A facet is not an island: step-step interactions and the fluctuations of the boundary of
a crystal facet
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Tn a recent paper [Ferrari et al., Phys. Rev. E 69, 035102(R) (2004)], the scaling law of the
fluctuations of the step limiting a crystal facet, as a function of the facet size, was computed.
Ferrari et al. use rigorous, but physically rather obscure arguments. Approaching the problem from
a different perspective, we rederive more transparently the scaling behavior of facet edge fluctuations

as a function of time.

In a recent very interesting, stimulating paper [1], Fer-
rari et al. have computed the scaling of equilibrium fluc-
tuations of an atomic ledge bordering a crystalline facet.
These authors derive an intriguing exact result, concern-
ing how the step-edge width w scales as a function of the
linear size L of the facet. This result differs from what is
expected, and actually found, for the step bordering a 2D
island, which performs a random walk so that w ~ L1/2.
Ferrari et al. find instead w ~ LY/3. They prove that the
origin of the unusnal L'/3 scaling lies in the step-step
interactions between the facet ledge and the neighboring
steps.

Ferrari et al’s formidable calculation is based on the
use of free fermions, transfer matrices, random-matrix
properties, Airy functions, and specific models; as a
purely static result, it does not address the question of
the time behavior of step fluctuations.

In this Letter, we compute the time scaling of step-edge
fluctuations using two approaches. First, we address the
problem from the perspective of simple scaling argument,
using the exact result of Ferrari et al. as a starting point.
Second, we derive a continuum-equation description of
the step bordering a crystal facet. Then, using simple
power counting we rederive Ferrari et al.’s result, as well
as the power-law scaling of edge fluctuations with time.

The most easily accessible experimental quantity is the
step autocorrelation function G(¢) = {([z(t) — z(0)]?),
which is expected to have a power-law behavior at short
times: G(t) ~ t?5. The value of exponent 3 depends on
the atomistic processes responsible for the fluctuations of
the step, but also on the position of the step with respect
to a crystal facet, as we prove here.

We start from Ferrari et al.’s result that w ~ L/3. We
then use Pimpinelli et al’s argument [2] for finding the
time scaling. The argument goes like this. Consider a
portion of step of length £. Because of several transport
processes (notably, terrace diffusion and step edge diffu-
sion), N(t) atoms continually enter and leave this step re-
gion during any time interval t. On average, the net flux
through the region vanishes, but the instantaneous num-

ber fluctuates around the vanishing mean, the typical size
of the fluctuation §N being of order \/N(¢). Tf 2 is the

atomic area, we can estimate the size w of a protrusion
along the step edge (the amplitude or width of a typical
step fluctuation of length #) from w x £~ Q+/N(t). We
now have to estimate N(¢). If L, is a diffusion length in
the direction perpendicular to the step edge, then £L; is
the surface area feeding the fluctuation. Calling c., the
equilibrium particle density, the number of atoms diffus-
ing to and from the step edge during time ¢ is propor-
tional to the number of atoms in the region feeding the
step, ceqlLs, and to the fraction of time the atoms spend
in this region, t/7*. The characteristic time 7* depends
on the specific transport process (see below). Then, as
in Ref. [2]:

c
N(t) =~ g&st. (1)

Specifically, we consider the two primary exam-
ples: i) conservative mass transport (step-edge diffu-

sion); ii) non-conservative mass transport (attachment-
detachment to/from the step edge, with fast terrace dif-
fusion).

If mass transport takes place through step-edge diffu-
sion along a portion of step of size ¢, then 1/7* ~ D, /¢2,
where D, is the edge diffusion coefficient. Also, L is of
order the lattice spacing a in this case. Thus, Eq. (1)
becomes

N(t) m teeyDeal/l. (2)
Letting 6N = \/N, we now find
w?l? =~ (N)? = N, (3)
or
w? ~ teegDea/t?. 4)

We now need one more equation relating w, ¢ and £.
This is provided by the scaling relation

w ~ £

that holds at equilibrium, with o = 1/2 for an isolated
(large, see below) island or for an isolated step [2]. The



result of Ferrari et al. shows that it also holds with a =
1/3 for the edge of a facet. Then, letting w ~ #£1/3 yields

b 0113, (5)
or
w s /1 (6)
so that
G(t) ~ 211, (7)

for a crystal facet fluctuating through step edge diffusion.
This is to be compared with G(t) ~ t'/* for a straight
step or an isolated (large) 2D island [2].

If mass transport takes place through detachment-
attachment of atoms from/to the step edge, then 1/7* =~
k, with k an appropriate kinetic coeflicient. If surface dif-
fusion is fast, the step effectively exchanges atoms with
a “2D adatom vapor” on the surface. Then, L, &~ a, and
Eq. (1) yields

w2l = kg lat. (8)
Using w ~ ¢€1/3 yields £5/3 ~ ¢, and eventually
w ~ /5, (9)
8o that
G(t) ~ t*/7, (10)

for a crystal facet fluctuating through detachment-
attachment from and to its edge. This is to be compared
with G(t) ~ t'/2 for a straight step or an isolated 2D
island [2].

