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We use a Fokker-Planck equation to justify the generalization of the Wigner surmise for the
energy-level spacing in quantum systems to the simple expression for the equilibrium terrace-width
distribution of steps—with arbitrary-strength repulsions—on a vicinal surface, taking advantage of
analogies to one-dimensional models of interacting, spinless fermions. This approach leads to an
analytic description of the evolution toward equilibrium of steps from several experimentally relevant
distributions: step bunches, perfect cleaved crystals, and pre-quench equilibrated distributions at

different temperatures.
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Vicinal crystals [1], i.e. crystals misoriented from a
high-symmetry plane, have great technological impor-
tance as growth templates with controlled step “defects”
and as catalytic enhancers of some reactions due to
the lower coordination of atoms on steps and of kinks
thereon. Moreover, understanding the properties of steps
provides a fruitful way to gain insight into nanostructures
on surfaces. Tn particular, stepped surfaces differ consid-
erably from perfect staircases, with thermal fluctuations
playing a crucial role. The probability of finding neigh-
boring steps at a specified separation, i.e. the terrace-
width distribution (TWD), is denoted P(s), where s is
the step spacing w divided by its average value (w); (w) is
the only characteristic length in the “downstairs” direc-
tion (£). [Thus, (s) = 1, and a perfect cleaved crystal has
P(s) = 6(s—1).] Because steps extend unboundedly in
the § direction (i.e., no islands on the terraces), they can
be mapped onto the space-time trajectories of particles
on a line. Because they cannot cross, these particles can
be treated as spinless fermions with an entropic repulsion
of the form 1/w?, where w is the terrace width. There
generally also are elastic interactions with the same form,
A/w?, where in principle A should follow from the elastic
constants of the crystal, but in practice it must be ex-
tracted from experimental data, especially the TWD. It is
useful to deal with a dimensionless interaction strength,
A= AB/(kgT)?, where § is the step stiffness.

Generalizing the so-called Wigner surmise [2], some of
us have proposed that the TWDs have the simple form

P,(5) = a,s? exp[—bQSQ], (1)

where the constants b, = [I‘(%Q)/F(Q;'—l)]2 and a, =

2b§,g+1)/2/1“(9‘2"—1) assure unit mean and normalization,
respectively. The argument for Eq. (1) takes advantage of
results for the Calogero-Sutherland (CS) Hamiltonian [3]
describing fermions in one dimension (1D) with inverse-
square repulsions; we thence find the identification

o=1+V1+44 & A:Q(§—1) (2)
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Historically, Eq. (1) came from efforts to describe the
distribution of the energy separations of nuclear levels,
obtained from the eigenvalues of Hamiltonians repre-
sented by random matrices [4] with orthogonal, unitary,
or symplectic symmetry. Wigner’s arguments based on
these three symmetries lead to Eq. (1) for o = 1, 2, or 4,
respectively. Although not exact (as originally surmised),
Eq. (1) provides a superb approximation [5] for these
cases. There is a rather miraculous and fundamentally
mysterious connection between the above distribution of
energy spacings and the distribution of spatial separa-
tions of spinless fermions in 1T) with mutual repulsions
o« w2 [3]. While A=0 (p=2) notably corresponds to
“free fermion,” there is nothing intrinsically exceptional
about A=2 (p=4); furthermore, negative values of A (esp.
—1 & p=1) are unphysical.

Conventional TWD analyses [1] have been based on the
“mean-field” Gruber-Mullins approximation [6]: a single
step meanders between two straight neighboring steps
fixed at the average step separation. In fermion language,
the step is the 1D trajectory of a quantum particle con-
fined to the segment (0,2(w)) by an infinite potential.
For a repulsion strong enough that the potential of the
active step can be approximated by a parabolic well, the
TWD is a Gaussian with a width o« A=%/4. More refined
analyses [7-9] also yield Gaussian TWDs but with differ-
ent proportionality constants between width and A~1/4.

