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Abstract

For more than three decades, measurement of terrace width distributions (TWDs) of vicinal crystal surfaces have
been recognized as arguably the best way to determine the dimensionless strength 4 of the elastic repulsion between
steps. For sufficiently strong repulsions, the TWD is expected to be Gaussian, with A varying inversely with the squared
variance. However, there has been a controversy over the proportionality constant. From another perspective the TWD
can be described as a continuous generalized Wigner distribution (CGWD) essentially no more complicated than a
Gaussian but a much better approximation at the few calibration points where exact solutions exist. This paper
combines concisely the experimentally most useful results from several earlier papers on this subject and describes some
advancements that are in progress regarding numerical tests and in using Schrodinger-equation formalism to give
greater understanding of the origin of the CGWD and to give hope of extensions to more general interaction potentials
between steps. There are many implications for future experiments. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Equilibrium thermodynamics and statistical mechanics; Stepped single crystal surfaces; Surface structure, morphology,
roughness, and topography; Surface energy; Vicinal single crystal surfaces

1. Introduction

Quantitative measurement of the widths ¢ of
terraces on vicinal surfaces became possible a de-
cade ago. A principal motivation for examining
the terrace width distribution (TWD) is the reco-
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gnition that it provides arguably the optimal way
to assess the strength of the elastic (and/or dipolar)
repulsion between steps, specifically the coefficient
A of the elastic repulsion per length 4/¢>. Here the
elastic repulsion is taken to be perpendicular to the
mean step direction. All standard analysis proce-
dures make a continuum approximation in the
direction along the steps, called y in “Maryland
notation.” (The perpendicular direction in the ter-
race plane, in the “downstairs’” direction, is de-
noted x.) Hereafter, A appears only in form of a
dimensionless interaction strength
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A= AB(ksT) 2, (1)

where f is the step stiffness.

Experimentally, a TWD is typically character-
ized by its variance o2 and, at least when 4 is not
small, has a shape that can be satisfactorily ap-
proximated by a Gaussian. The Gaussian form can
be readily derived from a mean-field (Gruber—
Mullin (GM)) [1,2] argument, which produces an
expression relating the variance to 4. In recent
years, theories from two new viewpoints have de-
duced different relations of 4 to the variance of the
Gaussian. More recently, we have recognized that
the TWD might better be described using a simple
expression arising from random matrix theory,
called the “generalized Wigner surmise.” As these
results emerged, they have been published in seve-
ral different articles [3-6]. The goal of the present
paper is to collect succinctly the important results,
to provide a global view of progress on this
problem, to preview forthcoming results [7], and to
point out areas where further progress is needed.

The following initial comments indicate our
guiding philosophy: (1) The continuum approxi-
mation noted above is part of the step continuum
approach to vicinal surfaces. In this perspective [§],
the mesoscopic behavior of the step is character-
ized in terms of three parameters: the step stiffness
p, the interaction strength A (or its equivalent),
and a parameter representing the dominant ki-
netics (a kinetic coefficient or diffusion constant
times carrier density). Hence, a knowledge of
A is crucial to a proper description. (2) In this
approximation, because step overhangs are physi-
cally forbidden, the set of step configurations in
2-D space maps into the world lines describing the
evolution of non-crossing particles (spinless ferm-
ions or hard bosons) in 1-D space. This mapping is
what leads to most of the progress in theoretical
understanding. (3) In experiments to date, inves-
tigators have measured the distribution of ter-
race widths ¢. This correlation function in essence
is a many-particle correlation function, since one
measures the probability of finding a pair particles
separated by ¢ with none between them. (It is much
easier for theorists to compute the probability of
finding a pair particles separated by ¢, regardless
of how many particles are between them; note that

this two-particle correlation function should be
equivalent to the many-particle function for step
separations much smaller than the mean separa-
tion (£).)

In experimental systems (cf. Table 2, below), 4
is typically between 0 and 15 [4,5,8]. (While occa-
sional values up to nearly 4000 have been reported
[9] for 4, our belief is that values above about 20—
25 are indicative of anomalous behavior of some
sort.) Exact theoretical information is available
only for 4 =0 and 4 = 2 [10,11], as well as in the
limit 4 — oo [12-14]. Hence, to assess the merits of
various approaches for general 4, we have gene-
rated well-characterized distributions numerically.
We have then compared each of the theoretical
predictions with these calibration standards.

In Section 2 we collect and synthesize the main
results first for the traditional Gaussian analysis of
TWDs and the competing ways of interpreting
their variance in terms of 4, then for the genera-
lized Wigner distribution arising from the theory
of fluctuating systems. Section 3 recounts concisely
several highlights of previous explorations of these
ideas. These include useful results on fitting pro-
cedures, an estimate of when discreteness becomes
important, and a procedure to gauge how many
independent measurements are contained in an
image. Section 4 gives a brief summary of findings
in applications to experimental data, with an em-
phasis on trends. In Section 5 we present previews
of unpublished results concerning new directions
in understanding TWDs with greater insight and
in more complicated situations. Finally we offer
brief conclusions and comments on connections
with other active subjects in condensed matter
physics.

2. Key results

2.1. Gaussian approximations to terrace width
distributions

It is convenient and natural to divide /¢ by its
average value, thus constructing the dimensionless
parameter s = ¢/(¢). Then the TWD, P(s), is not
just normalized but has unit mean. The Gaussian
approximation to the TWD is then written:
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P l_(Sz—JZGl) ] (2)

Gaussians are typically chosen, not just for their
simplicity, but because their use can be justified
readily for strong elastic repulsion between steps.
In this limit the motion of each step tends to be
confined near its mean position, a GM argument
(in which a single step is treated as active and its
two neighbors are fixed at twice (£)) shows that
[1.2]

0'2 :Kx/fil/z, (3)

where the subscript X anticipates that there will
be different proportionality constants in different
approximation schemes, indicated by X. For the
GM case, with interactions only between nearest-
neighbor steps, Kommnny = 1/\/4_ ~ 0.144. For the
GM case, if all steps are allowed to interact with
A/, then 48 in Kgmnn is replaced by 87%/15 =~
52, decreasing the variance by a scant 37%; i.e.,
KGM(all) ~ 0.139.

