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Appendix

ASYMPTOTIC FORM OF THE PAIR INTERACTION

_-‘The evaiuation of the asymptotic behavior of é1§ is
- laborious and complicated. oOnly in the €10> and <11> direc-
tions is the calculation reasonébly direct.v'We shalllfind
that the pair intéraction decays according to an Ris inverse
power law. It is broportional to an.anisotropic oécillatory :
'vfactor in EF. The envelope function E6£ the Greeﬂ's function
forvfixéd R has critical points at EC = i 3, i 1, these are
|E —LEC]I/Z at the band edges, and |E - Ecll/z or |E - Ecl"l/z
at Eé =+ 1 in,the(<10> or <ll> direction, respectively.

| In order to evaluate thé'asymptotié form of the pair
interaction, we must find the asymptotic‘form of theVPAir
Green's’function, Glg(E). Natufally; this function.becomes

b'arbitrarily small. Tt is thus permissable to expand eqn.

;(3;25) to

S 3 : EFVI . —x, Lo
AW ~ E o [ VG0l e dE
. - : (Afl)'
We recilll eqns. (3.3), (3.1), (3.6), (3.2) o
- e - S Pk m bk, )
Q‘J( ‘ Tegl, [y T o (8, k) e ’ y
G:“ (&g, /q" ) = 2 (wr 2'})—-0%)} |
W o= E + cos ]Qx t cos !e)/ |

where we have taken T = 1/2, as in our calculations, m = i-1,
| | 219 | |
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n=3j -1, and redefined kxa as kX and’similatly for k7
( or-set a = 1). The two cases <10> and <11> correspond to
= 0 and n = m, respectively.

We.transform_the'summation'to an integral:
A ' o LA m . | ) Ek,xm th n
GC(J (E)= @—Ti')" jTDMQx j‘;ue), (Lo +Lm e e ,)

Since the integrand is.identical on opposite points of the

(A.2)

domain, we cénnot do an endpoint expansion. The aéymptotic
behavior arisés from Singularities in the tnterior. More-
over, since thé exponent ié flat we canhot use a stationary
phése approach.b we must resort to the method of generalized
functions, as treated by Lighthill. (LB) The asymptotic be-
haﬁior will spring from the points where the Fourier-trans-
formed function is not smooth. In this case, ® is smooth,
but| 1 - % is not infinitely differentiable where w is + 1.
Hence we can drop w from subséquent treatment.

To find the <10> behavior, we will consider the form of

llem _ P '
f_T N dk O w

for large integers m. The phase of the square root is such

M

Gex

that

1
( {T?:;T‘ = Jwr-)) 72 y L lwl < |

—sjn{w)‘ IQ/>I (A.&)
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Let us define

L

& E t cos k)/‘ = W €+ cos ky . _(A-S)'
We see that there will be singularities in the integrand at
w = 1.  First we focus on the singularity at'y = 1. . Only

for 0 < € < 2 can w’= 1. Suppose weﬁdefiné k+ éuch that

k+ > 0 and cos k+ =v1 - £, Then for K = k'-_k+ sma1; _

"w?._.,) /2 . /[&_’_ cos ( K+ k_‘_)]z _ /}'/z_

) ( |- sin Kyéh k+) - ) ‘2
¥ JakNTI-c-am )"

(A.6)
An identical expansion holds about -k+ . The fundamental

(L3)

integral we will use is

‘I;(OJE fe'km ”e_)l/zk@”a)cjé_:ﬁr:& T %o

2

(A.7)
‘where ¢ is the unit stép function (Heaviside function). It

- follows that

T, (k): [eibm k)% o h L)l

: "“‘I/o .-‘ffe”/* ow 3
» > v ‘(A.8)

T (k) F fe'k” ;L-)QO)% o (Ch U)Jk b
Tk m T, (D)* : 'E“ e.- Bﬁyye;tzom m—J/L (A;9)
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We thus find the contribution from w = + 1 to be (for O
0 <e< 2
‘G,={ L-“[Iwm T(Q]ﬂb“[zm@hr@@ra(lJW‘