We will now approach the same problem from a differ-
ent perspective. With appropriate approximations, we
describe the motion of the edge of a crystal facet through
a Langevin equation. In polar coordinates, the facet ra-
dius (the position of the edge) in the direction # and at
time ¢, 7(6, t) satisfies the stochastic differential equation

ar(0,t)
ot

The function f describes the deterministic relaxation of
the fluctuations, and (6, t) is a white noise, which can be
conservative or non-conservative, according to the nature
of the mass transport process.

To obtain the deterministic part f of the Langevin
equation, we assume that the facet is delimited by a
closed step of free energy per length 5(6) and that it
sits over a second layer of fixed radius R > r. Neglecting
step-step interactions and letting r¢ = 0r/06, the free
energy of the facet reads

2
r=

= f[r(8,t),0r/06] + n(d,t). (11)

r2 + re dn, (12)

where 9 is the local direction of the step [3].

For simplicity and clarity, we consider an isotropic step
free energy §(0) =4, and thus a circular facet. Then, it
is straightforward to compute the excess chemical poten-
tial, with respect to a perfectly circular facet, which is
given by the Gibbs-Thomson relation (see [4, 5])

o1 = QB(k — 1/po), (13)
where the step curvature x is

% — rres + 27“3

[{/:
(r2 4 r3 )3/2

(14)
In order to study fluctuations around the average facet
radius pg, it is useful to introduce the new variable
7(6,t) = [r(8,t) — po]/po- In terms of this variable, the
excess chemical potential reads
QA+ (1477 272 Q
sp= BBA+NA+T ’“99:2;; oS g5
Po [(1+7)2 + 7] Po
Expanding around 7 = 0, we discard all terms in 7,
compared to 1, but we keep the lowest nonlinear terms
in the derivative 5. We obtain then

Q 1.
op & /Tf (-fea + 2f§> . (16)

Now that we have the chemical potential, we can model
the fluctuations of the step edge as a Langevin equation.
We present here two examples, corresponding to two dif-
ferent atomistic kinetic processes at the step edge. The
first is attachment-detachment (AD), and the second is
step-edge diffusion (SED). AD is conveniently thought of
as a non-conserved dynamic process, with atoms “evap-
orating from” and “condensing into” the step edge. Ac-
cordingly, we write [4, 5]

or(8,t) _ FAD(S

ot kgT
where T'4p is the attachment-detachment kinetic coef-
ficient, and 7(6,t) is a gaussian white noise. Similarly

for SED, we use conserved dynamics to represent atomic
diffusion along the step edge. Accordingly, we write [4, 5]

or(0,t) _ Lsgp 62 9
ot kgTpi 062
where ['sgp is the step-edge -diffusion kinetic coeflicient,

and neo(6,t) is a conserved gaussian white noise.
Putting Eq. (16) into Eq. (17) for AD kinetics we find

M(Fﬂ:@ﬂ:@@) +77(07t) (17)

(7,70, 790) + nc(0,t)  (18)

dr(@,t) _ Tap QB [D*F oF
ot kel 7 [302 gg ) 2| T8 (19)
Inserting Eq. (16) into Eq. (18) for SED kinetics we
find
o7(6,t)  TsppQB | 8% 18% (97>
o~ kel po | 007 206 \og) | T
(20)



Note that Egs. (19) and (20) look like the Kardar-
Parisi-Zhang (KPZ) [6] equation, and its conserved coun-
terpart (the so-called Montreal model) [7], respectively.
However, the non-linear terms come from the equilibrium
curvature of the interface here, while they are induced by
non-equilibrium effects in the KPZ and montreal models.
Should we expect to observe KPZ or Montreal exponents
in the fluctuations of facets or islands? The question is
rather subtle, as we discuss below. In fact, we will see
that KPZ or Montreal exponents (see for instance Ref.
[8]) are expected for the fluctuations of the edge of an
island, if it is small enough. A facet, on the contrary,
is expected to exhibit the exponents that we have com-
puted in the first part of this Letter, which are neither
KPZ nor Montreal.

Eqgs. (19) and (20) represent, of course, limiting cases
for a real crystal facet, since in general one expects step-
edge diffusion and attachment-detachment to coexist.
For the sake of simplicity, we will examine them inde-
pendently, using scaling arguments to extract power-law
behaviors.

In order to set the stage and to see how scaling argu-
ments work, let us consider what happens with a straight
step. In this case, a more appropriate description uses
cartesian coordinates (z,y), y being parallel to the step
edge, and z(y) describing the step profile. Then, the fluc-
tuations of the step edge obey a linear equation [4, 5],
which reads

dz(y,t) _ TapQpB &z
ot N kBT 8y2

for attachment-detachment kinetics, and an equation
equivalent to (20) for step-edge diffusion.