The Grenoble group [15,16] pointed out re-
cently that the variance in Eq. (3) using Kgy un-
derestimates (for given 4) the true variance. Their
arguments are based on two ideas. First, the
contribution of the entropic repulsion decreases
with increasing energetic repulsion; physically,
large energetic repulsions diminish the chance of
neighboring steps approaching each other, where
the non-crossing condition underlying the entropic
repulsion becomes significant. Thus, for very large
A the entropy of interaction becomes negligible,
so that the only entropy is that of the individual
steps. Secondly, if both steps bounding a terrace
fluctuate independently, then the variance of the
TWD should be the sum of the variances of the
fluctuations of each step, i.e. twice the variance
obtained in the GM picture (in which there is a
single ““active” step between a pair of straight/rigid
neighboring steps). This factor is reduced modestly
by corrections due to the (anti)correlations [17] of
neighboring steps. As a result, in this perspective
the factor of 48 in Kgmnn) should decrease to
14.80, increasing the variance for a particular 4 by
a factor of 1.801.

Including entropic repulsions in an average
way (mnemonically denoted X = EA, the two
underlined letters) [3] rather than discarding them
extends to smaller 4 the range of viability of this
(modified) asymptotic limit. Explicitly, 4 is replaced
in Eq. (3) by an effective interaction strength Ay
obtained from the cubic term of the expansion
of the projected free-energy of a vicinal surface as
a function of misorientation slope [18]. The re-
sulting enhancement is

s 2
Aen E_<\/4/I+ 1+ 1)

1
A 44

—1

~ A
N1+A*1/2+7+-~-. (4)

Explicitly, Eq. (3) becomes o? ~ Kgad'>, with
values for Kga given in Table 1. In this case,
Keanny 18 nearly 10% larger than Kga (- ! Since
this approach represents the limit of minimally
important entropic interactions, presumably this
large ratio is an upper bound, approached for
large 4, while the smaller (37%) ratio of the GM
case is more appropriate for weaker 4. (In the free-
fermion limit (4 = 0), the NN and “all” cases
obviously must be the same!)

The preceding approaches make a continuum
approximation along the “time-like” y-direction
but maintain discrete steps. By making a conti-
nuum approximation in the x-direction as well and
invoking correlation functions from roughening
theory (so denoted X =R), the Saclay group
[17,21,22] arrived at a result of the form of Eq. (3),
again with A replacing A, in which Kg =2 /2 =
0.203.

Since the various Gaussian approaches make
different fundamental approximations, the detailed
relationships between the width of the Gaussian
and A4 differ notably. Even when a TWD can be
well fit by a Gaussian, the estimation of 4 can be
ambiguous.

U A value equivalent to Kga () = 0.247 was found explicitly
in a calculation using the harmonic, lattice approximation of
the Calogero—Sutherland model [14], as well as implicitly in
earlier studies [12,19,20], and seems to be the exact asymptotic
coefficient [13].
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2.2. Symmetry and Wigner approximation to ter-
race width distributions: continuous generalized
Wigner distribution

In considering high-lying energy levels in nuclei,
Wigner long ago proposed that fluctuations in
their spacings in energy should exhibit certain
universal features depending only on the symmetry
— orthogonal, unitary, or symplectic — of the cou-
plings. This work, embedded in random-matrix
theory [10,11], has had profound and widespread
implications for characterizing a wide range of
fluctuation phenomena [11,14] in chaotic systems,
since TWDs are an example of equilibrium fluc-
tuations [3-5]. The explicit connection to this body
of knowledge is based on the description of steps
using the (Calogero [23,24]) Sutherland [25,26]
model of spinless fermions on a large ring (essen-
tially 1-D with periodic boundary conditions) in-
teracting with a repulsion decaying as the inverse
square of separation. Remarkably, the distribution
of interparticle spacings along the ring (i.e. the
TWD) is equivalent to the distribution of the
above-mentioned energy spacings, which can be
solved exactly by random-matrix methods for the
three symmetries. According to the so-called Wig-
ner surmise, these three exact solutions for the dis-
tribution of fluctuations can be approximated

by [3]
Py(s) = ays?exp (— b,s”). (5)

The three symmetries correspond to the values ¢ =
1, 2, or 4, respectively. The constants b, (associa-
ted with unit mean of P(s)) and «, (deriving from
normalization) are

(3 2plet/2
o = Qil and ag = ﬁ . (6)
) %)

This surmise was used to describe the spacings not
of particles in real space but rather of energy levels,
first in nuclei, later in chaotic systems [27] (Fig. 1).
The variance of P,(s) is just
, o+1 1
= -1
7w = b,

(7)

~ D
0—0 20

The three symmetries correspond to the values
o0=1, 2, or 4, respectively. The approximations

P(s)
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

s
25

Fig. 1. P(s) vs. s = £/(¢) for the [sixth approximant [38] to the]
exact “free fermion”, 4 = 0 result (solid curve), the GM ap-
proximation sin?(ns/2) (long-short dashed curve), and the
0 = 2 Wigner surmise result (dotted curve), barely distinguish-
able from the exact result). Offset upward by 0.4 for clarity, a
similar plot of an approximant of the exact result for 4 = 2 [38],
the GM Gaussian approximation (24/72)"* exp(—v/24(s — 1)?)
(long-short dashed curve), and the ¢ =4 Wigner surmise result
(dotted curve).

prove to be outstanding, accurate to better than
+0.004 for the latter two cases (cf., esp., Fig. 4.2a
of Ref. [27]). From the mapping of the step
problem onto the Sutherland Hamiltonian [24,25]
comes the relation

4=0(e—2)/4 ®)

(By inverting Eq. (8) to obtain g as a function of 4,
we can make the important and useful identifica-
tion of ¢ as 2\/@, as given in Eq. (4).)

