Analysis of Terrace Width Distributions on Vicinal Copper Surfaces Using the Wigner Surmise: Comparison with Gaussian Approach





M. Giesen1 and T. L. Einstein2





1 Institut für Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jülich, 


D 52425 Jülich, Germany


2Department of Physics, University of Maryland, College Park, MD 20742-4111, USA





Abstract


We have analyzed the terrace width distribution on a large number of Cu (100) and (111) vicinal surfaces using a standard Gaussian approximation as well as from the perspective of fluctuation phenomena by using the generalized Wigner surmise, motivated by interest in extracting optimally the strength A of the elastic repulsion between steps. The Wigner approach is more sensitive to experimental noise, but both methods provide generally consistent estimates of the variance. The experimental range of data seems to straddle competing views on the coefficient relating A to the inverse square of the variance. We investigate previously suggested methods for analyzing skewness and other features of the data. By comparing data for different temperatures and misorientations with predictions based on scaling, we illustrate the difficulties of obtaining quantitative information about A.
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�
1. Introduction


By examination of the quantitatively measurable terrace width distributions (TWDs) on vicinal surfaces, one can extract information about the interaction between the steps. The typical analysis procedure makes use of the mean-field-like Gruber-Mullins expression when there are no energetic interactions between the steps [1] and a similarly-derived Gaussian approximation when these interactions are strong [2]. There are problems with this standard method for both small and large interactions: For small interactions, the fundamental assumption that the potential can be quadratically expanded—ultimately that the fluctuations of a step are small compared to the mean spacing— breaks down. In a recent paper, Einstein and Pierre-Louis (EP) observed that the so-called generalized Wigner surmise, arising from random-matrix theory, could describe these equilibrium fluctuations, as it does many other fluctuation phenomena in physics [3]. This recognition relies on the intimate relation of the problem of interacting steps to that of fermions in one spatial dimension. The simple analytic expression provides an excellent approximation to the exact distribution for the three particular interactions for which the problem can actually be solved, as well as for other values in that range of interactions. 


This finding proves particularly timely, since questions have been raised in recent years by two groups on how best to estimate the strength of the interstep repulsions from the variance of a Gaussian fit to the TWD [4�8]. While still affirming that this variance is proportional to the inverse square root of this strength, these papers argue that the prefactor should be considerably larger, by a factor somewhat below 2, so that the interaction strength obtained from the Gruber-Mullins Gaussian expression underestimates the actual interaction strength considerably. (The Grenoble group [4�5] point out that independently fluctuating steps should have twice the variance of that obtained from considering a single fluctuating step between fixed straight steps, as in the Gruber-Mullins picture.) All these Gaussian methods neglect the TWD’s skewness, which is considerable for weak interactions—at which none of these Gaussian approximations are suitable.


EP offered a number of ideas on how to approach experimental data via the Wigner surmise, but did not actually test them. In this paper we describe the first attempt to apply straightforwardly and systematically this formula and viewpoint to a large number of vicinal surfaces of copper at various temperatures. The data sets include both good experimental data and poorer results; they span the range from the upper end of weak step repulsions to moderately strong [dimensionless] interactions. We can thus assess under a wide range of conditions which application procedures are viable and offer suggestions on how best to analyze experimental data.


We wish to address the following set of questions: Under which conditions does the Gaussian or the Wigner expression provide the better fit of experimental TWDs? For a particular data set, how well does the variance associated with the Wigner fit compare with that immediately emerging from the Gaussian fit? Can consistent information about interactions be extracted from the skewness of the TWDs? How do the various errors innate in experimental data confound the extraction of accurate information from each type of fit?


The paper is organized as follows: In the second section, we describe the experimental set-up. We provide the reader with the essential theoretical ideas in section 3. This section is followed by the presentation and the discussion of the analysis of experimental results for various copper vicinal surfaces using both the standard Gaussian approximation and the generalized Wigner surmise. Section 5 summarizes our findings and gives conclusions.


2. Experimental


The experiments were performed in a standard ultra-high vacuum chamber with a base pressure of 5(10–11 mbar. Our variable temperature scanning tunneling microscope (STM) is of the Besocke type. The experimental set-up and the sample cleaning are described in detail in previous publications [9,10].