Vﬂ('(lzxﬂVm%@ﬂ’W” 2T )e oy e
e ) ]

T (a-(ee)) T om T T ST ke

(A.10)
For -2 < € < 0, the o = —1_singu1arity contributes similar-
ly. #e define k_> 0 by cos k_ = -1 -¢&, let K =k - k_,
and find | ‘ |
v - ! '/L
/2 - 2
L 4 2K 11 (1+€) :
[w> ]~ f Vﬁ ,/ (A.11)

The contribution from w = -1 is

]
' ’ x T~ﬁ (1~ (I*'E) ) g

ST (- )t m'}/le‘%—”&-m e
(A.12)

We are now left with 4
G, () -%—-4{7:1{&(1@) |
i, 1 er )0 T (A.13)
This time we are fortunatebto see that_GX contains an expo-
nential which is not flat, so that we can use the method of

(C3,E3)

stationary phase, which we write in a form convenient
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for application here Suppose
' . —im k(b
,,{(M)- J‘ e " )30{_)51;&

where h(k) and g(k) are real and (a, b) is on the real axis.
_Let there be one point k e(a b) such that h'(k )
‘but h"(k ) # 0. Then
_ 2 N v
{(M)~[m] | j(}%) exp Comhll)F _’San(h-”a ))_7 |
: o . (A 14)
From (A. 5) we see that we must dlstlngUlSh several
regions of energy E. Since \8| < 2, for [E|>3 we pick up
no contribution; Tﬁls is what we would expect for thevlm—e
»aginary Part of Gij’ as we‘are outside the‘band. Thevab?
sence of a real part outside the band indicates that it
decays faster with distance than the expression we will
calculate. For -3<E<-1 we will pick up only~the singularity
corresponding to -2<€<0, namely w = -1. For I<E<3 we reach
only the w = +1 singulerity. For -1l<E<l we contact bofh.
" In all cases we see that thebanswer will behave like m”
times some phase factor. |

We first consider € > 0.

hik) =k, = cos™ C1-£) = cos” (|- E-cosk), (a.15)

where we will suppress the unimportant subscript y. Then
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for application hére Suppose
. - A(L
fmy = f e " )ﬂCk)Jk

where h(k) and g(k) are real and (a,b) is on the real axis.
- Let there be one point kof(a,b) such that h'(ko) =

‘but h'"(k ) # 0. Then

RPN .
Sm)~ T aths) e ‘Lmk(a)-+-fsgn<hzk,{]
- [”1 h ko) _} 9 P a.10)

Ffbm (A.5) we séeythat we muét distinguish‘several
regions of energy E. Since (6\ < 2, forlel>3 Wevpick up
no contribution; Tﬁis'is what-we’wguld expect fof_the.im—
aglnary part of G i3 as we are outside the band ‘The ab-
sence of a real part outside the band indicates that it
decays faster with distance than the expression we w111 '
calculate. For -3<E<-~-1 we willlpick up only the singularity
corresponding to -2<€<0, ﬁaﬁély w = -1, For 1<E<3 we reach
only the o = +1 singulérity. For -1<E<l we contact both.

" In all cases we see that the answer will behave like m°
times some phase factor.

We first consider &€ > 0.

hik) =k, - _°os" C1-) = cos™ (- E-cosk) (4.15)

where we will suppress the unimportant subscript y. Then
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Wek) = - (1= (- e-gos L)*) % sink

W (k)= - (I~ (I-E- cosla)zj A o(1- € 'l—c-o.sh) sin®k

= (1 (e —cos k)T cos k (A.16)
But h'(k) =0 implies sin R = 0. This is satisfied st
ko % 0, %‘v Since we don't want to deal with endp01nts,i
“and since the 1ntegrand is fully perlodic, with perlod 2v,
we can shift our domaln,from (—F,W) to (-v/2, 37/2), for in-
~stance. We will have two fiat points,'at k=0 snd + .

