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Abstract

Quantitative measurement of the equilibrium terrace-width distribution of vicinal surfaces enables detailed
investigation of step–step interactions. Using results from random-matrix theory, we point out simple analytical
expressions that assist in this process, improving considerably over standard techniques and allowing assessment of
weak repulsions, heretofore inaccessible except by indirect methods. This approach suggests new properties for
experimentalists to measure and, by calibration with exact results, provides insights into controversies about assessing
the interaction strength. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Equilibrium thermodynamics and statistical mechanics; Stepped single crystal surfaces; Surface structure, morphology,
roughness, and topography; Surface energy; Vicinal single crystal surfaces

On vicinal (stepped) surfaces, terrace widths s kinetics and non-equilibrium responses of surfaces,
can now be measured quantitatively using several such as step bunching [3,4]. Analyses typically rely
different surface-sensitive real-space imaging tech- on the mapping of the associated set of configura-
niques [1,2]. The resulting equilibrium terrace- tions in this two-dimensional problem onto the
width distribution (TWD) P(s) – where s is the ‘world lines’ (plots of the evolution) of non-cross-
(dimensionless) ratio of s to its average value s� – ing particles, thus analogous to fermions in 1+1
provides valuable information about the inter- dimensions: the along-step ŷ direction is taken to
action between steps. These interactions, in addi- be time-like. (Alternatively, the problem in 1+1D
tion to the step stiffness, are crucial to determining can be recast in terms of hard bosons rather than
the morphology of these surfaces [1,2]. They are fermions [5].) A crucial, viable assumption in this
also vital to understanding phenomena involving mapping is that the interactions between the fermi-

ons are instantaneous, i.e. only for the same value
of y on the interacting steps.
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to a strongly temperature T-dependent entropic1 Present address: Lab. Spectro. Phys., UJF (CNRS),
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cause neighboring steps to approach each other. viously been used with remarkable success to
Since a fluctuation is more likely to lead to a unravel specific thorny questions [12], we show
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crossing and so be forbidden when steps are closer, here the general applicability of the results of
the interaction is repulsive, decaying like s−2, as is RMT. Other results from random-matrix theory
well known in many fields of physics, such as also have implications for vicinal surfaces.
polymers [6 ] (or vortices) in two-dimensional sys- The simplest case of A=0 is the much-studied
tems or domain walls in magnetic (or ferroelectric) case of free fermions (FFs). In the venerable
materials. In general, the step–step interaction Gruber–Mullins (GM) approximation [7], one
energy per length – due to elastic or possibly step is allowed to wander between two fixed
dipolar coupling – has a similar decay, straight steps at their mean positions. This situa-
U(s)=A/s2, but is relatively insensitive to T. (Note tion is equivalent to the elementary quantum prob-
that A has dimensions of energy×length.) A key lem of a particle in a box of length 2s�. In this
result of the mapping to fermions is that P(s) approximation, the TWD is then given by the
depends only on the dimensionless ratio familiar ground-state density: P(s)=sin2(ps/2).

Sutherland [13–15] (see also Calogero [16–18])Ã¬Ab̃/(kBT )2, (1)
showed that the full many-fermion problem can

where b̃ is the step stiffness (with units be solved exactly, and a sequence of analytic
energy/length), and not on any of the three compo- approximants – comprised of progressively length-
nents separately. ier combinations of elementary functions – were

Fits to data have relied on a simple ‘single- found [19] to provide an arbitrarily accurate
particle’ or mean-field-like analytic approximation explicit description. However, few experimentalists
[7] – which ipso facto forbids separations greater have made use of this result; most that did simply
than 2s� – or, for more detail, trial-and-error took numerical tabulations (or tracings) of P(s)
Monte Carlo simulations. As recently as the last rather than regenerating it from the formal
few months, two papers have lamented the lack of expressions.
a simple analytic expression for P(s), even in the Noting the initial quadratic rise and the eventual
simplest case of A=0 [8,9]. This Letter draws Gaussian decay of P(s), Ibach [20,21] ingeniously
results from random-matrix theory (RMT) devised an expression essentially equivalent to
[10,11], which has been used with remarkable
success to describe a broad variety of fluctuation
phenomena. Although most of those cases involve P