We used six different samples. Three of them were vicinal to the Cu (001) plane: Cu (117), (1 1 13) and (1 1 19).� These crystal planes have miscut angles of 11.4°, 6.2° and 4.3°, respectively, about the dense �EMBED Equation.3���-direction. The mean step separation �EMBED Equation.3��� is 8.9 Å (corresponding to 3.5 �EMBED Equation.3���, where �EMBED Equation.3��� = 2.55 Å is the kink length on the (001) oriented copper terrace), 16.6 Å (6.5 �EMBED Equation.3���) and 24.2 Å (9.5 �EMBED Equation.3���), respectively. The terraces are separated by parallel single-layer �EMBED Equation.3���-microfacet steps along �EMBED Equation.3���. The other three surfaces are vicinals to the Cu (111) plane. Their miscut angles are 12.75°, 3.05° and 2.49° about the �EMBED Equation.3��� direction. These surfaces have orientations (11 7 7), (19 17 17) and (23 21 21), respectively.1 The samples consist of parallel single-layer A-type [{100}-microfacet] steps along �EMBED Equation.3���. The mean terrace widths between adjacent steps are 9.2 Å (corresponding to 4.17 �EMBED Equation.3��� , where �EMBED Equation.3��� = 2.21 Å is the kink length of a (100)-step on a (111)-surface), 39.1 Å (17.67 �EMBED Equation.3���) and 47.9 Å (21.67 �EMBED Equation.3���), respectively.� The accuracy of the quoted miscut angles for all surfaces is within 0.1°.


In our experiments, the concentration of pinning sites on the surface was lower than 10-7 per atom. For the analysis, we have chosen STM images obtained from areas free of visible residual contamination. A measured terrace width distribution was accepted for further analysis only when the average step density found from the distribution was consistent with the nominal step density given by the miscut angle of the surface. Fig. 1 shows STM images of (a) Cu (11 7 7) at 296 K and (b) Cu (23 21 21) at 303 K. The scan widths are 240 Å and 760 Å, respectively. STM images of the stepped Cu (001) surfaces were published previously [11].


We used a computer code in order to determine the step-step distance distributions. This code searches for the maximum slope in a spline fitted to the gray-scale values of each scan line perpendicular to the step edges. For each distribution we analyzed a total step length of 5-17 µm taken from 10-40 STM images from different areas of the sample.


3. Theory


3.1 Review of Fermion Mapping and “Mean Field”


In the downstairs direction on a vicinal surface, there is just one characteristic length, the average ((( of the step spacings (. Hence, it is natural to use as the independent variable s ( (/((( to plot the terrace width distribution (TWD) P(s). This distribution must be normalized, and by construction it has unit mean. In general there is a repulsion between the steps of the form A/(2, due to elastic or dipolar forces, and there is always an entropic repulsion—because steps cannot cross—which obeys the same power-law decay. Then there are three energy-related quantities that characterize the problem (below the roughening temperature of the terraces): 1) the thermal energy, kBT, which produces the fluctuations of the steps; 2) the stiffness of each step, �EQ \o((,~)� [2], which opposes bending of the step and has units of energy per length�; 3) the strength A of the repulsion, which has units energy-length. There is only one dimensionless combination that can be formed: we define    





	�EMBED Equation.3���	(1)





Since steps do not start, end, or cross, the set of their configurations is equivalent to world lines ("time-lapse photo") of fermions evolving in one spatial dimension [i.e. (x,y) plots can be viewed as (x,t) plots]. When A=0, these are free fermions. The venerable Gruber-Mullins approximation fixes the two neighboring steps of a fluctuating ("active") step to be straight and separated by twice the average spacing [1]. Since the TWD corresponds to the ground-state density in the corresponding quantum problem, we find from recollection of the standard problem of a particle in a 1-D box that 





	�EMBED Equation.3���	(2)





Analytic approximants containing large numbers of elementary functions offer an arbitrarily accurate representation of the exact result [16$], but can be inconvenient to use. 


When there are strong repulsions between the steps, so that the motion of each step tends to be confined near its mean position, a Gruber-Mullins argument shows that P(s) can be approximated by a Gaussian [1,2]





	�EMBED Equation.3���,	(3)





where the variance s2 is given by





	�EMBED Equation.3���,	(4)





if only nearest neighbors are considered and





	�EMBED Equation.3���	(5)





if all steps are included. (Since the coefficient of �EQ \o(A,~)�G in the latter is about 8% larger, the estimate of �EQ \o(A,~)�G is about that much smaller than that deduced assuming just nearest-neighbor interactions. The subscript G serves as a reminder that �EQ \o(A,~)�G is determined from the Gaussian expression, eq. (3).)


3.2 Generalized Wigner Surmise


Most of the above is well known, as is the existence of exact solutions for �EQ \o(A,~)� = 2, 0, and -¼ [17$]. The new idea from random-matrix theory [18$,19$] is that fluctuations should exhibit certain universal behavior (ultimately determined by the symmetry of the couplings of the states, in a way that does not have any obvious physical interpretation in the present context). According to the so-called generalized Wigner surmise, the distribution of fluctuations can be approximated by [3]





	�EMBED Equation.3���.	(6)





The exponent r is related to �EQ \o(A,~)�W  (the subscript W denoting that �EQ \o(A,~)� is estimated using the generalized Wigner surmise) by 





	�EMBED Equation.3���  or  �EMBED Equation.3���	(7)





by inspection of the Sutherland Hamiltonian [17$], which describes interacting fermions on a large ring.