For the three special values of ¢, Eq. (5) ac-
counts for the cases 4 = —1/4, 0, or 2, respec-
tively. The value 0 corresponds to steps interacting
only via the entropic repulsion, whereas the nega-
tive value corresponds to an attraction, which
cannot be produced by the generic elastic interac-
tion between steps (except perhaps in abnormal
cases in which there are strong in-plane dipoles at
the step edges [18,28]). The third case, 4 =2,
corresponds to a rather moderate repulsion. As
documented in Table 1, the variance of Wigner’s
P,(s) is nearly the same as the exact value. The
Saclay and the GM estimates are a few percent too
low, while the modified Grenoble estimate is much
too high.
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The crucial question is what to do for more
general values of 4. We simply use Eq. (5) for
arbitrary value of ¢ > 2, with o related to 4 by Eq.
(8). For brevity, we refer hereafter to this distri-
bution, for general g, as the continuum generalized
Wigner distribution (CGWD). In contrast to the
three special cases, there are no symmetry argu-
ments to justify the CGWD form. We offer the
following arguments in its support, although ulti-
mately one must rely on numerical checks.

(1) It seems plausible that P,(s) is a decent ap-
proximation of the TWD for values of ¢ between 2
and 4 since the range in parameter space is small.
In any case, the arguments supporting the ap-
proaches leading to any of the Gaussian approxi-
mations fail in this regime.

(2) Extrapolation of the CGWD to values of ¢
greater — possibly much greater — than 4 is of more
concern. For very large 4, the argument underly-
ing the Grenoble viewpoint becomes compelling.
In this limit, the leading term in the expansion
of 62, in Eq. (7) implies that K = 1/4 in Eq. (3),
with Aqg replacing A. Thus, as listed in Table 1, the
CGWD variance approaches the (modified) Gre-
noble estimate nicely, while the Saclay estimate is
notably too small. Since the CGWD does well in
the limit of very large ¢ as well as at o =4, itis a
promising candidate for an interpolation method
between these values.

(3) As a function of s, the CGWD not only has
the Gaussian behavior expected (based on analo-
gies with random walkers) at large step separations
but also reproduces the exact power of s for s < 1:
In this limit, the many-step correlation function
becomes identical to the pair correlation function,
due to the vanishing probability of any other step
lying between the pair of steps separated by s.
Several workers have shown that in this limit,
the pair correlation function is proportional to s¢,
with a prefactor similar (within at least a few
percent for physical values of ¢) to a, [12,20,
29-31].

(4) We can derive the CGWD from a Schro-
dinger-equation approach [6], as discussed below
in Section 5.2. This approach has the further
benefit of allowing one to consider more general
potentials than the asymptotic form of the elastic
repulsion.

2.3. Preliminary numerical results

To test numerically the accuracy of Eq. (5)
we apply standard Monte Carlo methods to the
most elementary model that contains the necessary
physics, the terrace-step—kink (TSK) model. In the
TSK model the only thermal excitations are kinks
of energy e along the steps. The stiffness firgx of an
isolated step — needed to extract A4 from 4 — is
simply 2kg7(a/a%) sinh’(e/2kgT) [32]. Here aj is
the unit spacing along a step edge (), and a, is the
x component of a kink. This model is obviously
discrete in the y as well as the x-directions [2,17,
22,32]. For simplicity we consider a vicinal simple-
cubic lattice with unit lattice constant. Periodic
boundary conditions are imposed in both direc-
tions. To minimize finite-size effects, the length of
the system in the y-direction, L,, should be sub-
stantially larger than the characteristic distance y.o
along y between close approaches of adjacent steps:
(0Y*B/ksT [32]. The choice of the mean spacing
between steps requires particular care. We shall
show below that if (¢) is 4 or smaller, finite size
effects may contaminate the results extracted from
the CGWD (since it is based on a continuum ap-
proximation). On the other hand the minimum
acceptable value of L, increases like (¢)*. Further-
more, too low a temperature results in slow dy-
namics and a high stiffness, making demands on L,
while too high a temperature leads excessive step
wandering and breakdown of the approximations
underlying the viability of the TSK model. We are
preparing a careful discussion of these considera-
tions [7], which includes transfer-matrix calcula-
tions in addition to Monte Carlo simulations.