2
(s)=

32

p2
s2 exp A− 4

p
s2B. (2)

the distribution of the spacings between adjacent
energy levels, in several cases the fluctuations

(The numerical constants are readily determinedinvolved spatial variables, and here we consider
from the two conditions on P(s): that it is normal-the spacings between adjacent step positions. We
ized and has unit mean.) As is evident from Fig. 1,find that a simple, single-parameter analytic
this expression, in comparison with the GMexpression accounts well for the shape of the
expression, is a far superior approximation of theTWD. Specifically, the so-called Wigner surmise
exact result, while still being a simple combinationprovides a superb approximation to the TWD for
of elementary functions. The largest differencethe three values of Ã for which the problem can
between it and the exact result is about 0.005 nearbe solved exactly. Furthermore, there is a natural,
the peak, and of order 1% over the region wheresimple interpolation expression between these
it is significant. Eq. (2) is just the Wigner surmisevalues that allows direct deduction of Ã in the
for the distribution of levels of a Gaussian unitaryneighborhood of these values, i.e. for weak values
ensemble (GUE) in random matrix theory. Asof Ã where neither single-particle approximation
listed in Table 1, its variance is barely 1% less thanis viable. This generalized Wigner surmise (GWS)
the exact value (versus over 27% for GM). It alsoshould provide an excellent ansatz for (approxi-

mate) analytic work. Although RMT has pre- peaks below the mean, close to the exact position,



enough, so that the tail of this Gaussian P(s)
outside 0<s<2 is negligible. Moreover, P(s)
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should be large only for |s−1|%1, where the
quadratic expansion of the potential of the neigh-
boring steps is valid. If interactions with only
adjacent (NN for nearest neighbor in Table 1)
steps are considered, then s−2=E48Ã�4E6,
where the specific value of s is for Ã4¬2. If one
considers an infinite array of steps – all but the
single active step straight and fixed at spacings of
s� – then the prefactor of 48 is replaced by
8p4/15#52; the corresponding row is labeled
‘Gruber–Mullins (all )’ in the Table 1. This latterFig. 1. P(s) versus s¬s/s� for the (sixth approximant [19] to
approximation is more appropriate for comparisonthe) exact result (solid curve), the Gruber–Mullins approxima-

tion ( long–short dashed curve), and the Wigner surmise result with the exact and the Wigner-surmise results,
(broad gray dashed curve; if plotted at normal thickness, it since those assume interactions with all fermions.
would barely be distinguishable from the exact result). Again, Table 1 shows that the Wigner surmise

provides a better estimate of the variance (too
small by 1/2%) than does GM (too small by aboutand has nearly the same skewness (which vanishes
7%) and of the kurtosis; it also includes skewness,ipso facto for GM).
which vanishes intrinsically without increasingSutherland [13–15] (see also Calogero [16–18])
algebraic complexity.also showed that the TWD could also be found

Several different expressions have been pro-exactly for two special cases of non-zero Ã,
posed to interpolate between the three cases ofÃ4=2 and Ã

1
=−1

4
, corresponding to Gaussian

Eqs. (2) and (3) [11,27,28]. The simplest of thesesymplectic and orthogonal ensembles respectively.
is [11]Again one could generate a sequence of explicit

analytic approximants, following Dyson’s Pr(s)=arsr exp(−brs2), (5)
prescription [25]. However, for these cases there

where the constants br and ar, determined by theare also Wigner surmises:
unit-mean and normalization conditions [11]
respectively, are given in terms of C functions:P

4
(s)=A64

9pB3 s4 exp A− 64

9p
s2B ;

P
1
(s)=

p

2
s exp A−p

4
s2B . (3)

br=CC Ar+2

2 B
C Ar+1

2 BD2 ; ar=
2b(r+1)/2r

C Ar+1

2 B
. (6)

Since steps on most vicinal surfaces have a repul-
sive interaction, the case Ã4=2 is of much greater
physical interest for vicinal surfaces (in contrast