The constants ar and br—given below explicitly—are determined by the two conditions of normalization and unit mean, respectively. This formula represents an interpolation scheme between the three special cases to which it reduces (the ["ungeneralized"] Wigner surmises) at the values 1, 2, and 4 for r (or -1/4, 0, and 2 for �EQ \o(A,~)�W) for which the exact solutions occur. At these three calibration points, the Wigner expressions P1, P2 and P4 (eq.(6)), though quite simple analytically, provide remarkably accurate—at the percent level—approximations of the corresponding exact distributions. The free fermion case was illustrated in ref. [3]. In Fig. 2 we show the corresponding curves for the case r = 4.


For values well beyond r = 4, the Wigner form can no longer be justified as an interpolation scheme. However, Forrester [20$] showed (for even values of r , extended to rational values by Haldane [21$] and Ha [22$]) that the leading (small-s) behavior of the exact TWD is proportional to sr but with a prefactor somewhat different from ar. For 2 ( r (  4, the prefactors agree to within 1.5% while ar is about 10% above the exact value for r = 30.


Given the simple analytic form of the Wigner distribution, it is straightforward to deduce a number of statistical properties and write them in terms of Gamma functions. We first note the explicit values of the two r-dependent constants ar and br [3]:


�EMBED Equation.3���


	�EMBED Equation.3���    and   �EMBED Equation.3���	(8)





These two constants turn out to have rather linear dependence on r. For example, the expansions about r = 4





	�EMBED Equation.3���	(9)





approximate br and ln(ar) excellently (to within 0.1% and ~0.3%, respectively) when 2 ( r ( 8.


In this problem it is arguably more convenient [3] to compute nth-order moments about the origin (�EMBED Equation.3���) than about the mean ((n):





	�EMBED Equation.3���	(10)





Specifically, the second moment �EMBED Equation.3��� takes the form





	�EMBED Equation.3���.	(11)


In dealing with experimental data, one typically seeks the standard deviation s (or the variance s2) of the TWD. For all distributions with unit mean (including P((s))





	�EMBED Equation.3���.	(12)





3.3 Recent Alternative Gaussian Results


As noted in the Introduction, the variances given in eqs. (4) and (5) are too small in the limit of large step repulsions. By neglecting entropic repulsions the Grenoble group [4�5] computes—in the limit of very strong repulsions—the reduction due to anticorrelations of fluctuations from the enhancement factor of two (relative to Gruber-Mullins) for independently fluctuating steps that was mentioned parenthetically in the introduction. They find that the variances in eqs. (4) and (5), for nearest-neighbor and all steps interacting, should be increased by factors of 1.801 and 1.711, thereby replacing 48 and 51.95 by 14.80 and 17.75, respectively. 


EP [3] showed that estimates of (2 based on this idea could be extended to weaker interactions by including entropic repulsions in an average way (instead of neglecting them completely [4�5]). This improvement is achieved via replacing the dimensionless interaction strength �EQ \o(A,~)� by its effective value (viz. (2/4) obtained from the cubic term (in misorientation slope) of the expansion of the projected free-energy of a vicinal surface. (Specifically, (17.75 �EQ \o(A,~)�)-1/2 is replaced by (4.438)-1/2(-1 in the equivalent of eq. (5).) The variance (�EQ \o(2,E)� then is 0.475/(E, where the mnemonic notation (E—and correspondingly �EQ \o(A,~)�E obtained using eq. (7)—refers to the central approximation regarding entropy’s role. This result closely reproduces the asymptotic variance of the Wigner surmise, for which the prefactor of (-1 is ½. However, for physical values of (, 0.475/( is larger than (�EQ \o(2,W)� from eq. (11) (with eq. (8) and then eq. (12)) by about 4% at (=8, rising to about 10% at (=5. (For comparison, at these two values of the dimensionless interaction, (�EQ \o(2,G)� is less than (�EQ \o(2,W)� by 30% and 17%, respectively.) Alternatively, by invoking continuum correlation functions from roughening theory, the Saclay group [6–8] argued that the variance is (4/(2)(1+((� ( �1+4�EQ \o(A,~)�))-1, corresponding to a somewhat smaller asymptotic prefactor. Using eq. (7), this expression can easily be inverted to produce an estimate (R,  with the subscript as a reminder of the roots of this approach in roughening theory. In summary, these views extract an estimate of the dimensionless interaction strength from the variance of the Gaussian fit by the following prescriptions:





	�EMBED Equation.3���	(13)