With g as the adjustable parameter, Eq. (1) provides a
better accounting of the TWD, both in numerical simula-
tions and in actual experiments, than any of the preexist-
ing Gaussian models [10]. However, it has not appeared
in the literature on random matrix theory (RMT) [4] for
general g, and the only formal justification is based on
a model single-particle Hamiltonian [11]. Tn this Let-
ter, we show that Eq. (1) arises as the stationary solu-
tion of a Fokker-Planck equation (FPE) derived from a
classic model of interacting particles in 1D. Furthermore
and arguably more importantly, we obtain thereby a de-
scription of how experimentally relevant non-equilibrium



TWDs relax toward P,(s).

Our work contrasts with efforts over decades to find
distributions that describe how equilibrium fluctuations
(in the spacings of eigenenergies) change as symmetry is
gradually broken or as two subspaces of different symme-
try are mixed [12, 13]. However, our time variable does
chronicle evolution through an abstract parameter space.
Nonetheless, we shall see that comparisons are possible
with the physical approach to equilibrium. We discuss
ways to connect our FP time with physical time.

We begin with the analogy drawn by Dyson between
RMT and a Coulomb gas model [14]: N classical particles
on a line, interacting with a logarithmic potential, and
confined by an overall harmonic potential. The Coulomb
gas model helps understanding the fluctuation proper-
ties of the spectrum of complex conserved systems. This
model can be generalized to the dynamic Brownian mo-
tion model, in which the N particles are subject, besides
the mutual repulsions, to dissipative forces [12]. The par-
ticle positions z; then obey Langevin equations,

. 0
b= —ypi+ ) ——— + VI, (3)
o

where 7 is a delta-correlated white noise and § (x ) is
the “charge” of each particle. The probability of finding
the particles at the positions {z,, } at time ¢ is the solution
of the multi-dimensional FPE
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In the 1D case, v~' would essentially be the variance

of the stationary distribution. Narayan and Shastry
[15] showed that the CS model is equivalent to Dyson’s
Brownian motion model, in the sense that the solu-
tion of the FPE (4) may be written as P({z,},t) =
Y({{za}, )Yo({xn},t), where ({z,},t) is the solution
of a Schrodinger equation with imaginary time, derived
from the CS Hamiltonian. The Langevin force of Eq. (3)
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Since we seek the distribution of widths w, we con-
struct a one-“particle” theory [6] where the dynamical

variable is the nearest-neighbor distance w,, = 411 —
Zm. To decouple the force on w,, from the other par-
ticles, we assume—in a Gruber-Mullins spirit—that the
denominators (g — Tm+y1)(Te — ) in Eq. (6) are re-
placed by their mean values, the average being taken in
the stationary state:

((Th — Tmpr) (@h — )Y st = (W )st(k—m—1)(k—m), (7)

Each of the two sums in Eq. (6) then simplifies greatly,
taking the form [(Zm11 — zm)/(w?)st] 3, 50l(p + Dp] 7,
where the sum is unity for N — oo In summary, the in-
teraction of a particle pair with all other particles acts on
average as a harmonic potential, increasing the “spring
constant” of the external one. We arrive at a one-particle
Langevin equation for the terrace width w:

Eq. (8) is called a Rayleigh process [16-19] if /2T = §.

Our goal is to convert Eq. (8) into a Fokker-Planck
equation for which Eq. (1) is a steady-state solution.
We change to dimensionless variables s = w/{w) and
t = I't/(w)?,. Treating v as a self-consistency param-
eter and recognizing 6 = o/T', we set v = 2/T{w?)4.
Then the coefficient in parentheses in Eq. (8) becomes
(1+0)/T(w?); since (s2) of Ba. (1) is (0+1)/2b, [9, 12,
the coeflicient can be rewritten as 2b,/I'(w)%,. Thus, we
have the sought-after FPE:

aP(s,f) O 82 .