Thus, Pr(s) contains just the single adjustableto most other applications of random matrix
parameter r.2 This variable can be simply relatedtheory [11]). For strongly repulsive interactions,
to the physical quantity of interest, the scaledthe GM approach leads to solving the problem of

a particle in a 1D parabolic potential [26 ], with
the outcome that

2 We denote this parameter by r rather than the conventional
choice of b used in random-matrix theory to avoid possibleP(s)=

1

sE2p
exp C− (s−1)2

2s2 D . (4)
confusion with the step energy per length and with b̃ the step
stiffness. The analogy with inverse thermal energy [10,51,52],
since a shift is involved, is not especially helpful in this problem.The potential must be strong enough, i.e. s small
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Table 1
Tabulation of various measurable properties of terrace-width distributions P(s) (where s is the terrace width normalized by its average
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value) based on exact results at the three soluble values of the dimensionless interaction strength Ã, the corresponding Wigner-surmise
expression, and the ‘single-fluctuating-step’ (Gruber–Mullins) approximationa

Range of elastic interactions
Wigner-surmise interpolation range CCA

Property Case r=0 r=1 r=2 r=4 r�2
‘Random’ Attractive Non-interact Repulsive Extreme rpl.

Ã=(r−2)r/4 Ã=0− Ã=−1
4

Ã=0 Ã=2 Ã=r2/4

Symmetry assoc. with Sutherland H [Poisson] orthogonal unitary symplectic [SHO+phonons]
Special point character NR free bosons KT free fermions self-dual

Variance s2=m
2
=m

2
∞−1 Exact 1 0.286 0.180 0.105 0+

Wigner surmise 0.5708 0.2732 0.1781 0.1045 0.500r−1
Gruber–Mullins (all ) – – 0.1307 0.0981 0.278r−1
Gruber–Mullins (NN) – – 0.1307 0.1021 0.289r−1

Ã=Alternative estimate PIM (all ) [8,19] – – – 0.1747 0.495r−1
of s2

PIM (NN) [8,19] – – – 0.1838 0.520r−1
Barbier et al.[23] – – 0.203 0.101 0.405r−1

Neighboring terraces Exact covb (s1, s2) 0 −0.27 −0.31 −0.34
Exact (s1+s2−2)2� 2 0.416 0.248 0.138 0+

Peak position smax Exact 0 0.77 0.8840 0.94− 1−
Wigner surmise 0 0.7979 0.8862 0.9400 1−0.250r−1
Gruber–Mullins – – 1 1 1

Skewness Exact 2 0.4972
m
3
/s3=(m

3
∞−1)/s3−3/s

Wigner surmise 0.9953 0.6311 0.4857 0.3542 0.707r−1/2
Gruber–Mullins (NN) – – 0 0 0

Kurtosis m4/s4 Approx. (GM, PIM) 9 3.1
Wigner surmise 3.8691 3.2451 3.1082 3.0370 3+0.750r−2
Gruber–Mullins (NN) – – 2.4062 3 3

a As suggested by the arrow, the generalized Wigner Pr(s) should be viable somewhat – perhaps well beyond the interpolation
range. For completeness, also included are: (1) the symmetries of the generic ensembles of random matrices, the Sutherland random
matrices (and their underlying Hamiltonian matrices) [10,11], leading to the three non-trivial cases (interactions) for which the
Sutherland Hamiltonian can consequently be solved exactly [13,14] – and for which the Wigner surmises are known to be excellent
approximations; (2) the character of the solutions at the selected values of r when viewed as special points along lines of Tomonaga–
Luttinger-liquid critical points [12,24]. (Key to abbreviations: NR[non-relativistic; KT[Kosterlitz–Thouless; SHO[simple har-
monic oscillator, i.e. uniformly spaced levels.) The extreme case r=0, for which exact results are trivial, is included to dramatize
trends in r (although it lies on a different branch of solutions from the other tabulated values of r [12]): as r increases, the TWD
becomes narrower, more symmetric, and more nearly Gaussian. Anticorrelations of neighboring terrace-width fluctuations increase.
For the three exactly-solvable (non-trivial ) cases, the Wigner surmise provides an excellent approximation, far better than any
alternative.

b
cov(s

1
, s
2
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1
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2
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2
�)2�]1/2

=s−2(s
1
s
2
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1
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2
−2)2�/2s2.

