in one direction across
a surface (x̂ in our notation) [with uniformity assumed
in the other direction (our ŷ)]. There has been great
activity on this problem, with conflicting results aris-
ing from differing perspectives, as nicely summarized by
Bonzel and Preuss [26]. The viewpoint closest to that es-
poused here is proposed by Selke and Duxbury [27,28],
who have carried out extensive Monte Carlo simulations
on problems in this area. Their observation is that the
rate-limiting step in the decay process is the annihila-
tion of adjacent up and down steps near the peak or the
trough of the periodic undulations. As in step doubling,
there is a characteristic time until these neighboring step
and “anti-step” pairs contact each other at some point.
Then the area of annihilation must spread, much like
the doubled step, although the microscopic features are
presumably different.

In one way the profile problem is simpler than the dou-
bling problem. In the former, it is always clear which
pair of steps (or, more accurately, step-antistep pairs)
are coming together. In the doubling problem there
is always the possibility that the ”wrong” single steps
will touch and zip. The time to anneal away this er-
ror would presumably be quite long compared to the
time scales studied above. To simplify our analysis, we
worked with a system having just four steps, eliminating
this sort of event. Our belief is that the time to anneal
out doublings inconsistent with the overall ordering will
be longer than the time scales involved in the experi-
ments. In other words, we expect the late-time limit

of the order-parameter in the experiments is lower than
would be expected from an equilibrium analysis. Fur-
ther Monte Carlo studies of larger systems are certainly
warranted to check this viewpoint.

V. FURTHER SIMULATIONS: HOPPING ONLY
ALONG STEP EDGES

In case b, the order parameter remains constant in
time: Ψ = 0. Each Monte Carlo time step (MCS) con-
sisted of choosing 4Ly random sites at which a step was
either incremented or decremented by a unit spacing (in
x̂) or left unchanged, and correspondingly one of its im-
mediate neighboring step sites along the same step was
decremented or incremented or left unchanged, respec-
tively. This Kawasaki-like formulation corresponds to
the physical situation in which diffusion is only along
the step edges and not across terraces. The study of this
mechanism was motivated by the work of Poensgen et al.
[29]. There, too, the steps meander considerably; how-
ever, since the order parameter is held fixed, they cannot
completely fuse together. This restriction creates a wavy
pattern of steps as shown in Fig. 7, for the lower temper-
ature of Fig. 1. Note that this figure is an average over
many configurations rather than a snapshot of one. At
higher temperatures, such as the upper value of Fig. 1,
the [time-averaged] steps are still wavy, but they do not
touch each other.

Corresponding to the evident periodicity along the ŷ
direction in Fig. 7, one expects distinctive features in the
Fourier spectra. Specifically, we computed the structure
factor S(ky) given by the formula:

S(k) =

∣∣∣∣∣∣
4∑

m=1

Ly∑
n=1

d(m,n)(−1)m exp((2nkπi)/Ly)

∣∣∣∣∣∣
2

(7)

where d(m,n) is the distance between the step edge at
point (m,n) on the lattice and the next step edge at
(m + 1, n). This S(ky) is the single-scattering approxi-
mation of what one would measure in a high-resolution
LEED experiment. The result is displayed in Fig. 8.
The arrow indicates the distinctive peak which is the
signature of the meander of the steps seen in Fig. 7. On
an absolute scale rather than the logarithmic scale used
in the plot, this peak would be more pronounced and
so readily observable in an experiment. However, it is
essentially a finite-size effect in the ŷ direction. In an
experiment, the peak might indicate defect-free regions
of a particular size, or could be produced by pinning
centers of some sort. Thus, a direct measurement will
generally be needed to understand what produces the
peak. Moreover, it could be washed out entirely by a
distribution of sizes, so that only real-space images such
as Fig. 7 would reveal the conserved order parameter.
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VI. CONCLUSIONS

We studied a model of step doubling dynamics which
shows a second-order, Ising-like step-doubling transition
with temperature. A comparison with a recent kinetic
experiment has been done. The results suggest that step
fluctuations play a key role in the dynamic evolution of
the experimental transitions. Step-doubling, from this
perspective, is determined by the statistics of a rare
event, the time until meandering adjacent steps make
contact with each other, essentially a first-passage time.