The equation is linear and can be solved. However,
we will use it to show how the scaling argument works.
Assume that the linear size £ along the step edge is dilated
by a factor b, £ = bf (we use here and throughout primed
variables to denote rescaled quantities). Scaling implies
that the width w of a fluctuation varies as w ~ £°, so
that w' = b®w. The typical time needed to develop a
fluctuation of size £ scales as t ~ €%, so that ¢’ = b*t. The
time derivative in Eq. (21) scales then as

+n(0,1), (21)

9z'(y', ') _, O0z(y,?)
— L = peTE L 22
ot! Ot (22)
The second-derivative term scales as
2 a0 gl 2
8 x(yat) :ba—2 8 x(y7t) (23)
aylz ay2

Equating Eqs. (22) and (23) yields z = 2. The scal-
ing exponent « depends on the scaling behavior of the
noise term, and this in turn depends on the problem one
investigates.

If the step is isolated, the step edge should be treated
as a 1D interface. Then, the noise term scales as

0@y, t) = b= 2 iy 1) (24)

Equating Eqgs. (22) and (24) and using z = 2 yields
a=1/2 (25)

The value 1/2 of the exponent « is characteristic of a
random walk.

If the step is inside a train, as on a vicinal surface, then
its fluctuations take on a 2D character. The noise term
now scales as

0y, ) = b= 2 iy ). (26)

Equating Eqs. (22) and (24) and using z = 2 yields
a = 0. Indeed, the amplitude turns out to scale logarith-
mically, w ~ In £, in this case (cf. Ref. [9]).

We are now ready to analyze the scaling behavior of
Egs. (19) and (20). These equations are nonlinear, and
the nonlinearity dominates the scaling.

It can be seen that the nonlinearity comes from the cur-
vature of the step edge (Gibbs-Thomson effect). What
then is the difference between a facet and an island, im-
plied by the title? The difference is indeed subtle. Con-
trary to the boundary step of a facet, an island edge is
free to fluctuate, the amplitude w of its fluctuations be-
ing limited only by the size of the island. Because of the
hindrance of neighboring steps, the fluctuations of a facet
are constrained to smaller amplitudes than those of an
island of comparable size. Note also that an island has
to be small [compared to the capillary length kpT'/f] in
order for the non-linear term to become important. As
shown by Krishnamachari et al. [10], the radius of an
island has to be larger than a minimum value in order
for the island to be stable. We will give more details
elsewhere [11].

The conclusion is that the step edge bordering an is-
land may have larger amplitude fluctuations than the
edge of a facet, the latter being limited by the presence of
the neighboring steps. As a consequence, the noise terms
scale differently for a facet and for an island, giving rise to
different temporal and spatial scaling behaviors. Again w
is the width of a step-edge protrusion of size £. Proceed-
ing as in Hentschel and Family [12], S; ~ vw? + ¢2 is the
length of the step edge. Of course, if the protrusion am-
plitude is small, Sy &~ £ (small amplitude fluctuations),
and Sy =~ w in the opposite case (large amplitude fluctu-
ations). Assuming atoms are added (or subtracted) ran-
domly to the step edge (either by attachment-detachment
or by step-edge diffusion), the relative fluctuations of the
length of the edge are just AS;/S; =~ 1/4/S;. We will
thus assume that the noise term in our stochastic equa-
tions scales as 1/+/S;.

Consider first a facet fluctuating by attachment-
detachment, Eq. (17). In this case, step fluctuations are
limited in amplitude by neighboring steps. Noise scales
then as

7'y, t) = b= 2 iy 1) (27)



Equating the time derivative to the noise term Eq. (27)
yields

z=2a+1. (28)

The nonlinear term 73 scales as

OFN? s [OF?
(ﬁ =b (%) (29)

Equating Eq. (29) to the noise term Eq. (27) yields
da+2=3 (30)
From Egs. (28) and (30) we finally get
a=1/3, (31)
i.e. Ferrari et al.’s result
P (13, (32)

The dynamic scaling of step fluctuations turns out to be
what we computed previously: From Egs. (28) and (32),
e.g., we obtain

alz=p8=1/5, (33)

which, recalling that G(t) ~ t*#, coincides with Eq. (10).
Facet fluctuations driven by step-edge diffusion obey
Eq. (20). The conserved noise term scales as

ey ) = b7/ 2 oy, 1), (34)
The conserved nonlinear term scales now as
5% (o 0% [ OF
— [ Z_}o= b2o<74_ 19
062 (86’) 062 (89) (35)

Equating (34) and (35) yields
da+2=95 (36)

Equating the time derivative to the noise term Eq. (34)
yields

200 =z — 3. (37)
Together Egs. (36) and (37) yield
a=1/3, z=11/3 (38)
and also

B=1/11 (39)

as derived above, Eq. (6).
As mentioned above, KPZ-like or Montreal-like expo-

nents are expected to show up in the fluctuations of a

small island edge, for non-conserved and conserved dy-
namics, respectively. In the latter case, fluctuations are
not hindered, and the noise scales as

n'(@,t") = b=/ 2(9,1). (40)

It is then straightforward to show that the scaling rela-
tions a + z = 2 and 3a = z follow, implying a = 1/2 as
for a random walk [cf. Eq. (25)], as well as

B =1/3. (41)

The prediction of KPZ-like exponents for the fluctua-
tions of the step edge of an island is new. However, it
clearly applies only to small islands for which the curva-
ture is large. Otherwise, the same scaling as for a straight
step is expected.
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