For Gruber-Mullins the covariance of neighboring terrace-width fluctuations is ipso facto −1. With the formalism of Pierre-Louis
and coworkers [8,22] we find −1

3
(NN) or −0.36… (all ); with that of Barbier et al. [23], we find −0.33. In all these cases, the

covariance is independent of r.
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strength of the step–step interaction

r=1+E1+4Ã (¬2Ã1/2eff ); Ã=(r−2)r/4 (7)

by inspection of the Sutherland Hamiltonian [13–
18]. (The idea of an effective interaction strength
Ãeff – identical to l in Sutherland’s notation [12–
15] – which takes into account the entropic repul-
sion, at least in an average way, will prove useful
below.) To state the obvious, Eq. (5) provides a
convenient, nearly universal form for the scaled

Fig. 2. Second moment (about the origin) m
2
∞ of P(s) versus ÃTWD that should prove useful for analytical

(solid curve), to illustrate how measurements of this momentmodeling.
or the variance (m

2
∞−1) of the TWD can be used to extract theAlthough perhaps it is simplest and best to

strength of the step–step repulsion. In this and the subsequent
obtain r as the value optimizing the fit of TWD figures, the tick marks across the top indicate the values of r
data by Eq. (6) [29], one can also focus on several corresponding [see Eq. (7)] to the values of Ã along the bottom.

The three circles indicate the exact results at the three specialreadily accessible properties of Pr(s). The second
values of Ã for which they can be found. The dashed curvesmoment of Pr(s) about the origin is
are the GM Gaussian approximations of Eq. (4), which clearly
fail for small values of Ã. The short dashes give the ‘NN’ case
in which interactions with nearest-neighbor steps are included;m

2
∞¬1+s2=

r+1

2br
. (8)

the long dashes show the ‘all’ case. The long-dash, short-dash
curve gives the no-entropic-repulsion approximation of Ihle

The variance s2, of course, corresponds to the et al. [8] when (energetic) repulsions between all steps are
included. The double long, double short curve shows the predic-squared (half ) Gaussian width of the TWD, typi-
tion of Barbier et al. [23] given in Eq. (9).cally measured feature. (This width is typically

measured with respect to the position smax of the
maximum of the TWD. For Pr(s), smax is approximations are not helpful. Recalling the
(r/2br)1/2<1. In contrast, s2 is the second moment definition of Ã in Eq. (1), we expect that Ã should
about the mean, which is unity. When the GM decrease strongly with T, since the energetic
Gaussian approximation is reasonable, this prob- parameter is relatively independent of T and b̃
lem does not appear to be significant [29].) For decreases weakly with T. Thus, with the increased
unreconstructed Si(111) surfaces at high temper- availability of high-T STMs, more measurements
atures, s2 is 0.11 [30], corresponding to Ã#7

4
<2, with small Ã are likely to appear.

Since the third moment of Pr(s) about theso that the GWS should be a better approximation
than the GM Gaussian. For reconstructed or origin m

3
∞=(r+2)/2br , the skewness m3/s3 [viz.