We find sow

hio) = cos”! (-€)
Klo) - - (1 £ )R
hem) = cos™! (2o E)

.
Wtmy s (- (p-E)E) |
(A.17)

Since the function must be real on the interval, k = 7 must
. be the root for 1 <E < 3, and k =0 for -1 <E'< 1. TFor

1 <E< 3, we thus find

&) te)- Z(VZ{)L ' (1-(-99) "

lﬂ.i—l)} LZ'IT)L
(e e e i,
» e

(1-(2- EJL)'/"' mim o™l (a- E) T

2_TTM

-wmz]/(3 E)(E’ 1) [(z E)—nl’(3 I j

(A.18)
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"For -1 < E < 1, the k = 0 root contributes:
*

E A / |k N -/ N
Gf.m) (E) ;_-,Tmz e 7 (,-52)'/7[(_53/«,_/ 6~ij¢05 [—E)etrr/y :

(A.19)
The equations for € < 0 are quite similar. We have

h(!e,J = k.= ;_o;" ('.’—‘5))’ Cos‘—/ (-1-E —cos A_)

s (- E s b))

ll”(le,) = - C |- (,;-‘ E- cos );)”)"/L {J—E-cosé) siut k
- (p_ (- -'E-’c"os'(k)z)-’/L coshk |

| ~ (A.20)
Again, the flat points'are at k =0, 7.
S hi(o) = cosl (-2-E)
hW'to)= < (1o (-5- E)Z)"'/z

(A.21)
hfﬂ’) = cos ! (-€) _(

WM s (- EDT

For -3 < E < -1, the real root is k = 0, so

A - —Z(IVZ—TT.) ‘77

(E) -
Q'WLH)I J . (;T(‘)Z— m?, ( 1" (I 5)) /g iy

x (,-(*L,E—)z) '/‘7’ "T/Ve—zmco:» (fZ—E)

%?—Tm‘f (-1~ E)(E+3) 6’;““@;" (_Z_E)e:n,/a N
- .—ZTT‘M m[(~z E)- Wf E)(€Et 3)](A 22

Finally, for -1 < E < 1, we add the k = 7 root to Gi;- of

eqn. (A.19) to obtain
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: - = T -
Qm.il--l}i te) &fJ' + ( 2T m* )Ck /'7( ([-52)'/5’ {{_Ezjl/yA
peTimeorie) -y,
-t +

- an ¢, =0 Yo .oro/e/r L

i m&

We can summarize G

A

G (6) [T SITE [ Grten syt
’ - Mz- EU( LX] I<IE/<3
0 oHerwise | ' (A.23)
CA

We should check whether G 1 (B satisfies the sym-

m+l,
metry remarks catalogued in Sectlon IIT.B. Since (ZfIE!)

1 :
sgn E is o0dd in E, while v 3 - |ED) (|E]| - is even,
~we find (remark 3) that ImG and ReG do have the opposite

- symmetry with respect to inversion of the band (E «—E).

A A
m+l,1 m+2,1

energy inversion symmetries;  From the form of the phase

Also, for example, ImG and ImG have dpposite
factor we see that the number of hodes and extfema increases
- linearly with m (remark 6); it is not clear how they in-
crease in the center of the band, wherevhigher’order térms
determine behgviorf Obviously imGij vanishés outside the
band (remark 5), since éijydoes. However, the asymptptic
ImG grows initially with the 1/2 rather than 3/2 poiwer of
|E - EOI, the energy above the béttom of the band (or below

the top), and is initially negative at the bottom of the
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‘baﬁd;
This apparent discrepancy warrahts_cldser scrutiny.
We let ¢ = |E -'Eo\kberthe energy away from tﬁe band edge,
toward the band interior. For e<<WB, we caﬁ write