In Fig. 2 we provide some preliminary results
for the case (¢) = 6 at kgT/e = 0.5, with L, = 200
and the number of steps N = 10. In addition to the
standard Metropolis algorithm [33], we use the
“refusal-free” n-fold way [34,35], especially for
large A (or at low 7). There it is much more
efficient than the Metropolis algorithm, which
requires many attempts before making a change.
The elastic repulsion is here considered only bet-
ween neighboring steps, a common simplification
in Monte Carlo [2,21], with the accordant modest
underestimate of ¢ noted in subsection 2.1. (In
Ref. [7] we will also extend the inverse-square
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0 ~
1 2 5 10 20 50 A

Fig. 2. Plot of the variance ¢* as a function of 4 on a loga-
rithmic scale. Plotted for the CGWD [“Wigner distribu-
tion”] (solid curve), the modified Grenoble (dotted curve) and
Saclay (long dashed curve) Gaussian distributions, and the
GM Gaussian approximation (long-short dashed curve). The
CGWD curve passes essentially directly over the exact value of
the variance at 4 = 2. Monte Carlo data generated using the
Metropolis algorithm are depicted by W’s; data produced with
the n-fold way algorithm are shown as ()’s.

repulsions to further neighbors.) Our algorithm
includes ‘““‘corner exclusion” in addition to stan-
dard edge exclusion, based on some evidence that
it provides the better discrete analogue of the
continuum model; the consequent modest upward
shift of ¢? is in the opposite direction of that due to
restriction to nearest-neighbor step-step repulsions
(see Ref. [7] for more details.).

Along with the numerical results, the various
predictions of the variance are plotted as functions
of the physical variable 4. A logarithmic scale is
used for the horizontal axis so as not to give undue
visual emphasis to larger values of 4 nor to blur
the region of rapid variation for small 4, for which
an exact calibration point exists. The physical
values of 4 range from near 0 up to the mid teens.
A few larger values have been reported [9], but
there are suspicions that more than simple elastic
repulsions are involved. There are relatively few
reports of small but non-zero values of 4. We
suspect that one reason is that any of the Gaussian
approximations manifestly fail in this regime be-
cause the distribution becomes strongly skewed. 2

2 However, the idea of estimating 4 using this skewness [3]
did not prove to be fruitful when confronting experimental data

(4]

Before the recognition of the utility of the Wigner
distribution, one could not deal quantitatively
with small 4 [36].

3. Useful results for interpreting experiments
3.1. Extracting A from variance

If one accepts the CGWD as the optimal way to
analyze TWDs, then Eq. (7) shows how to estimate
the variance from A. However, experimentalists
usually seek the reverse. An excellent estimate [5]
of Ay from the variance can be derived by ex-
panding o3, as given in Eq. (7) in powers of ¢!
This series can then be reverted to give ¢ as a
function of ¢ [5]. Then using Eq. (8) gives the
estimate

1
16

27 35
Z‘F?f ; )

A~ — |2 =7 +
with all four terms needed to provide a good ap-
proximation over the full physical range of 4. The
Gaussian methods described earlier essentially use
just the first term of this expression and adjust the
prefactor. When 4 is not weak (see Ref. [5] for
explicit guidelines.), those who for some reason
prefer not to use Eq. (5) to gauge ¢ (and thence A4)
can extract the variance from a Gaussian fit and
then applying Eq. (9) is a reasonable procedure.
When dealing with tabulations of data analyzed
in the traditional way [8], i.e. using the inverse of
Eq. (3) with X = GM(NN), it is useful to recast
Eq. (9) in a form that indicates the factor by which
the estimate Ay based on CGWD exceeds the tra-
ditional estimate A~GM(NN) (denoted A for brevity):

T 81 35
Aw/Ac [=Aw/Ac] =3 — 216° —|—ZJ4 —&—706.

(10)

As noted parenthetically, Eq. (1) implies that the
ratio of the physical interaction strengths is the
same as that of the dimensionless strengths. Since
A o A we can use this relation in Table 2 to update
tabulated 4’s in Ref. [8] (based on GM).
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Table 2
Compendium of experiments measuring the variances of terrace width distributions of vicinal systems
Vicinal T (K) a2 0 A Aw/Ag Aw (eV A) Experimenters
Pt(110)-(1 x 2) 298 2.2 0.13 - [} =7 Swamy, Bertel [36]
Cu(19, 17, 17) 353 0.122 4.1 22 0.77 0.005 Geisen [5,54]
Si(111) 1173 0.11 3.8 1.7 0.96 0.4 Bermond, Métois [55]
Cu(1,1,13) 348 0.091 4.8 3.0 1.27 0.007 Giesen [5,56]
Cu(11,7,7) 306 0.085 5.1 4 1.37 0.004 Geisen [5,54]
Cu(ll1) 313 0.084 5.0 3.6 1.39 0.004 Geisen [5,54]
Cu(lll) 301 0.073 6.0 6.0 1.58 0.006 Geisen [5,54]
Ag(100) 300 0.073 6.4 6.9 1.58 p="7 P. Wang. . Williams
Cu(l, 1, 19) 320 0.070 6.7 7.9 1.64 0.012 Geisen [5,56]
Si(111)-(7 x7) 1100 0.068 6.4 7.0 1.67 0.7 Williams [57]
Si(111)-(1 x 1)Br 853 0.068 6.4 7.0 1.67 0.1 X.-S. Wang, Williams [58]
Si(111)-Ga 823 0.068 6.6 7.6 1.67 1.8 Fujita. . .Ichikawa [59]
Si(111)-Al /3 1040 0.058 7.6 10.5 1.85 22 Schwennicke. . .Williams [60]
Cu(l, 1, 11) 300 0.053 8.7 15 1.95 0.02 Barbier et al. [21]
Cu(l, 1, 13) 285 0.044 10 20 2.12 0.02 Geisen [5,56]
Pt(111) 900 0.020 24 135 2.59 6 Hahn.. Kern [61]
Si(113) rotated 1200 0.004 124 3.8 x10° 292 (27 +£5) x van Dijken, Zandvliet, Poel-
10? sema [9]

The estimate of A is obtained from the (normalized) variance using Eq. (9), except for the first-row entry, which is based on a direct fit
using the 2-parameter CGWD. Ag is short for Agwmnn), the conventional estimate (cf. Table 7 of Ref. [8]). The column “Aw/As”,
computed using Eq. (10), shows that for most systems the correction factor is of order half the ultimate asymptotic factor. For the
copper entries, Aw is computed from Eq. (1), using /?TSK =2kpT(ay/a’) sinh? (¢/2kgT) and kink energies e of 0.126 and 0.12 for
vicinals to {100} [nominally (1, 1, 2n+ 1)] and {111}, respectively. In other cases, Aw is simply rescaled from Ref. [8]. In two cases,

the values of the stiffness are not readily available.