(m
3
∞−1)/s3−3/s, since m3 is the third momentadsorbed Si(111) surfaces at lower temperatures,

the variance is about 0.07 [31], corresponding to about the mean of unity] of the GWS can likewise
be written as a function of Ã. (See Fig. 3.) TheÃ#4. For a wide range of vicinal noble metals,

especially Cu(100) and Cu(111), Giesen and comparable skewness of experimental data emerges
only after moderate effort. A more direct way [32]coworkers [21,29] have found variances in the

range 0.04–0.1. There are examples of materials to measure the asymmetry, with comparable mag-
nitude, is the following: denote by smax the valuewith narrower (dimensionless) widths. There are

no reported Gaussian fits, to our knowledge, with of s for which the TWD – or a smooth fit to it in
an actual experiment – has its maximum; locatebroader (relative) widths. A likely reason is that

these are obviously skewed (see just below) and so the two points s> and s< of the (smoothed) TWD,
above and below smax respectively, at half thedescribed in terms of FFs, since a Gaussian fit

looks inappropriate. As illustrated manifestly in height P(smax) of its maximum. Then it is a quick
matter to find the ratio of the difference of theFig. 2, we now have a way to gauge Ã even for

small (but non-zero) values, for which the GM distances of these two points from smax to
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the average of these distances, i.e.
[(s>−smax)−(smax−s<)]/[(s>−s<)/2]. For the
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GWS approximation Pr(s), this ratio must be
determined numerically from Eq. (5). As
illustrated in Fig. 3, this computed ratio –
multiplied by 5

2
– provides an excellent, i.e. to

within about 1%, approximation of the skewness
for 1≤Ã≤6. For larger values of Ã, the skewness
is small and provides little useful information. For
Ã≤1 the asymmetry ratio can be approximated to
within 1% by empirically generated expressions,3 Fig. 3. Plots of the asymmetry of the TWD, estimated from
also included (with the rescaling of 5

2
) in Fig. 3. Pr(s). Solid curve: the skewness m3/s3, computed from the ana-

lytical results for the third and second moments of Pr(s) aboutFinally, there are other analytical expressions
the origin, m

3
∞ and m

2
∞ respectively. Long-dashed curve: the nor-derivable from GWS that may serve as approxi-

malized asymmetry; the difference of the ‘half ’-widths at half
mate consistency checks in fits of data.4 maximum divided by their average, as described in the text,

Higher moments can also be predicted analyti- multiplied by 5
2

so as to be comparable with the skewness in
size. For small values of Ã the skewness does not provide ancally from the GWS, but are unlikely to be of
analytical way to describe this experimentally useful curve, somuch help in experimental analyses. It is note-
two empirically produced analytical expressions, described inworthy that the kurtosis of the GWS and of the
the text, are included (moderately short-dashed curve applicable

exact solutions are slowly decreasing functions of for −0.1≤Ã≤1 and shortest-dashed curve for −0.24≤
r, slightly above the value of 3 characteristic of Ã≤0.1), both of which are extended beyond their range of

validity for improved visibility. Note well that both the Gruber–Gaussian approximations (including the alterna-
Mullins approximations and the newer alternative approxim-tives to Gruber–Mullins discussed below). For the
ations [8,22,23,35,38] have zero asymmetry.‘FF’ case, the kurtosis is decidedly smaller than 3.

There are some alternative approaches to
The key remaining question is how good anextracting r. Lässig [12] proposed that r be

approximation the GWS is when it is used toobtained as the exponent in a fit of the initial
extrapolate beyond the regime of weak Ã (of either(small s) rise of experimental data to a power-law
sign) to moderately repulsive Ã. From Eq. (7) weform. Since P(s) is small for small s, the relative
see that the exactly soluble case Ã=−1

4
is in factuncertainty in the data in this regime is large; thus,

the smallest value of Ã for which a real solutionthis tactic is unlikely to produce satisfactory
for r exists. As r decreases below unity, theresults. (Furthermore, the exact value of the pre-
associated value of Ã increases. The case r=0,factor differs somewhat from ar [19].) Instead one
which corresponds to straight steps placed atcan fit the position smax of the peak of (smoothed)
random so as to achieve the correct average misori-data – or the point of inflection of integrated data.
entation, can be solved trivially and has theThen the result in the GWS result that
‘Poisson’ distribution P[r=0](s)=exp(−s). Thissmax=(r/2br)1/2 can be invoked. At first glance this
case is included in Table 1 for completeness [33]approach seems to eliminate the need to find the
and because of its simplicity rather than for anynormalization constant, but ar is at least implicitly
physical significance. It does highlight that, in thisneeded to find s� (to convert the independent
limit, the GWS is a poor approximation, evenvariable from s to s).
qualitatively.