3.4 Skewness


A distinctive feature of Gruber-Mullins approximations [1] is that the distribution is symmetric about the mean. While this approximation is not bad for strong repulsions, it obviously is not good as one approaches the free-fermion limit. The standard way to quantify the asymmetry is to compute the skewness (3, defined in terms of the third moment about the origin as [3]





	�EMBED Equation.3���   where   �EMBED Equation.3���   .	(14)





Since evaluating moments is problematic experimentally, Plummer [23$] suggested assessing the skewness more directly by gauging the asymmetry of the half widths (hw) at half maximum: Specifically, let smax denote the value at which (a smooth fit to) the experimental TWD takes its maximum, while w+ and w- are the differences between smax and the values above and below smax, respectively, at which the smoothed TWD is half of P(smax); i.e., P(smax ( w() = ½P(smax). For moderate values of the dimensionless interaction strength, i.e. 1 ( �EQ \o(A,~)� ( 6, the skewness can be well approximated by [3]





	�EMBED Equation.3���.	(15)





Since A is relatively independent of T, while �EQ \o((,~)� decreases weakly with increasing T (over the thermal range in which the description of the surface in terms of steps is meaningful), �EQ \o(A,~)� decreases strongly with T. Thus, study of the same sample at several different temperatures provides a scan in �EQ \o(A,~)� (even though at [essentially] constant A).


Ref. [3] suggested that r and/or �EQ \o(A,~)� could be determined readily by fitting separately the second and the third moments of the distribution. This proposal turns out not to work well with actual data: The moments are too sensitive to the errors in the measured distribution and the discreteness of the possible terrace widths. In contrast, assessing the asymmetry of the half widths, as described above, proves more practicable. In order to use eq. (15), however, the experimental TWD data must be suitable smoothed. In the present analysis we explored two different fits to smooth functions: Initially, we approximated the experimental TWDs by a cubic polynomial in the normalized terrace width s using just the data in the range smax ( w( ( s ( smax + w+. (The thinking underlying this approach is that the relative errors in the data are smaller in the larger values.) This procedure yielded unreasonable results. Instead, to optimize the likelihood of capturing the intrinsic shape of the TWD, we fitted the TWDs to an expression of the form in eq. (6), but taken as a three-parameter expression, i.e. with a( and b( treated as free parameters rather than determined from (.


4. Results


Fig. 3 shows terrace width distributions (TWD) measured on a Cu (1 1 13) surface at three different temperatures. The length scales of the experimental distributions are normalized with respect to the experimentally determined mean terrace widths in each specific measurement. In other words, ((( is adjusted so that the first moment �EMBED Equation.3���, computed from the discrete version of eq. (10), is unity. As a test, we also analyzed the TWD by scaling the step spacings ( with respect to the nominal mean terrace width given by the miscut angle. The value of ( determined by a fit to the generalized Wigner surmise depends sensitively on this scale factor. Differences of less than �EMBED Equation.3���/2 between the nominal value and the experimentally determined mean terrace width introduce errors of 15% into the analysis. For differences on the order of �EMBED Equation.3���, errors up to 50% occur. This unfortunate finding suggests that more sophisticated analysis procedures would be very desirable if this viewpoint is to be applied routinely. By treating the Wigner fit as a two-parameter fit, in which the length scale ((( is adjusted along with the exponent r, we have been able to deal with these troublesome cases 24$]. Since the goal of the present paper is to explore the consequences of conventional, straightforward analysis, we defer presentation of the details of this process [24$]. With respect to a simple determination of the variance of the distribution, the Gaussian analysis is less sensitive to deviations of the mean value from the nominal terrace width. (Again, details are deferred to ref. [24$].) Here, deviations of order �EMBED Equation.3���/2 still provide results stable to within 5%.


For relatively low T (high �EQ \o(A,~)�), the experimental distribution is approximately symmetric. In the top panel of Fig. 3, both the Wigner (solid curve) and the Gaussian (dashed curve) model provide excellent fits to the data. At low temperatures the value of r determined using the Wigner surmise is relatively large (rW = 7.5 at 295 K). With increasing temperature, the asymmetry of the step-step distance distribution increases, and the value of r correspondingly decreases (rW = 4.7 at 348 K). Though the Gaussian distribution still describes decently the data in the vicinity of the distribution peak, it fails in the range of large step separations. On the other hand, the Wigner expression gives a slightly less accurate accounting in the range of the peak, though it fits the range of large terrace widths reasonably well. From a formal statistical perspective, the (2 for the three dozen cases we have studied is higher (i.e., worse) for the Wigner fit than the Gaussian fit in two-thirds of the cases, but rarely by more than a factor of two. (Actually, this comparison is biased against the Wigner expression, since the Gaussian fit used here to obtain ( allows three adjustable parameters: the peak center and the prefactor in addition to the width. Fits to the Wigner expression can be improved considerably by fitting to not just r but also to (((, treated as an adjustable scaling parameter [24$]. In a Gaussian fit with just the single adjustable parameter s (fixing the peak center at s=1), the results for sG (and so �EMBED Equation.3��� and AG) are  not changed significantly for "good" data, and the (2 roughly doubles . For "poor" data, the (2 rises by nearly an order of magnitude as the standard deviation increases by about 10%, thereby decreasing �EMBED Equation.3��� and AG by about 40%.) The third of cases in which the Wigner fit has lower (2 occur often but not always at higher temperatures.


