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To obtain a more precise value for the variance σ2 of the joint probability distribution of a sym-
plectic ensemble, we extend previous numerical evaluations of a power series. Our result σ2 ≈ 0.1041
shows that the excellent approximation using the analytically-simple Wigner surmise fractionally
overestimates this value. This behavior is important in establishing the trend of a generalization of
the surmise to describe the terrace-width distribution on vicinal surfaces. We also obtain precise
estimates of the skewness and the kurtosis of the exact distribution, as well as the related moments.
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The study of fluctuation phenomena has proved partic-
ularly rewarding because of their universal properties.1–3
Beginning with the work of Wigner and of Dyson,4 this
field—associated with random matrix theory (RMT)—
has now attained profound sophistication and has been
applied to an astonishingly broad range of physical sys-
tems. In particular, formally exact solutions have been
developed for the distribution of the nearest-neighbor
level spacings of energy eigenstates of systems described
by Hamiltonians with orthogonal, unitary, or symplectic
symmetry.

As formulated in the Calogero-Sutherland (CS)
model,5,6 there is a remarkable correspondence between
these energy levels and the positions of fermions in one
spatial dimension (1D) that interact with an inverse-
square repulsive potential, so that the distribution of the
separations between energy eigenvalues also describes the
spacings (in the 1D space) between the fermions. This in-
sight has led to further applications of the theory, many
of which are described in excellent reviews.1–3 A note-
worthy example that is not covered is the terrace-width
distribution (TWD) on a vicinal7 surface. Steps traverse
the surface without crossing, leading to the association
of their configurations with the world lines of fermions
evolving in 1D, with the inverse-square repulsions com-
ing from steric and elastic effects. Some of us have ex-
plored the implications of this correspondence for several
years.9–15

Of particular interest is the [normalized] probabil-
ity density [(or joint probability distribution16) P [β](s).
(P [β](s)ds is the probability that the nearest-neighbor
spacing lies between s and s+ds; s denotes the energy dif-
ference between adjacent levels or the distance between
adjacent fermions, in either case divided by its average
value.) The scale of s is set so that the mean of P [β](s)
is unity. For s ¿ 1, P [β](s) ∝ sβ .17 According to the CS
model,

β = 1 +
√

1 + 4Ã, (1)

where the dimensionless parameter Ã is proportional
to the strength of the s−2 repulsion between lev-
els/fermions/steps. The special cases β = 1, 2, 4 (or

Ã = −1/4, 0, 2) correspond orthogonal, unitary, and sym-
plectic ensembles, respectively. While most RMT studies
focus on the first two cases,2,16 the last is the most rele-
vant to vicinal surfaces (though the unitary case of “free
fermions” with just entropic repulsions is also germane9

and much studied). It is well established that the exact
solution for a symplectic ensemble can be well approxi-
mated by the Wigner surmise

P
[4]
W (s) =

(
64
9π

)3

s4 exp
(
− 64

9π
s2

)
. (2)

From Eq. (1) we see that in principle β can take on ar-
bitrary values. Moreover, the proportionality of P [β](s)
to sβ at s ¿ 1 for values of β beyond the special cases has
been rigorously established.18,19 In accounting for exper-
imental data for vicinal surfaces, for which Ã ranges from
0 to ∼10–20 (cf. Table 2 of Ref. 12), we have advocated
and described thoroughly10–15 the use of a generalization
(to arbitrary β) of the Wigner surmise of Eq. (2). (For
those interested in [more] details about applications to
vicinal surfaces, the latest in the series15 provides a good
perspective of the whole endeavor10–15 while Ref. 14 is
based on an overview presentation for theorists.)

The experimental TWD is typically characterized by
just its width. Hence, it is important to determine pre-
cisely the variance σ2 of P [4]. In the second edition
of Mehta’s authoritative classic,1 the second moment
(1 + σ2) is listed20 as 1.105. This value was disconcert-
ing since we expected15 the exact variance to be smaller
than the variance 0.10447 of the Wigner surmise Eq. (2).
(In the limit that β → ∞, the variance of a Wigner-like
expression is 1% too large while for free fermions, β =2,
it is 1% too small, and for β =1 it is over 4% too small.
(Cf. Refs. 1,10,15, especially Table 2 of [15].) Hence, we
suspected15 that a numerical imprecision led to a round-
ing error, so that the exact variance to 3 decimal places
should be 0.104 rather than 0.105. While superficially mi-
nor, this difference is important in establishing the overall
trend of the generalization of the Wigner surmise relative
to the limited exact information available.22

In order to confirm our hypothesis, we needed to ex-
tend the earlier analysis by Dietz and Haake23 (hereafter
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DH) (see also Ref. 3), finding eventually that σ2
β=4 =

0.1041. We communicated these results to Prof. Mehta
in time for inclusion in his third edition of Ref. 1, which
duly lists the second moment as 1.104. In this brief pa-
per, we present the numerical data supporting our claim.
In the process of this work, we also obtained the third
and fourth moments, allowing us to compute the skew-
ness and kurtosis of P [4](s).