No effects of the introduction of adatoms like O2,
which actually causes the doubling in the experiments
considered above, have been investigated here. The as-
sumption is that quenching into the step-doubled state
by changing temperature (a thermodynamic field) or
chemical potential (due to adsorption) should have com-
parable effects. Unfortunately, in the experiment it is
difficult to transform the sample rapidly from clean to
adsorbed. Hence, the early-time data, which distin-
guishes most clearly between the different pictures, may
often be affected by the adsorption time scale. It would,
thus, be useful to do experiments on several different
misorientations of the same substance to check the ¯̀4

scaling of the time constants.
Our work is clearly a modest first step in understand-

ing this rich problem. In many physical systems, there
are significant energetic repulsions between steps (in ad-
dition to the entropic repulsions stemming from the non-
crossing of steps). We have not yet explored how they
will alter the results presented above. The later-time
analysis is blatantly ad hoc; further insight into the un-
derlying mechanism might shed light on the profile prob-
lem as well.

Doubling could also be produced by other microscopic
mechanisms for which the first-passage time would not
be a key concept. For example, instead of lowering the
energy of double-height steps relative to single-height
steps, oxygen could prefer to adsorb on wide terraces,
producing an instability toward step bunching, with step
doubling typically the most unstable mode. Analogous
behavior was observed on Si during evaporation during
DC resistive heating [30]. Thus, it would of considerable
interest to gain a more thorough characterization (with,
e.g., STM [31]) of the microscopic role of the oxygen
adsorption in the experiments.
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FIGURE CAPTIONS

1. Ψ2 vs. t at temperatures 1.404ε/kB and 0.624ε/kB ,
where ε is the energy of a kink or, equivalently, a
unit length of step. The dashed-dot line gives the
results of Monte Carlo simulations, while the solid
line is the best fit to the two-parameter functional
form Ψ2 = A

[
1− exp

(
−
√
t/t0

)]
. The dashed

line is the best fit to the functional form of eq. (4).

2. Ψ2 vs. t from a single Monte Carlo run at T =
0.624ε/kB , showing the rapid “zipping together”
of neighboring steps once they make contact.

3. Distribution of the times at which the sudden rise
in Ψ2 occurs; an illustration of this rise for a sample
run was given in Fig. 2. Solid curve: fit of early-
time data to eq. (2); dashed curve: fit of late-time
data to the phenomenologically altered eq. (2).
The curves cross at t2.

4. Logarithm of the various time constants t vs. log-
arithm of the average distance ¯̀ between single
height steps (i.e., 1/ tan(φ), where φ is the misori-
entation angle), at T = 0.624ε/kB . The plus signs
indicate the values of t0 obtained by fitting eq. (1)
to our simulation results. The corresponding lin-
ear fit has a slope s = 4.36 ± 0.06. The asterisks,
triangles, and diamonds indicate the values of t1,
t2, t3, respectively, obtained by fitting eq.(4) to our
simulation data. The corresponding best linear fits
are shown. Their respective slopes are 3.37± 0.30,
3.62± 0.25 and 4.03± 0.25. This result and those
of Bartelt et al. [17] suggest a relation of the form
of (6).

5. Time evolution of intensity, I(t), at three differ-
ent temperatures. HK’s experimental data [10]

is shown at T = 441.3K, T = 474.4K, and
T = 507.6K in order of increasing intensity. The
solid lines are their data. The long dashed line is
obtained by fitting eq. (5); their functional form
obtained from chemical rate analysis, to the data.
The short dashed line is the fit of eq. (1) to the
data. The dashed dotted line is obtained by fitting
eq. (4) to the data.

6. Fit of preliminary data, indicated by diamonds,
from Niu et al. [9] for T = 550K. Also plotted are
fits to the expressions in eq. (1): solid curve; to
eq. (5): dashed curve; and to eq. (4): dash-dotted
curve.

7. Sample of a long time average of the step structure
as viewed from a direction normal to the terraces.
This simulation was done at T = 0.624ε/kB , and
atoms were only allowed to move along the step
edge, implying thereby constant Ψ (0 in this case).
The four steps were initially straight and uniformly
spaced at a distance ¯̀= 8 apart. To help visualize
the configuration, a fifth step is depicted here; it
is just the first step, shifted by Lx, as dictated by
the screw-periodic boundary conditions.

8. The logarithm of the structure factor S(k) given by
eq. (7) vs. ky, where ŷ is along the mean direction
of the steps for simulated data such as depicted in
Fig. 7, at T = 0.624ε/kB . The distinct periodicity
along the step edges is evident from the satellite
peak, indicated by an arrow.
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