= o [(2%3 - f) P(s,t)] + 55 [P(s. 8. (9)

Before solving Eq. (9) we make a few remarks. First,
Eq. (9) may be interpreted as a mean-field version of
Eq. (4). Also, defining U(s) = b,s* — glns and using
the transformation ¥(s,#) = P(s,t)exp[U(s)/2], we can
transform the Fokker-Planck equation into a self-adjoint
equation (or Schrédinger equation with imaginary time)

oW (s,1) (£-1)
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= [b3(s°—1)+ = (10)

that reproduces the effective one-body approximation
[11] of the CS model. Second, if we multiply Eq. (8)
by 2s, and let v = s, we obtain a stochastic differential
equation for » in what in quantitative finance is called
the Heston model [20]; the equivalent of Eq. (9) describes
the evolution of the distribution function for the stochas-
tic variance v in a second stochastic equation for stock
returns. Third, there is no explicit rate parameter in
Eq. (9); the scale of evolution is determined by the defi-
nition of #, so the characteristic time 7 is {(w)2, /. Thus,
any dynamic information must enter through ', which
we postulated in Eq. (3) and calibrated using standard
fluctuation-dissipation arguments.



To solve Eq. (9) we must specify the initial distribu-
tion in sg. Stratonovich [16] proceeds by separation of
variables, finding the spatial eigenfunctions in terms of
Laguerre polynomials. After some manipulation, we then
find [21] the distribution in s at rescaled time £, given an
initial sharp distribution §(s—sg), to be

N - sa+1 B B 5
P(s, 1]s0) =2, "= L (2,550 ) expl—b,(s*+5%)] (11)
0
where a=(p—1)/2, b,=b,/(1—e~1), § = s9exp(—i/2),
and I, is the modified Bessel function of the first kind.
Using I, () ~, (x/2)* /T (a+1), we find
>

0 .
- ay8

P(s,t) ~ 1 e-Dyey/2 exp[=s°b,/(1—e™N)] (12)

confirming that at long enough times £, any dependence
on sg disappears and that Eq. (11) ultimately approaches
Eq. (1). Three initial distributions are of special physi-
cal interest: “perfect” vicinals, step bunches, and equi-
librium TWDs before thermal quenches or upquenches.

Perfectly cleaved crystals: If the initial distribution
is a delta function at the mean spacing, i.e. §(sp—1), then
the [normalized] solution Eq. (11) reduces to [22]

P(s,f):?[ggs“le%{fa (2593(3*%) exp[—I;Q(SQ—ke_g)] (13)

In experiments, P(s) is generally characterized just by
its variance 0% = py — p?, which can be calculated from
its first and second moments, u; and uo, respectively:

F(%Q Fy (Q;Q?Q;lvg@eit) Q—|—1+
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with 1Fy (sometimes written M) the Kummer confluent
hypergeometric function [23]. To the extent that py =1
[24] [and in any case for qualitative purposes],

o*() =0y (1 —e™), (15)

where [cf. Eq. (1)] the Wigner variance o3, =
[(e+1)/2b,] =

For numerical comparisons, we chose the simplest
model, the terrace-step-kink model [10] with A =0 (just
entropic interactions), setting kg7 to half the kink en-
ergy, with 4 steps, 200 spacings wide, and (w)=6. In this
model, the motion of individual atoms across a terrace is
not tracked, so we use the Metropolis algorithm, with a
single rate for moves. To compare simulations with the
FPE prediction, we manually set the time scale of the
simulation to “match” that of the dimensionless #: 10%
MCS corresponds to 1.4 units of . As shown in Fig. 1,
the agreement is remarkably good.
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FIG. 1: [Color online] Comparison of the TWD variance pre-
dicted using Eq. (14) [blue, dashed] and the variance [red,
solid] computed using conventional Metropolis Monte Carlo
for a terrace-step-kink model for “free fermions” (A=0, g=2).
The left and right inset panels show the initial and a typical
late-time configuration, respectively. Both curves approach
equilibrium, ofy ~0.18 [5, 9]. The lower pair of curves show
the predicted [magenta, dashed] and computed [green, solid]
variances for A=~2.762, p~4.47, with a different scale factor
between # and MC time, indicative of a smaller characteristic
time. Both lower curves approach i = 0.095. The dotted
green curve shows the beginning of the green solid curve using
the same scale factor as for A=0. See text for discussion.