In Fig. 4 two distributions measured for copper (111) vicinal surfaces are compared: a well equilibrated distribution (i.e. what is commonly denoted "typical" data) from the (11 7 7) plane and a poorly equilibrated case from the (19 17 17) surface. In the latter data there is a double-peak distribution. In addition we show the variance from using eqs. (7,11,12) and the variance obtained from the Gaussian fit, respectively, in both panels in Fig. 4. In the top panel both the generalized Wigner surmise and the Gaussian approximation provide good agreement with the experimental data. In contrast, the data in the lower panel is obviously not well described by either of the fitting functions. The variances determined using the two models in the first case agree nicely: their difference is less than 4%, comparable to that due to typical experimental errors (3-6%). Such errors can be caused by slight deviations of the experimental TWD from the true equilibrium distribution due to various types of noise, sampling errors, etc. Even when—in contrast to the lower panel of Fig. 4—there is no obvious evidence of noise in the data, deviations of this nature must be expected. 


Table 1 gives an overview of our data obtained by analyzing TWDs measured on various copper vicinal surfaces as a function of the temperature. Referring to Fig. 4, the column labeled Q indicates the qualitative quality of each TWD. All cases with “good” (+) data are included, along with representative cases of “poor” (–) and of “okay” (0) data. As shown in Fig. 3 the TWD for Cu (1 1 13) becomes broader and more asymmetric as temperature increases. In table 1 we see for each misorientation a monotonic—to within error bars—decrease in the value of r with increasing temperature, as is expected from eq. (1) and subsequent discussion. For the Cu(11,7,7) surface, no such monotonic decrease in r is observed. This is probably due to a systematic shift in the peak position of the normalized experimental TWDs (measured for this sample) compared to the Wigner fit, which might introduce errors into the analysis. 


Considering all surfaces, we obtain values of r between 3.5 and 8.6. The lower end, occurring at higher temperatures, corresponds to interactions weaker than the calibration point at r = 4, near the lower limit of viable Gaussian approximations for moderate-to-strong dimensionless repulsion [3], still far from the free fermion limit and even the weak-interaction regime. Near r = 4, there is considerable numerical evidence that the Wigner surmise should describe the data well, provided the viability of fundamental assumptions such as pure inverse-square decay of energetic repulsions (even at small spacings () and interactions only normal to the mean step direction (viz. “equal time” in fermion language). For lower temperatures, the dimensionless interaction on copper is more strongly repulsive, corresponding to r well above 4. 


For values of r below 3.5, the Gaussian approximation is expected not to provide an adequate fit to the TWD, while the Wigner surmise should be excellent [3]. In order to explore this limit for copper vicinals, one would have to measure step-step distance distributions at higher temperatures than shown here. This process, however, would require samples with a larger mean terrace width [i.e. smaller misorientation]: With increasing temperature, the equilibrium fluctuations of steps increase. When the mean amplitude of these fluctuations are of order half the step separation, it becomes difficult (if not impossible) to distinguish positions of adjacent steps. This is due to the temporal information in the STM images for higher temperatures [11], which causes the steps appear in STM images as if they crossed. Alternatively one could make use of faster STM instruments. To extend the temperature range in the case of copper to T= 500K, one would need a high-speed STM which is capable of recording high-resolution images at video frequency (which one can easily estimate assuming the diffusion barrier along steps to be of order 0.5 eV for Cu(001) [14$]). For the present measurements on copper surfaces, 370K is the upper limit for the determination of step positions. Even for T = 320K the data reflects a great deal of temporal rather than spatial information due to the limited speed of the STM tip [21$]. Use of samples with lower step densities invites a new restriction: residual pinning sites at step edges. Residual pinning sites exert greater influence on the TWD as the mean step separation increases, making it more challenging to measure equilibrium distributions. In terms of the qualitative quality of the data, we note that for small misorientation (large Miller indices) and to some degree for higher T, there is a greater tendency for TWDs to be poor.