_ ImGll(E,k") =€ - k“2 . It then:folloWs that

%Léﬁﬂ,*-*é)’ LW{ J'chm)kVék?JA
I -
= zvez/lf 7, (st) ¢ =" dF,

]

(A.24)

th: and J 1s the Bessel

. . -2 .,
function of zero order. For ¢ <m ~, i.e. s 1, the Bessel

~ where we have set t = k/{¢ and s

il

function can be replaced by unity, and we find the advertlsed

3/2

behavior, ImG « + ¢ For s >> 1, we can check our asymp-
totic expression. Using the asymptotic expression for Jé,
. we have
’ 3/ - iy, el st e
Q’MCM;:&E"*&)"’ZV‘Q'L% R, e /i’foa t {1-127 A+ N |
(A.25)
Recalling eqn. (A.9), we see that[
[ .
-3 : -

f f?i t* Jj‘ T2 T_(y - fgre | ”7?215 "7

Hence

¢m G (~ﬂ+é)~—zvé%-fz&e“

Wk,
_ ,'. Z_T l/ B :
T S5 €% cos mYE

(4.26)

reproducing the (el/z/mz)% phase factor behavior of eqn. (A. 22
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The most surpriéihg aspect of the asymptotic form of
Gi+m,l is‘its vanishing in the center of the’bénd. Cértain—
‘ly, as Fig. 4.1 suggests, this is not the case for nearest
| neighbor Greenfs functions. To.ascertain the iimits of the
reliability of our asymptotic expression,vwekhave compared
directly the Green's functions_caléulatéd by Kalkstein and
Sovén‘s progrém with{those predicted B} the asympfotic form.
Table A-1 displays the results for m = 1, 3, and 7. Werfind
 fhat for miz 3, the asymptbtié form doeé give a faifvacc0unt-
ing of the exact‘behavior. ‘For m > 7, the decrease in ﬁhe
size df G(E) in the center thifd of the band is.as precipi—
tous as our equation (A.23);suggests. For m = 1 and m = 2,
(nearest and third nearest neighbors), the asymptotic formule
-is completely invalid, as our comments on the exponénfial-
like fall-off of the interaction énergy}for small séparations
requires. This is in shérp diétinction to Céroli's(cz)
{findings'for the asymptotic form of the (Anderson-model in-
direct) interaction}betweén localized bulk magnetic impuri-
tieé.‘ He finds that even for neérest neighbors, the asymp-
totic formula gives the same energy, to within a factor of
two, of a more exact expression. However, this more exact
expression embodies‘some approximations untenable for us

2

(in particular, that V°G X(E) can be replaced by a constant),
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Table A.l. Exact and asympt‘otié‘Gr'een's functions
in the <10> direction. B