What happens at r>4 is more controversial3 Explicitly, 0.3−0.135(Ã+1
4
)1/4 for −0.1≤Ã≤1 and

0.302−0.154(Ã+1
4
)1/3 for −0.24≤Ã≤0.1. (and important). Recently Pierre-Louis and

4 From inspection of GWS moments about the origin, we see Misbah [22] and Ihle et al. [8] (hereafter referred
m
3
∞=2m

2
∞−s2max. From Eq. (5) we get the remarkable result

to collectively as PIM) suggested that the GMPr+(smax)=−Pr◊(smax)/smax; comparable experimental num-
Gaussian expression of Eq. (4) underestimates thebers can be obtained from a polynomial fit to data near the

peak. variance by a factor 4E2/p#1.801 for the NN



predicted factor of about 1.8. However, there is
no concrete evidence that the GWS is a good
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case. (The proportionality constant is ~5%
smaller for the ‘all’ case: (4E3/p)[c+
ln(2p)−ci(2p)]#1.711.) The essence of their approximation in this limit.
approach is the neglect of entropic repulsion: the Further evidence favoring the alternative pic-
steps are kept apart strictly by the energetic repul- tures of PIM and of Barbier et al. in this limit is
sion, and the entropic contribution to the free provided by the covariance of the steps the expecta-
energy is due to the (Gaussian) wandering of the tion of the product of their differences from their
steps, viewed as isolated entities. Then the variance mean values (unity) normalized by their variance.
of the terrace width should be notably larger than As listed in Table 1, the covariance is negative: a
that of one of its bounding steps (which is in fluctuation in the width of a terrace above s�
essence how the variance is computed in the tends to be compensated by a decrease in the width
Gruber–Mullins picture). Since the fraction of the of its neighbor. Such a phenomenon is tacitly
step repulsion that is entropic becomes vanishingly assumed in the GM approximations, which ipso
small with increasing Ã, this viewpoint might be facto take the covariance to be −1, independent
expected to become appropriate as Ã�2.5 Similar of the value of r. Although perhaps the negative
objections to the GM Gaussian approach had been covariance accounts partially for the relative suc-
lodged earlier [23,35]; in particular, Barbier et al. cess of the GM viewpoint, the great overestimation
[23] argued that of this effect sounds a note of caution in weighing

its quantitative validity. At the other extreme is(s
1
+s

2
+…+s

m
−m)2�

the case of independently fluctuating (straight)
steps: the variance of the sum of the widths of=

2

p2r
[ ln(m)+2] [ s2=

4

p2r
, (9)

neighboring terraces is twice that of a single step,
making the covariance vanish. This does occur forwhere s1+s2+…+s

m
denotes the total width of m

the special ‘Poisson’ case r=0. The PIM modeladjacent terraces. This result follows from the
[8, 9] also leads to a r-independent covariance,general form they present for the correlation func-
but with the more plausible value of −0.36… (ortion of a rough phase, in the limit that step
−1

3
when only NN steps are considered).wandering is small compared with mean spacing,

Inspection of Table 1 shows that this value is closeinvoking a coarse-grained (along x̂ as well as ŷ)
to the apparent limiting value of the covariancesfree energy used fruitfully in earlier work on
of the exactly soluble cases, extrapolated to infiniteroughening [36 ].
repulsion. On the other hand, these three covari-The actual limit of r�2 has been well charac-
ances are smaller in magnitude than this limitingterized: the TWD approaches the functional form
value, consistent with the poor estimates of thed(s−1) characteristic of a perfect staircase (with
variance for those interactions. Consequent to Eq.uniform spacings, analogous to the energy spacings
(9), the model of Barbier et al. gives a covarianceof a harmonic oscillator [33]). However, we are
of [( ln 2)/4]−1

2
#−0.327, also r-independent andnot aware of any exact information on how this

in not quite so good agreement with the seeminglimit is approached. As documented in Table 1,
asymptotic exact value as the PIM value.the lowest-order limiting behavior (in r−1) of the