In column 6 we list the standard deviation (�EQ \o(W,()� to be expected from the tabulated r , assuming the validity of the Wigner surmise—specifically eq. (11) (with br. from eq. (8) and the general relation eq. (12)). Evidently (�EQ \o(W,()� and (�EQ \o(G,exp)� determined from the Gaussian fit are in reasonably good agreement for all values of r (cf. table 1) measured in our experiments, with (�EQ \o(W,()� generally larger (but rarely by over 10% and typically much less). Notably this is seen even when the peak of the Gaussian is not exactly positioned at s=1 due to noise in the experimental data in the peak area. In other words, the determination of the variance using a Gaussian fit remains reliable for shifted and slightly asymmetric distributions (as long as a 3-parameter fit is used). Hence, the Gaussian analysis also provides excellent results for the variances and the interaction constants when an experimental distribution is not normalized with respect to the mean terrace width and unit mean, and so is more forgiving than the Wigner approach.


Following suggestions in EP we have also determined directly and explicitly the second and the third moments of the experimental distributions (eq. (10)). We discuss (�EQ \o(',3)� below in the context of skewness. From the second moment about the origin, we tabulate the corresponding (via eq. (12)) standard deviation (((�EQ \o(',2)�). In many cases (((�EQ \o(',2)�) agrees well with (�EQ \o(W,()� and (�EQ \o(G,exp)�, but in a few cases it is considerably larger or smaller. The scattering in the results for the second moment is due to noise in the experimental data. Even with the relatively large data base of our experiments, the evaluation of (�EQ \o(',2)�(exp) depends sensitively on the noise of the data. Hence, simple direct determination of the second moment from an experimental distribution is not a reliable method to obtain information about r and the step-step interaction. 


Having found decent agreement of the variances deduced from the Wigner and the Gaussian analyses, we next tabulate the associated dimensionless interaction strengths based on competing approximation schemes. In the Wigner framework, �EQ \o(A,~)�W comes immediately from the fitted ( via eq. (7). The next few columns give the value of �EQ \o(A,~)� deduced pursuant to several perspectives from the [same] standard deviation of a Gaussian P(s) (eq. (3)) fit to the TWD, (�EQ \o(G,exp)�. The standard Gruber-Mullins single-active-step result is given by �EQ \o(A,~)�G; here we use the expression dervied for interactions between all steps (eq. (5)) rather than the conventionally invoked expression for just nearest-neighbor-step repulsions (eq. (4)). For smaller values of the dimensionless interaction strength (�EQ \o(A,~)� < 5) the agreement is generally good, while for large values (�EQ \o(A,~)� > 7) �EQ \o(A,~)�G is rather systematically smaller than �EQ \o(A,~)�W. While this seeming underestimation of �EQ \o(A,~)� by the Gruber-Mullins perspective addressed by the Grenoble [4,5] and Saclay [6–8] groups, it was not evident from those treatments at what size of �EQ \o(A,~)� this problem would become apparent. From the tabulation we see that, over our experimental range of �EQ \o(A,~)�, the results stemming from the vantage of roughening theory �EQ \o(A,~)�R are mostly much closer to �EQ \o(A,~)�W than those approximating the entropic repulsion �EQ \o(A,~)�E (which presumably are the most accurate for asymptotically large interactions. Even though rE/rR is just 1.173, we find that �EQ \o(A,~)�E/�EQ \o(A,~)�R is ~1.5 ( 0.1. If the entropic repulsion is neglected completely [4,5], then the analogous ratio ranges from 1.8 to 2.8.


The next column in the table concerns fitting the asymmetry of the half widths at half maximum. Attempts to determine skewness by computing (�EQ \o(',3)� directly from the data (following eq. (10)) were futile. Noise had a more dramatic effect than for (�EQ \o(',2)�, sometimes producing a negative value for (3  and so the skewness. Therefore, we have not listed the third moments or their equivalents in table 1. Our approach, as noted at the end of section 2, was first to smooth the data by fitting to the generalized Wigner surmise taken as a three-parameter expression, with a and b not fixed by normalization and unit-mean conditions. Given the extra freedom of fitting, the (2 is lower—with rare exceptions—for this three-parameter fit than for the single-parameter fit (exclusively in (, with a and b functions thereof (eq.(8)); sometimes the difference is marginal, sometimes nearly an order of magnitude. Again almost always, the three-parameter fit yields a higher value of (, often marginally but sometimes by a surprisingly large factor, up to of order 50% (usually in the cases with large differences in (2 between Gaussian and Wigner fits).� From the fitted form we obtained the half widths w+ and w-, then used eq. (15) to determine the skewness (3hw and thence the value of �EQ \o(A,~)�hw.� The drawback of this method, at least as presently implemented and for the range of �EQ \o(A,~)� considered, comes from the sensitivity in fitting the TWD to get half widths, not in then using eq. (15). While our extracted �EQ \o(A,~)�hw is consistently too large, it does display the correct trend, and so might serve as a general check. The unmet challenge is to assess the skewness without in essence fitting the whole TWD.