;_ .
3 Y —
-~ < -~
w M Y W > —
~. ~ \_u ~7 qA w
:3 . - ~_ - w) ~J
. K
<~F <3 <3 <3 = A
. N . ; . S _‘ .
. | gy N < i < %
oY £ 3 3 3 G R
-3.0 0.0 : 0.0000 0.0 . T=Dl1003 . 0.0 ©0.1003
~2.8 -0.1528 0.0254 ~0.1146 =0.1363 . 241910 . J.1385
«2.6 -0.1528 0.0682 ~0.2037 -0.1565 0.2546 - 0.1707
~2.4 - =D.1167 . 0.1177 : -0.267% ~0.1614 T 0.291T- '0.1998
-2.2 . -0.0624 0.1694 . =0.3056 -0.1509 0.3119 .- 0.2263
2.0 0.0¢00 0.2199 -0.3183 ~0.1258 : 0.3183 7 2.2533
~1.8 . 0.0624 0.2656 -0.3056 -0.0866 0.3113 0.2793
. +leb . p.1167  0.3037 . =0.2674 -0.0338 0.2917 0.3056
©=le4 0.1528 © 0.33D4 -0.2037 - 0.0319 0.2546 0.332)
-1.2 = . 0.1528 043411 _ -0.1146 - 0.1101 v 0.1910 2.3584
-1.2 0.0 - 043253 o G.0 0.2002 0.0 0.3820
0.8 0.0 0.2737 0.0 -~ 0.2725 0.0 0.3862
0.6 0.0 0.2129 0.0 " 043248 0.0 0.3883
-0.4 0.0 D.1454 0.0 © 0e3617 . 9.0 - 5.3899
“=0.2 0.0 0.0736 0.0. ~ 0.3838 c.0 0.3908
0.0 0.0 0.0 o 0.0 0.3911 0.0 0.3911
m=3 -
-3.9 0.0 " 0.0000 ‘ 0.0 ~0.0109 _ 0.0 0.0109
~2.8 0.0075  0.0179 -0.0199 ~0.0152 , D.0212 0.0235
-2.b 0.0265 0.0307 _ -0.0100 0.0006 0.0283 0.0307
-2.4 . 0.0306 0.0288 0.0107 2.0214 0.0324 . 0.0359
2.2 0.0137 0.0144 0.0285 = 0.0367 . 0.03%47 0.0394 °
~2.0 -0.0000" -0.0065 0.0354 0.0416 0.0354 0.0421
-1.8 -0.0197 -0.0269 . 0.0285 0.0337 0.0367 0.06¢31
-1.6 - =0.D306 -0.0392 0.G107 2.0151 ‘ 0.0324 0.06 24
-1.4 -0.0265 -0.0377 . =0.0100 ~0.0055 ’ 0.0283 0.0381
-1,2 -0.0075  <=0.0235 -0.0199 ~0.0199 0.0212 0.0308
-1.0 0.0 -0.0065 0.0 -0.0136 0.0 0.0151
0.8 0.0 -0.0103- - - 0.0 -0.0079 0.0 0.0130
-0.6 0.0 -0.0129 ‘ 0.0 . =D.0109 0.0 0.0163
~0.4 0.0 -0.0122 - 0.0 T =0.0155 0.0 ’ 0.0198
0.2 0.0 -0.0074 : 0.0 ~2.0204 0.0 5.0217
0.0 0.0 0.0000 0.0 -0.0227 0.0 0.0227
m=7 .
-3.0 0.0 0.0000 i 0.0 -0.0009 D.0 0.0009
~2.8 0.0008 -0.0001 0.0038 0.0040 0.0039 - 0.0042
-2.5 -3.0051 .- =0.0051 -0.0011 -0.0018 0.0052 . 0.0254
244 . 0.0015 0.0021 -0.0058 -0.0059 . 0.0060 2.0063
-2.2 0.0063 0.0066 0.0010 0.0017 0.0564 " 0.0068
-2.0 -0.0000 -0.0005 0.0065 0.0066 0.0065 0.0066
~1.8 ~0.0063 -0.0068 - 0,0010 0.0013 0.0064  0.027)
1.5 ~0,0015 -0.0020 -0.0058 -0.0055 . 0.0060 2.0259
-1k 0.0051 0.0047 -0.0011 -0.0014% 0.0052 0.0049
-1.2 -0.0008 -0.0002 " 0.0038 -~ D.0C42 0.0039 . 0.0042
~-1.0 0.0 -0.0001 0.0 ~0.0010 0.0 0.0012
-0.8 0.0 0.0000 0.0 -0.0004 0.0 0.0004
-0, 0.0 0.0004 0.0 . 0.0009 0.0 - 0.0010
~0.4 2040 -0.0010 0.0 0.0011 - . 0.0 ~2.0015
Y042 0.0 ~0.0011 0.0 -0.0001 S 0.0 © - 0.0011
0.0 0.0 0.0 0.0 0.00C6

0.0000 -0.0006



/ "‘ 230

7

and relies on a free electron picture to obtain that asymp-

totically

{?&
- JE R

We are now ready to find the asymptotic form of the

e (60 - G (9

< -1, ,.