Table 1 provides decisive evidence that PIM’svariance of the PIM analysis is comparable with
objections are not globally significant. For moder-that of the GWS, both of which are larger than
ate Ã, specifically at Ã=2, the variance of the GMthat of the GM Gaussian approximation by the
Gaussian approximation is much closer to the

5 In other words, since the strong repulsion keeps the steps exact result than the alternative estimates. As
apart mostly, the entropic interaction rarely comes into play. r�2 the variances predicted by the alternative
By the same token, the entropic repulsion plays a progressively views are about 1.8 times those of the GMlarger role as the interaction grows weaker and eventually

Gaussian approximations. They are also nearlybecomes negative, so that the effective interaction Ãeff only van-
ishes in the unphysical, limiting Poisson case [34]. identical to that of the GWS, although there is no
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reason to believe that Eq. (5) does well in that approximation is within 10% of that of the GWS
for 1.23≤Ã≤2.96.)extreme limit, especially since it does so poorly in
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the opposite limit (r=0). However, it is note- Fig. 4 also includes a heuristic, phenomenologi-
cal attempt to improve the estimate of the varianceworthy that for the four tabulated cases for which

exact results exist, the Wigner surmise underesti- given by PIM’s formalism. According to the expan-
sion of the projected free energy of vicinal surfacesmates the variance. If it is still a lower bound as

r�2, then the PIM estimate should be better with slope (tangent of misorientation), the effective
repulsion between steps, including both entropicthan the GM Gaussian one. The ratio of the

variance of the GWS to that of the GM Gaussian and A/s2 energetic repulsions, replaces Ã by Ãeff
defined in Eq. (7).6 When Ã is replaced by Ãeff in(all ) value rises smoothly from ~1.2 to about

~1.4 as Ã increases from 4 to 10, reaching the evaluating the Gaussian width s, so that the vari-
ance becomes 1.711/(51.95Ãeff)1/2, we find that theasymptotic value of ~1.8 only very gradually.

If one accepts that the PIM picture is correct GWS variance is well approximated down to
Ã#10. This expression for the variance can befor ultrastrong repulsions, the crucial question

becomes how good an approximation it is for rewritten as 0.475/r; Eq. (9) shows that the corre-
sponding prefactor in the analysis of Barbier andfinite but strong Ã. Another key issue regards the

quality of the GWS as an extrapolation formula. coworkers [23,35,38,39] is 4/p2#0.405, thus
smaller in the asymptotic limit and below theAlthough, most likely, only numerical (Monte

Carlo) studies can definitively answer these ques- variance of the GWS, but closer to it for moderate
Ã. The physical meaning behind these relativetions, we present in Fig. 4 some information which

may be suggestive. This figure essentially replots behaviors is not yet clear. Calculations of leading-
order behavior as r�2 could resolve many issues,the information of Fig. 2 on a logarithmic scale

for the interaction strength. We see the PIM vari- but there has been little interest in this limit among
random-matrix theorists; most of the systems con-ance becomes a good approximation around

Ã#30 and an excellent one by Ã#100. The vari- cerning them occur in the range 0≤r≤2.
Obviously the problem of extracting Ã from theance of the GWS and that of the PIM ‘all’ case

do not cross until s2=3.44×10−3 at r#144 TWD, especially from its width, is exacerbated by
the extreme sensitivity of s to Ã: fractional errors[Ã#5100], well above any reported value. (A 10%

difference in the two variances occurs for Ã#52. in the latter are magnified by a factor of four in
the former. For many applications, the relativeFor comparison, the variance of the GM Gaussian
size of the step–step repulsions between different
systems is more important than their absolute
sizes; thus, it is crucial that the analysis of Ã be
done using the same approach. [Likewise, experi-
mentalists should state clearly the raw (dimension-
less) width, s – or the value of r in a fit to the
GWS – before beginning any analysis!] Often the
extracted value is scrutinized using (or misusing)
the celebrated result of Marchenko and Parshin
[40] relating the step repulsions to surface stress.
This formula applies to the asymptotic regime of
isotropic substrates; often one or both these condi-