Finally, we explore some consistency checks of the dimensionless interaction strength: we have tabulated the values for T2 �EQ \o(A,~)�W and T2 �EQ \o(A,~)�G in units of 106 K2. From eq. (1) and assuming that the elastic repulsion between steps to be relatively insensitive to temperature (cf. comments after eq. (15)), we expect this quantity to have the same T dependence as the step edge stiffness � EQ \o((,~)� (eq.(1)). Fig. 5 shows T2 �EQ \o(A,~)�W and T2 �EQ \o(A,~)�G for the complete data set obtained for Cu (1 1 13). The solid circles and open squares are the experimental data obtained from �EQ \o(A,~)�W and �EQ \o(A,~)�G, respectively, and the solid curve is the scaling prediction embodied in eq. (1), with � EQ \o((,~)� computed as specified in footnote 3. Considering the error bars introduced by the error of �EQ \o(A,~)�W and of �EQ \o(A,~)�G (as given in table 1), the experimental data satisfies the predicted thermal scaling behavior. The solid curve corresponds to the value A = 7.1 meV-Å found by one of us in ref. [9]. The error bars of ( 3.8 meV-Å quoted there are fortuitously similar to the bounds of the gray region in the figure, 7.1 �EQ \o(+3.5,–4.2) �meV-Å, which blanket the data.


We now invert this approach, assuming the validity of eq. (1) and use it as a test. Even though the quality of the Gaussian fit to TWDs may be comparable or somewhat better than the Wigner fit, extraction of �EQ \o(A,~)� from (�EQ \o(G,exp)� can be problematic since the optimal prefactor depends on �EQ \o(A,~)�. If a single prefactor is used, as in the Gruber-Mullins analysis, one might suspect that the thermal dependence of T2 �EQ \o(A,~)�G would be less ably described by that of the stiffness. In the case of Cu (1,1,13), for which we made measurements at most temperatures, however, Fig. 5 shows that the Gaussian data is not particularly worse than the Wigner data. Separate fits to the Gaussian (from the Gruber-Mullins perspective) and to the Wigner data give estimates A(G( = 6.9 meV-Å and A(W( = 7.2 meV-Å. Combining both sets, we determine A = 7.1 ( 0.5 meV-Å. Recall that the close agreement here between these two estimates is exceptional; more generally for this system, Table 1 indicates that the Wigner estimate of A is closer to the value of A extracted from the experimental Gaussian width assuming the roughening picture advanced by the Saclay group. 


In the last two columns, we proceed to remove the stiffness as well as the thermal energy from �EQ \o(A,~)� to extract the physical amplitude A of the elastic repulsion, which has dimensions [energy]([length]. The expectation of thermal insensitivity is somewhat better realized by AG extracted from T2 �EQ \o(A,~)�G than by the corresponding AW, as measured by a somewhat smaller standard deviation of their average. Moreover, one expects A not to depend on the misorientation angle for a given terrace plane, at least for small angles. The sizable variability gives a powerful indication of the difficulty in extracting quantitative estimates of the elastic repulsion.


5. Conclusions and Summary


We have seen that for vicinal copper surfaces at temperatures near and within ~50K above room temperature, the dimensionless interaction can be characterized as moderately strong: In the weak regime, the Gaussian approximation would provide a poor fit to highly skewed TWDs. (Experiments in such a regime were recently reported, e.g., for vicinal Pt(110) [25$]; the data begs analysis with the generalized Wigner surmise.) In the very strong regime, the interaction strength would likely be extractable using the asymptotic expression for �EQ \o(A,~)�E in eq. (15) for a broad thermal range. Instead of either, we find that both the Wigner and the Gaussian fits provide adequate fits to the data. The Wigner form captures the notable skewness at smaller �EQ \o(A,~)�’s and by virtue of the excellent agreement with the exact results at ( = 4, should be quite accurate at least for the cases of weaker �EQ \o(A,~)�’s we studied. While it may be easier to extract Gaussian widths than to fit to the generalized Wigner form, the issue of how to interpret these widths remains problematical. First of all, �EQ \o(A,~)� depends on the 4th power of this width, while only quadratically on (, so the error amplification is somewhat muted. Second, the optimal choice prefactor for the Gaussian width is controversial; for the present range of interactions, the roughening-derived value is arguably the best choice.


We have learned many practical lessons regarding analysis of data in light of the EP’s results. The direct determination of the moments of TWDs generally offers little reliable information on actual TWDs due to large errors caused by noise in the experimental data. While skewness should provide a useful handle for weak interactions, it is not clear how to fit conveniently to get quantitative information without going to the full Wigner expression, thereby obviating the need to monitor the skewness separately. In fitting to the Wigner expression, the most pressing concern is to devise ways to minimize the sensitivity to uncertainty in the local average step separation; we are presently actively exploring this problem [24$]. Preliminary results indicate that when the fitting is performed in the two parameters r and [an adjustment factor to] (((, the value of r is typically changes insignificantly for “good” data but can increase substantially (of order 5–20%) for bad data. Invariably in the latter case, the fitted ((( is less than one expects from the raw data (e.g. the first moment), by of order 8%. In other words, when s is found first directly from (((( of) the data, Pr(s) determined from the two-parameter fit has a mean greater than one [24$].