3.2. Gaussian fits of the generalized Wigner distri-
bution

Since TWDs for strong repulsions are well de-
scribed by Gaussians, one expects — and finds —
that the CGWD should be well approximated by a
Gaussian in this limit. In Ref. [5] a quantitative
assessment is given of how closely the two distri-
butions correspond as a function of ¢. At the cali-
bration point (for which an exact solution exists)
for repulsive interactions (¢ = 4), the relative dif-
ference of the standard deviation of a Gaussian
fitted to P,(s) from the actual standard deviation
of this CGWD (viz. the square root of the second
moment of P,(s) about its mean of unity) is around
1%, and decreases monotonically with increasing
0. For this range (¢ > 4) differences between esti-
mates of 4 obtained from CGWD and the various
Gaussian fit methods are predominantly due to
different philosophies of extracting 4 from o rather
than from differences in the fitting methods.

In contrast to the Gaussian approximations, the
peak of the CGWD must perforce (due to unit

mean) lie below one. Specifically, for 4 = 0 and 2,
the maximum of P,(s) occurs at s = 0.886 and
0.940, respectively, while the limiting value for
strong repulsions is 1 — 0.125//Ay [3]. Formulas
have been derived [5] indicating the errors in fitting
o due to errors in the first or zeroth moment of the
distribution.

3.3. Wigner distribution as a two-parameter fit

In applications to experimental TWDs, the
CGWDs giving the best fits sometimes have first
moments that differ somewhat from the first mo-
ments of the data, especially in cases termed “poor
data” [4,5] which exhibit a small “hump” at large
values of s, beyond the peak near unity (see Sec-
tion 4 below). Moreover, it can be desirable to
determine the scaling length (the “effective mean,”
which equals the first moment for ideal CGWDs)
and the variance in a single fitting procedure rather
than to predetermine this length from the first
moment. This “refined” scaling implies that the
argument of P, should be £/¢, where ¢ denotes the
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characteristic length determined along with ¢ in a
two-parameter least-squares fit of the data to a
CGWD. Since s is still determined from the raw
data as ¢/(¢), the refined scaling translates into
replacing s by s(¢) /¢ in the argument of the distri-
bution. If the integration variable s were similarly
replaced, then the refined scaling would amount
to a redefinition of a dummy variable, and nor-
malization would still be realized. Since the in-
dependent variable is kept as s, we make the
replacement:

Py(s) = ((O/OP,(s(6)/€) 1e. ((O)/OF,(L/1).
(11)

In the specific applications to data in Sections 4.1
and 4.2, (£)/{ tends to be greater than unity, typi-
cally by several percent, but it is unclear whether
this is true for semiconductors or other metals.
In our companion Monte Carlo simulations [7],
where we have greater control of purity and uni-
formity than in experiments, the optimal / is es-
sentially identical to (¢): there is no need for the
added flexibility of the two-parameter fit.

3.4. Effects of lattice discreteness

For actual crystals as well as for the TSK model
used in numerical simulations, the variable s can-
not assume a continuum of values as implicitly
assumed in writing Eqgs. (5) and (6); the only
possible values of ¢ are integer multiples of a, , the
interrow spacing in x. If this restriction is placed
on the values of £ used to generate the arguments s
of Eq. (5), then we have constructed a discrete
generalized Wigner distribution (DGWD). * We
use the same value of b, as in Eq. (6), even though
it is no longer guaranteed to produce unit mean
(or the same variance) as it does for the CGWD.
Since these vicinals are technically rough, there
is no need for (¢) to be an integer multiple of a,
(or otherwise in registry with the terrace plane),

3 Discreteness also introduces the possibility of a roughening
transition from a vicinal to a high-index-facet surface [22,37].
This interesting phenomenon does not seem to play a role in the
physical systems under study here.

though it is common to make this choice in simu-
lations.

Scaling of discrete TWDs for the free-fermion
case (4 = 0) was demonstrated nearly a decade
ago [38]. Inspired thereby, we [5] explored the ef-
fects of discreteness, first choosing values of (¢)
and g to specify a DGWD, then numerically per-
forming two-parameter fits using CGWD formu-
lae (Egs. (5), (6) and (11)) to produce estimates of
0. and (via Eq. (8)) 4..

Among many minor observations, two ma-
jor themes stand out: first, (¢) >4, A, provides
a reasonable estimate of 4 over the range of
physically reasonable dimensionless repulsions.
Furthermore, at fixed values of 4 the error in
A, diminishes as (¢) increases. Second, as the TWD
becomes narrower (i.e. for sufficiently large A
or g), A. becomes a questionable estimate for A;
study of the cases (¢)/a, =2-6 suggests that
this breakdown occurs for ¢ near ((¢)/a,)’. This
threshold corresponds to the squared interstep
spacing being comparable to the variance.

For very large 4, seemingly just above the range
of greatest physical significance, there are more
general indications of the breaking down of the
continuum approximation. For example, for 4 in
the upper teens, there begin to be ambiguities in
the application of Eq. (8) [7]. With periodic
boundary conditions one can still get elementary
excitations that are extended along a step (i.e.
along ), so long as they are “in phase” in x, but
with more realistic conditions (with various sorts
of defects hindering the fluctuations of occasional
steps), the elementary excitation becomes indivi-
dual ““teeth” (kink—antikink pairs separated by
one spacing along p) [39]. Then the idea of step
stiffness also breaks down, and with it the concept
of 4 (see Eq. (1)).