Following DH we first write as a Taylor’s series the
probability E[4](s) that a randomly chosen interval of
size s contains no levels:

E[4](s) =
∞∑

l=0

Els
l (3)

where
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l≥2n2−n∑
n=1,2,...
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Terms with n ≤ 5 are enough to determine the first 62
coefficients Pl, which are given in Table 1. This table
extends to l =62 the list given in DH to l =42.24 There
is a corresponding Taylor expansion for the probability
density P [4](s) = (d2/ds2)E[4](s):

P (s) =
∞∑

l=0

Pls
l, Pl = (l + 2)(l + 1)El+2 (5)

These Taylor coefficients Pl are tabulated in Table 1.
The asymptotic distribution obtained by Dyson21

is1,23,25

Eas = 2
9
8 eB |2πs−1|− 1

8 e−
π2
4 s2+ π

2 s Pas = E′′
as(s) (6)

where B = 1
24 ln 2 + 3

2ζ ′(−1) ≈ −0.219250583.1 As our
first approximant of the exact P [4], we use the power
series with the coefficients from Table 1 up to some
crossover value of s, after which we use Pas from Eq. (6).
We select this crossover s as that value which produces
both normalization and unit mean of the approximant.
This value is s = 1.9187, with negligible change on the
scale of ±0.0003. It is then straightforward to estimate
µ2, µ3, and µ4, the second, third, and fourth moments,
respectively. These are listed in Table 2.

DH suggest that an improved approximant can be
found by multiplying the asymptotic expression Pas by a
Padé interpolation expression, which has the particular
advantage of removing the obvious singularity in Eq. (6)

at s = 1/2π. For the Padé interpolant we used the ex-
pression in DH:

Pade =
∑lmax/2

m=1 ν8m−7x
m−1|x| 18 + ν8mxm

∆0 +
∑lmax/2

m=1 ∆8m−1xm−1|x|− 1
8 + ∆8mxm

(7)

where x ≡ 2πs−1. We began by using the values for
νm and ∆m tabulated in DH (for lmax =42 in the Taylor
expansion, and replaced the pure asymptotic expression
by the version multiplied by the Padé interpolant above
the crossover value of s, consistent with the procedure
used by DH.26 We found no change in the moments to
5 decimal places (though the optimal crossover value for
s rose modestly to 1.9193, so did not pursue extending
DH’s tabulated values of νm and ∆m.

As listed in Table 2, the variance of P [4](s) is found to
be σ2 ≡ µ2− 1 = 0.1041. The third and fourth moments

TABLE I: Tabulation of Pl of Eq. (5), using Eq. (4), up to
l = 62.

l Pl l Pl

1 0.0 32 4.069314164e-06

2 0.0 33 -1.208912930e-06

3 0.0 34 -4.320684951e-07

4 11.54478116 35 1.444119216e-07

5 0.0 36 3.831511457e-08

6 -26.04398239 37 -1.542093305e-08

7 0.0 38 -2.373910020e-09

8 29.376434650 39 1.481972070e-09

9 0.0 40 -2.106884211e-11

10 -22.1273823 41 -1.289235835e-10

11 0.0 42 3.975772815e-11

12 12.60254549 43 1.020528743e-11

13 -0.089720770 44 -8.818304854e-12

14 -5.767995139 45 -7.384058833e-13

15 0.142183183 46 1.443470291e-12

16 2.185535259 47 4.902183361e-14

17 -0.111364610 48 -2.032183919e-13

18 -0.696689017 49 -2.990951537e-15

19 0.057406553 50 2.584509877e-14

20 0.188941319 51 1.663636643e-16

21 -2.187532238e-02 52 -3.036116364e-15

22 -4.401657003e-02 53 -7.985564711e-18

23 6.560453940e-03 54 3.335453235e-16

24 8.888154747e-03 55 2.262609974e-19

25 -1.609790563e-03 56 -3.454096248e-17

26 -1.568617360e-03 57 2.075792033e-20

27 3.318113094e-04 58 3.390775820e-18

28 2.436873663e-04 59 -6.081053185e-21

29 -5.855493089e-05 60 -3.168731972e-19

30 -3.348583956e-05 61 1.020388478e-21

31 8.975777681e-06 62 2.828240383e-20



3

TABLE II: Summary of results for moments and related prop-
erties of P (s) for symplectic ensemble. For the µ’s and the
variance, all tabulated digits are significant. For skewness and
kurtosis, “(1)” indicates ±0.001 uncertainty.

Property Exact Wigner surmise

µ2 1.1041 45π
128

.
= 1.10447

µ3 1.3241 27π
64

.
= 1.32536

µ4 1.7044 2835π2

16384

.
= 1.70778

variance 0.1041 0.10447

skewness 0.350(1) 0.35424

kurtosis 3.027(1) 3.03698

are measured to be µ3 = 1.3241 and µ4 = 1.7044, respec-
tively. Our various checks indicate that all these digits
are significant. One can also calculate the moments by
directly using equations (3) and (5) which gives the same
result as the previous case. Because of the subtractions

involved, the skewness (µ3 − 3µ2 + 2)/σ3 and the kurto-
sis (µ4 − 4µ3 + 6µ2 − 3)/σ4 is are very sensitive to the
precision of the moments used to determine them. Ac-
cordingly, we computed them “directly” rather than by
using the computed moments. In Table 2 we list their
values as 0.350 and 3.027, respectively; these numbers
should be viewed as ±0.001. In any case, all these values
are lower, albeit marginally, than the corresponding val-
ues for the Wigner surmise for β = 4, so that the latter
serves not just as an excellent approximation but also as
an upper bound for these statistical properties of P [4](s).
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