Fig. 4. Replot of Fig. 2 using a common (base-10) logarithmic tions do not apply, and there is no well-prescribed
scale for Ã. The various curves are as in Fig. 2, with the addition procedure to make appropriate corrections.
of the long-dash, double short-dash curve trace showing the
approximation (for all-step repulsions) of Ihle et al. [8], modi-

6 The extra factor of p2/6¬f(2) in the free-energy expansionfied to take entropic interactions partially into account by
replacing with Ãeff in the formula for the Gaussian width. See [1,2,37] comes from a sum over the interaction all, not just

NN, steps.text for details.
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Furthermore, the in-plane component of the stress
dipole is not measurable and is often neglected.
On another front, the assumption that the step TLE thanks them and Y. Saito for helpful com-
interactions are in the 1+1D perspective (i.e. occur ments on a draft and S.R. Bahcall for an enlighten-
only between points on steps at the same coordi- ing discussion and for calling attention to (a
nate along the mean step direction ŷ) becomes preprint of ) Ref. [11].
particularly questionable when steps are close
together and have large wandering fluctuations. In
other words, efforts to make quantitative connec- Note added in proof
tions between measured TWDs and surface stresses
are fraught with dangers more severe than the

We have recently learned that some exact resultsissues related to extracting Ã.
have been determined for the Sutherland modelRMT provides other results of physical signifi-
for other values than those listed in Table 1. Mostcance for vicinal surfaces [10]. From exact results
notably, Forrester [41] proved for even-integerand from scaling procedures, one can compute the
values of r that when s is (asymptotically) smallwidth distributions of two, three, or more adjacent

steps. These would allow greater information to
P(s)#

[(r/2)!]3

r!(3r/2)!
(prs)r. (10)be gleaned from real-space images. Exact results

[10,11] are also available for the variance
S2r=1,2,4 (L

x
) of the number of steps over an Eq. (10) has the same leading behaviour as the

interval L
x

(perpendicular to the steps, along x),7 Wigner surmise. The ratio of the prefactor of sr
i.e. of the local slope, which exhibit a logarithmic to ar is about one for small values of r (viz. 1.015
divergence reminiscent of the roughness of vicinal and 0.995 for r=2 and 4, respectively) but
surfaces. decreases gradually (to 0.971, 0.939, 0.909 for r=

In summary, we have illustrated how results 10, 20, 30, respectively). Thus, for large r one
from random matrix theory offer a simple analyti- might expect the Wigner surmise to be somewhat
cal approximation, the generalized Wigner sur- broader than the exact TWD and so to provide
mise, that accounts well for terrace width an upper bound of the true variance in this regime,
distributions and other properties of stepped sur- and so an upper bound (overestimate) of the
faces for small to moderate dimensionless inter- physical Ã.
actions Ã. This will be useful both in analyzing Forrester [41–43] also presented analytic
data and in pursuing model calculations. The expressions for the ‘pair correlation function’, i.e.
regime of weak (dimensionless) step interactions the probability of finding a step a distance s from
was heretofore inaccessible by direct means; it will another, regardless of whether other steps lie
become increasingly important as more data is between them. This two-body function, which nat-
taken with high-temperature STMs. At the other urally is much easier to calculate than the many-
end of the scale, there is great physical interest in body P(s), does not contain enough information
large values of r, in contrast to other applications (viz. many-step correlations) to enable calculation
of RMT, and significant open questions. of P(s) with the quantitative accuracy needed for

reliable extraction of moments (although it does
reduce to P(s) for small separations) [19,41,44].
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times s�.7 For the cases of interest, to order 1/L

x
, S2

4
(L
x
)=

Based on Jack symmetric polynomials (as in(2p2)−1[ ln(4pL
x
)+c+1+p2/8], S2

2
(L
x
)=p−2[ln(2pL

x
)+c+1],

where c#0.577 is Euler’s constant. Ref. [43]), there has been considerable activity
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