The main implication is that analyses of highly
misoriented vicinal surfaces with CGWD should
be viewed with caution. For example the (11 7) for
close-packed steps on surfaces vicinal to {100}
planes of fcc crystals corresponds to (¢) = 3. For
{111} fcc surfaces, the corresponding Miller in-
dices are (5 3 3) for A steps ({100} microfacets)
and (221) for B steps ({111} microfacets) [40].

The obstacles posed by discreteness are not
vagaries of Wigner distributions. High misorien-
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tation causes similar problems when the mean and
variance of discretized Gaussian TWDs are ana-
lyzed as though they were continuous Gaussian
functions (see Ref. [5] for details).

3.5. Estimate of number of independent measure-
ments

In order to estimate uncertainties in the deter-
mination of the TWD and, ultimately, A, it is im-
portant to have a realistic value of the number of
independent measurements, a number generally
much smaller than the total number of measure-
ments. To make a rough estimate, one can com-
pute the correlation function [41] of the terrace
widths £,(y) between steps n and n + 1:

Z\r n ZL; 1)/'/”’ o) 1n,+"(y +) 2
o = (&)

R

is calculated, where N is the number of terraces
in the image. The correlation function along the
steps decays exponentially as Cy(y) ~ exp(—y/¢,),
where ¢, is proportional to y.n (cf. Egs. (5), (12),
and (26) of Ref. [32]), but can be measured di-
rectly. The correlation function between steps is
more complicated. As noted in Table 1, C;(0) is
negative [10]; |C,(0)| tends to decrease rapidly with
increasing n. Setting ¢ as a small cutoff (¢ = 0.1 is
recommended [5]), we determine y., the smallest
value of y for which |Cy(y)| <c¢ when y > y., and
n., the smallest # so that |C,(0)|<c foralln = n
Then the number of “independent” terrace widths
will be approximately (Z,/y.)(N/n.) rather than
L,N, as might be naively guessed. A rough test
calculation [5] shows that the reduction factor can
be nearly two orders of magnitude, emphasizing
the need for using several STM images to obtain
decent statistics.

4. Applications to experimental terrace width dis-
tributions

In two papers [4,5], we made extensive appli-
cations of the ideas presented above to Giesen’s
voluminous data on vicinal Cu {100} and {111}

surfaces, each at three different misorientations,
and these six cases at various temperatures. In all,
around 30 different cases were considered. In ad-
dition, our ideas were tested successfully on data
for vicinal Pt(1 10), which has a small 4 and so is
not amenable to the Gaussian approaches used
heretofore. The purpose of this section is to sum-
marize the tabulations and discussions in those
papers.

4.1. Copper: moderately strong repulsions

The Cu TWDs can be sorted into three groups
based on a visual assessment of their quality [4,
5]: A “good” TWD changes height essentially
monotonically below the peak and again above it;
there is minimal scatter in the data points. An
“OK” TWD has more scatter, with small dips
and peaks introduced by variations (within the
limits of the general margin of error) of single
data points. A “poor” TWD has a double-peak
or hump at large s; correspondingly, the position
of the (main) peak occurs noticeably below s =
1, even when the peak is fairly narrow and the
skewness minimal. The judgment that this data is
“poor” is based both on the intuition of the ex-
perimenter and on the following argument: A sec-
ond peak at large s would be characteristic of
the onset of faceting; however, “poor” data tends
to occur at high temperatures, whereas faceting
should be more important at low temperatures.

The data fits exhibited several general trends. In
almost all cases, the value of ¢ derived from the
two-parameter fit to a CGWD is smaller than (¢)
given by the mean of the TWD (and the opposite
shift in the exceptional cases is very small); like-
wise, the directly measured values of the variance
are almost always larger than the values obtained
by any of the three fitted curves (cf. Section 7 of
Ref. [5]). The value of ¢ is higher for the two-
parameter CGWD fit than for the single-parame-
ter version, and the associated value of ¢ typically
closer to that deduced from the Gaussian fit. For
“good” data, ¢/(¢) differs from unity by a few
percent, and the change in ¢ and ¢? is negligible.
For “poor” data, £/ (/) is at least twice as far below
unity, and the two-parameter-fit curve is narrower
than the single-parameter-fit curve. The tails or
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humps in the experimental TWDs seem to be re-
sponsible for the systematic discrepancies in the
fits, especially the smaller mean and smaller vari-
ance of the fits relative to the direct measurements.

A remarkable consistency check was obtained
for Cu (1113) [4]. For a dozen values of tempera-
ture, (ksT)’4 was plotted against 7. Since A4 is
expected to be relatively insensitive to thermal
change, Eq. (1) predicts that the plotted curve
should decrease like the stiffness. To within error
bars, such behavior is found, where the stiffness is
computed using an independently determined kink
energy.

4.2. Platinum. weak repulsions

On vicinal Pt(110) at room temperature, the
terraces are (1 x 2) reconstructed, and the steps
correspond to 3-unit “(1 x 3)” segments. Recent
measurements show that the interaction between
their steps is small [36], rendering Gaussian ap-
proximations invalid. Fits to the CGWD yield
0 =2.06 (4 =0.0309) or, when done in the two-
parameter way, ¢ =2.24 (4 =0.134) [5]; in the
latter case, the optimal ¢/(¢) is 91% and the fit
is notably better. The presence of a high-s bulge
indicates this feature is not peculiar to the vicinal
Cu systems of GE.