On a broader scale, our results, particularly as presented in Table 1, serve as a sobering warning about the level of accuracy one can presently hope to achieve in gauging the strength of the elastic repulsion, especially for a limited set of measurements. While evidently this strength deduced from the traditional Gruber-Mullins approach (AG) is systematically much lower than that deduced from the Wigner formalism for lower temperatures (larger �EQ \o(A,~)�), another pervasive problem is the unexpected variability of A under changes of temperature or misorientation. Presumably this is a measure of the noise in the measurement process. It appears to be optimistic to believe that one can measure A for this sort of system to within 10% accuracy; several times that may be more realistic. This should also serve as a warning that when accurate probing of A is needed, one should measure several temperatures and misorientations to check stability and reliability.


Furthermore, all analyses make the “equal-time” approximation that the repulsion between steps occurs only perpendicular to their mean direction, and take as given the A/(2 repulsion. Both may well break down at small ( or large fluctuations. However, it was noted already that measurements in this regime are problematical, so that issue may not pose a significant obstacle in approaching good data. As discussed in EP, there are further assumptions, often unrealistic, needed to deduce a surface stress responsible for the value of A.
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Figure Captions:


Fig. 1: STM images of (a) Cu (11 7 7) at T = 296 K and (b) Cu (23 21 21) at T= 303 K. The scan widths are 240 and 760 Å, respectively. The monatomic steps run from top to bottom, and the surface height increases from left to right.





Fig. 2: P(s) vs. �EMBED Equation.3��� for the exactly soluble case �EQ \o(A,~)� =2. The small squares, representing an accurate numerical implementation of the exact solution, was generated using a code kindly provided by N. C. Bartelt, which he had developed to produce Fig. 5 of ref. [7]. The standard Gruber-Mullins-like Gaussian approximation is given by the dashed curve. The Wigner surmise for this case, P4(s), is the solid curve; it is visually indistinguishable at this scale from the exact solution.





Fig. 3: TWD (indicated by circles) measured for Cu (1 1 13) at different temperatures. The solid curves are fits to the generalized Wigner surmise (eq. (6)) with respect to the single parameter (. The dashed curves are fits to a Gaussian. The fitted value (�EQ \o(G,exp)� and the value (�EQ \o(W,()� deduced from the fitted ( are indicated.





Fig. 4: TWD measured for two Cu (111) vicinal surfaces. The upper panel shows good data, while the lower shows poor data. The solid and dashed curves are fits to the data using the (single-parameter) Wigner and the Gaussian expressions, respectively.





Fig. 5: Temperature dependence of T2 �EQ \o(A,~)�W (solid circles) and T2 �EQ \o(A,~)�G (open squares) for Cu (1,1,13), with error bars distinguished by narrow and wide feet, respectively. The solid curve is calculated from eq. (1), with �EQ \o((,~)� obtained from footnote 3 and A set to 7.1 meV-Å, the value determined in ref. [9]. The gray band blanketing the data corresponds to a range of about (50% of A.





� It should be noted that these vicinal orientations are not facets but correspond to rough parts of the equilibrium crystal shape. As such, there is no physical importance that the actual orientation have �EMBED Equation.3��� simply related to a(.In other words, the Miller indices can be viewed as approximate.


� In ref [10], erroneously different values for the nominal ((( were given. The analysis of the TWDs presented there, however, is not altered.


� Equivalently, �EQ \o((,~)� can be written as kBT a( b–2, where b2 is the diffusivity [2] and a( the lattice spacing along the step. Assuming that the energy of kinks is proportional to the kink length, the diffusivity can be expressed in terms of the kink formation energy e [12$,13$]: �EMBED Equation.3���, where ( =128 ( 3 meV for Cu (100) vicinals [14$] and ( =110 ( 5 meV for (111) vicinals [15$].


� In cases where this value of ( differs substantially from the value of ( obtained from a 1-parameter-fit , the corresponding a can easily be twice–sometimes many times–as large as the a from fits to eq. (6), while b is fractionally larger. This tendency might be anticipated from eq. (9). The integral of the expression from the 3-parameter fit is typically somewhat below unity, but even in the “worst” of cases not 10% below proper normalization.


� With a Wigner-like fitting function, using eq. (15) is arguably superfluous. When �EQ \o(A,~)�hw is converted to the equivalent value of ( via eq. (7), the result is almost always very close (well within 1%) to the value arising directly from the three-parameter fit.
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