Keeping everything else the same, we next took 4 =
0.5, leading to A~2.762. To now get good agreement be-
tween simulation and prediction, we find that 10° MCS
corresponds to 4.5 units of £, indicative of a smaller char-
acteristic time 7 o« ™', There are indeed reasons to
expect I' to increase with o [25].

While our analytic work assumes a continuum for w,
at short times our model’s discrete nature becomes im-
portant. Initially (i.e. at £ < 1) step units are barely
aware of the neighboring steps; the activation energy for
the elementary excitation is the energy of a kink-antikink
pair. For physical values of A and (w) > 4, the contri-
bution of the repulsion to this energy is negligible, so we
expect (and find in MC) that ¢?(# < 1) is independent of
0: the dotted line, replotting the beginning of the solid
green curve with the same # scaling as for A=0, initially
coincides with the red line.

To improve our understanding of 7 by investigating
a system with better-defined dynamics, we have under-
taken kinetic Monte Carlo simulations using an SOS
model that incorporates adatom attachment /detachment
events at the step along with terrace hops [26]. For
attachment/detachment-limited kinetics, one expects
that 7 is set by the detachment rate of an atom from
a kink site onto the terrace. In a simple bond-counting
scheme as implemented in our simulations, such an event
requires breaking 2 in-plane bonds (each of energy E,),
as well as hopping once on the surface (over diffusion bar-
rier Ep). Our results (discussed in detail elsewhere [22])
show that the TWD variance behaves as a generaliza-
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tion of Eq. (15), 02(t) =0%,S(t/7), where 7 is thermally
activated, with the expected activation energy 2FE,+FEp.

Step bunch: Eq. (12) is also obtained as the full
time-dependent solution when the initial distribution is
a delta function centered around a vanishing terrace
size, P(sg,0) = (sg). Experimentally, this situation
may be even easier to realize, for instance by induc-
ing the formation of a bunch of steps (step bunching),
and then watching the steps spread out to their equilib-
rium arrangement. In this case, the experimental TWD
should be found to coincide at all times with Eq. (12);
p1 =V 1—e—t increases rapidly from its initial value to
unity, and Eq. (15) holds.

Quenches: Of greatest interest physically is what
happens during a quench {or upquench), in which a sys-
tem which has attained equilibrium at the initial temper-
ature is suddenly subjected to a different temperature. In
this problem that translates to a sudden change from pq
to o. Integrating Eq. (11) weighted by P,,(so) vields,
after some manipulation [21]

~ iy e—e
13(87{):agsgefbgs2 (1 e ) p

2o+1

(1- 675(1 —bo/bp)) 2

o0+l o+1 bys?
F, , , _ . (16
( 2 7 2 14 (b, /byl — 1) (16)

Eq. (16) satisfies the following necessary conditions. For
0o = 0, 1t reduces to Eq. (1), since 1 Fi(a, a, z) = exp(z).
For arbitrary go and p, it is initially P, (s) and ap-
proaches P,{s) at long times [23]. For asymptotically
large 9o, Eq. (16) reduces to Eq. (13). Analytic but more
complicated expressions [21] generalize Eq. (14).

We have also formulated [21] a FPE description of the
evolution of a train of steps with attractive effective in-
teractions of kinetic origin, such as during step bunching.
Two kinds of simple models of step evolution lead to step
bunching: i) a model that produces an inverse Schwoebel
effect; i) a model including two diffusing and reacting
species of particles [27].

Our formulation not only places the generalized
Wigner surmise on firmer theoretical footing, it allows
the exploration of the evolution of TWDs as a whole
rather than just positions of individual steps. The re-
sults invite quantitative experimental studies to check
the predictions and numerical simulations to clarify the
dependencies of the characteristic time.
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