4.3. Other systems

Additionally, in Table 2 we list the variances
measured for several different experimental sys-
tems, along with the value of 4 deduced from the
CGWD distribution via Eq. (9). The primary goal
of this table is to display general trends in physical
systems rather than to provide a comprehensive
account of experiments to date. As asserted earlier,
values of 4 are generally below the mid-teens. On
the other hand, 4 ranges over orders of magnitude.
If one accepts that the CGWD provides a good
accounting in general for 4 as a function of the
measured variance, then the column labeled A4y /
Ag shows that for most systems, the underestimate
by using the Gruber—Mullins approximation is
roughly half that in the asymptotic limit.

5. New directions
5.1. Multistep distributions

Experiments to date have focused exclusively on
the TWDs, ignoring the possibility of extracting
the distributions of the distances between pairs of
steps having n steps, » = 1,2, or more, between
them. This supplementary data could provide a
valuable consistency check. For the three special
cases ¢ = 1,2,4, these distributions have recently
been investigated theoretically in a different con-
text [42]. If in Eq. (5) we make the redefi-
nition s = (¢; + -+ - + £,41)/(€) (¢ being the terrace
width), then this CGWD expression gives a good
approximation of the multistep distribution, pro-
vided that the power-law exponent g is replaced by
o, =nt it D+2) (13)

2

where ¢ (or, equivalently, g,) is the exponent for
the [single] TWD. The new constant b, is deter-
mined by the condition that the first moment of
P,(n,s) is n + 1; besides replacing ¢ by ¢, in the I'-
function arguments in Eq. (6), a factor of n+ 1
must be included in the denominator. The nor-
malization constant g, can be obtained simply by
using b, and g, in the expression for g, in Eq. (6).
As for TWDs, these results can be taken to apply
to general values of g.

Preliminary checks using Monte Carlo simula-
tions of the TSK model, described above, find fine
agreement with this multistep CGWD for the
double-terrace-width (z = 1) case, but just ade-
quate agreement for the case n = 2. Moreover,
Table 1 shows that the variance of the sum over
the widths of two adjacent terraces predicted by
P,(1,s) does not display the spectacular agreement
with exact results seen for simple TWDs, viz.
n = 0. We suspect that the agreement will further
degrade as more widths are included (higher n’s
considered), due to weakness in the main assump-
tion in the derivation of Eq. (12): that the condi-
tional probability density of occurrence of a step at
a given distance from a fixed step, with n steps in
between, can be expressed in terms of the (n + 1)th
power of the corresponding probability for this
distance with no intermediate steps.
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5.2. Continuous generalized Wigner distribution and
beyond via Schrodinger equations

As presented, the CGWD is formally justified
only for the three special values of g. Accordingly,
we have developed arguments using Schrodinger
equations to show that it can be expected to have
the more general validity assumed above [6]. The
formalism also allows treatment of more general
potentials than the inverse-square term character-
izing the long-range behavior of elastic interac-
tions. Of particular physical importance are the
higher-order terms that enter at smaller terrace
widths and an oscillatory interaction mediated by
electronic surface states.

We begin by defining a wave function ,(s)
such that ;g (s) = P,(s). Differentiating twice and
using Eq. (8), we find

2
S 9) + [~ bylo + 1) + 827 v ls) = 0.
(14)

The term V(s) = As 2 is the dimensionless step
interaction. The term U(s) = b2s* is a dimension-
less projected free energy representing interactions
with all the other steps not explicitly considered.
Clearly Eq. (14) can be understood as a Schro-
dinger equation, with y,(s) the (real) ground state
wave function and with b,(¢ +1). (To consider
perturbations from pure inverse square interac-
tions, one can generate all the eigenfunctions ¥ ,(s)
of Eq. (14), which can be expressed as special
functions (see Ref. [6] for details).) In this frame-
work, by substituting more general potentials for
As™? in Eq. (14) and solving for the ground-state
wavefunction, we can contend analytically with
more complicated potentials. Successful tests are
described in Ref. [6].

It is tantalyzing to invert the preceding ap-
proach to deduce the underlying interaction po-
tential from the experimental TWD. Since naive
implementations prove to be dangerous, the re-
commended procedure [6] requires considerable
computation: Initially, a parametric approximant
of the unknown potential should be constructed
using all available information; crude initial esti-
mates must be made of the values of the parame-
ters. If the tail of the experimental TWD is

Gaussian, a monotonically decaying 7 (s) and a
quadratic U(s) are anticipated. (If the tail is ex-
ponential, U(s) is linear in s, and V(s) can be
nonmonotonic.) Then the choice of parameters
is optimized by iteratively minimizing the least-
squares difference of the experimental TWD and
o (s)|*, where y,(s) is the numerical solution of
Eq. (14) or its equivalent. In a test of this proce-
dure, for very large or very small s the derived
potential ¥ (s) was significantly different from the
potential used to generate the “‘experimental”
TWD, but they were quite close to each other over
the range where the TWD is large, 0.5 <s<1.5.
Hence, to improve estimates of the potential over a
large range of ¢, one should fit TWDs measured
for several different misorientations (and, if pos-
sible, for different temperatures).

Applications to vicinal Cu surfaces is in pro-
gress [43]. Preliminary fits can account for secon-
dary humps mentioned in Section 4 by invoking
nonmonotonically decaying interactions and ex-
ponentially decaying tails.

5.3. Oscillatory interactions mediated by surface
electronic states

The preceding subsection began with allusions
to oscillatory electronic indirect interactions be-
tween steps [44]. When mediated by bulk elec-
tronic states, such interactions between atoms on
surfaces decay rapidly with separation, but if me-
diated by surface states, the envelope of the oscil-
latory interaction has the same inverse-square
behavior as the monotonic elastic, dipolar, and
entropic repulsions:

072 cos(2kel + ), (15)

where ki is the wave vector of the surface state at
the Fermi level *and ¢ is a phase shift associated
with scattering from the pair of steps.

Consistent behavior was seen in measure-
ments of TWDs on vicinal Ag(1 10), including the

4 For non-circular states, the value of the wave vector in Eq.
(15) is that along the Fermi “surface” at which the electron
velocity is in the x direction; see Ref. [44] for details.
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presence of a surface state in the appropriate place
in the surface Brillouin zone [45]. However, the ev-
idence for the influence of surface states was not
compelling due to the large number of fitting pa-
rameters compared to the amount of experimental
data.

Convincing evidence of long-range, surface-
state mediated interactions between Cu atoms on
Cu{111} has just appeared [46]. It is tempting to
invoke these interactions (which could even decay
as ¢-3/* due to the isotropy of the state [47]) as the
source of the large-s humps in “poor’” data on this
surface. However, this idea does not explain simi-
lar “poor” data on Cu{l100}, where the image
states are far from the Fermi energy.

The energy of the long-range interaction mea-
sured for Cu atoms on Cu{l 11} is notably weak
[46]: the deepest minimum corresponds to an at-
traction of 0.4 meV at 27 A. However, the con-
sequent prefactor of the expression in Eq. (15)
is 0.3 eV A?, which is comparable to the values
of A listed in Table 2 (if some length of order an
atomic spacing is used to adjust the units).

The transport properties of fractional metal
overlayers have received close scrutiny in recent
years [48]. Since the metallic surface states can be
tuned in these systems, it is intriguing to speculate
about engineering morphology using such step
interactions.

6. Concluding remarks

The CGWD of Eq. (2) is an excellent interpo-
lation between the established points at 4 = 0 and
A =2, and approaches the correct limit for very
large A. Qualitatively it certainly captures the
global behavior of variance as a function of 4, and
numerical evidence suggests that it interpolates
well in the regime of large 4. While the shape of
the TWD does approach a Gaussian in this regime
of moderately strong 4, the CGWD (via Eq. (9)
provides arguably the best way to extract 4 from
the variance of the TWD. Of the several ways to
extract 4 from fits to a Gaussian, the Saclay (R)
scheme is better for moderate 4 while the Greno-
ble (EA(all)) scheme is better for stronger A.

The difficulty of estimating accurately the value
A from the TWD, especially from its variance or
width, is exacerbated by the extreme sensitivity of
o2 to A: fractional errors in the deduced widths of
TWDs are magnified by a factor of 4 in 4. For
many applications, the relative size of the step—
step repulsions between different systems is more
important than their absolute sizes; thus, it is cru-
cial that the analysis of 4 be done using the same
approach. (Likewise, experimentalists should state
clearly the raw (dimensionless) width, ¢ — or the
value of ¢ in a fit to the CGWD.)

Often the extracted value is rationalized by
misapplying the celebrated result of Marchenko
and Parshin [49] relating the step repulsions to
surface stress [49]. That formula assumes an elas-
tically isotropic substrate and asymptotically large
separations. Usually one, often both, of these
conditions do not apply, and there is no well-pre-
scribed procedure to compute corrections. Further-
more, the in-plane component of the stress dipole
is not measurable and is often neglected. Thus,
establishing quantitative connections between de-
duced 4 and surface stresses is (even) harder than
extracting reliable quantitative estimates of 4.

Another worrisome assumption is that the step
interactions are “‘instantaneous” in the 1+ 1-D
perspective (i.e. occur only between points on steps
at the same coordinate along the mean step di-
rection y) becomes particularly questionable when
steps are close together and have large wandering
fluctuations with short wavelengths. In the latter
situation, the description of single-step fluctua-
tions in terms of stiffness may also break down.

In systems in which surface states near the
Fermi energy play an active role, there should be
notable effects on the TWD and the consequent
surface morphology. Multistep correlations have
received little attention, even though data is read-
ily available in experiments measuring TWDs.
Moreover, it is almost as easy to tabulate the step—
step pair correlation function as the TWD, but
easier to decipher theoretically. We have provided
several hints and warnings, hopefully useful, for
experimentalists studying spacings on vicinals.

Most theoretical activity dealing with random
fluctuations in complex systems has focused on the
the three special values of ¢, and occasionally on
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interpolations between them. This corresponds to
weak A. The few exceptions focus on pair corre-
lations and are rather technical [12]. More explicit
numerical investigations in this regime would be
illuminating. Moreover, there remains the mystery
of why the CGWD works so well when there is no
fundamental symmetry argument to justify it.

The Calogero—Sutherland model has been termed
an ideal [14] Luttinger liquid [50,51]. Connections
have been made to edge states in the quantum Hall
effect [52], non-linear waves in a stratified fluid
[53], and a host of more abstract problems. Most
of these systems exhibit corrections, making it
difficult to make detailed connections with the
theory [14]. It will be interesting to see whether
similar problems involving corrections to the 4 /¢
much discussed above confound a similar effort for
vicinal surfaces. Furthermore, many of the inter-
esting properties involve dynamic correlations,
which for vicinal surfaces translates to correlations
between displacements on (different) steps at dif-
ferent values of y. In any case, however, these
connections between the properties of vicinal sur-
faces and other active fields add to the fascination
of the subject.

Note added in proof, re Fig. 2

The Metropolis estimates of ¢° in this prelimi-
nary figure are somewhat too small due to exces-
sive weighting of data near the initial sharp
distribution before equilibration. The correct val-
ues, depicted and discussed in Ref. [7], are in much
better agreement with the n-fold way estimates and
the CGWD curve.
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