pair interaction to lowest order in ( % ). For EF

ywe find that equation (A.l) becomes

. A .
AWMHJ/' - %?Q/le (' rr)’—m“) ‘

. EF _ 3 _ #';m w;ﬁ . N
e e e P ae gy

cos}a1 (- 2 - E), and.

it

We make the charge of variable t

accordingly define te E’cos“1 (- 2 - E_

F)f' Then

‘ . | ¢

}A'wwfb, ~ 9MVV('¥TJ?W)£ gia‘ll[ew)' st Ty |
(A.28)

Since the integfand is smooth iﬁ t, there are no internal

critical points. We can therefore find the aéymptotic form

using the integration by'parts technique. (See‘Ref. E3):

. Awmél,l ~ —2:7—': b VV(’ W) v

~fan e e St ] 06 oz

~-2im
For EF = -1, tF = 7, and the integrated term vanishes. We
can similarly find the pair interaction in the upper third

of the band by integrating down from the top, using the sub-

stitute t = cos-l(z - E). Our result is



231

W e ke A,
AWA (Er) ~ ;T\U,q Re § Cffa ,LEF) Gveer, ’.[_EF),{

A y o B
A W&wl,) (EF)”I— -n‘:/z_mg ( 3- /EF/) ”EF/'U R {[(?—’/EF/).
xsqn (Ep) - i V(z—/EF/_)[/EF/-/)jM_EQf > (e,,.)ji 15)E k3
Q WM‘:%,) (EF) ~ . 0 | oﬁ[eef ng se

1 We have'thus.found that the‘éair interacﬁion‘falié off as
'the'fifth power of distance in the <10> direcﬁion,‘for thé
band less than a third filled or more than 2/3 filled. 1In
thé middle third, the interaction decays even faster. This
fact ﬁo ddubt éontributes to our finding exponential-like
decay in the interaction. 'waevér, its appeafance,for
X #‘A suggests that in fact inverse power behavior does not
hold Within a few lattice spacings.

It is:natﬁrél to-ask whét happens in othef directions.
.Thé energy factoré will be different. The actual computa?
tions are quite mes;y. If we try an integration in the kx
aﬁd ky directions, as above, we find that the resulting G
. goes as m-3/2n—1/2 or n-3/2m—;/2, depending dnvwhich direc-
_tion ﬁe do first. This suggests that We‘rotéte pefpendicular

‘axes, so that one points along the direction adjoining the

two adatoms. However, the endpoints are then quite -
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complicated. (Présumably if we write n = am, and gfind
, thfough the»mofaSs; our answer should Ee invariant to
a—>1/a.) | |
The sole exception to this statement is the <11> dir-

' eétion. The rotation ofvaxés can be characterized bylthe
Change of vériables o '

ke = (kv k)2 G k)/z;

Then equations (A 2), (A 3), and (A 13), comblned are

J

’transformed to

A Wk-

R
GEWl ) (E) - (uU‘LJQ 6? & ! 2_(w+LVkuﬂ1%

/

-7 - k)
W = E + D cos IQ,,'c,oslz_

This double integral can then be attacked in a manner similax
to thgﬂsiQy;Pygglem. The k+_integrationvis pefformed using
Lighthill's generaliied function téchniQue (eqn.s A.7, A.8,
and A.9). Subsequently we do a stationary phase integration
over k_. We find the same résult as when we use an alterna-
. tive approach, mamely, first doing the kx integration, which
is identical to eqn. (A.3), and éonsequently gives us eqns.
(A.10) and (A.12). The stationary phase integral is changed

however; we now find | ,
A({&): c.os_’ '
t1-E - b) —
: ( cos ) 3 - +1 - E
‘We again find flat points, this time where cos ko = e

This equation suggests that there are a total of eight flat
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points, but other considerations (the value of sin ko) show
there are only four: two for each sign of 1, with one betweer
-1/2 and 0 and the second between 7/2 and 7, in each case.

In all cases we_find/that'
PR (k)] = ) cot b, |

Determining the phase factor is somewhat tricky; the easiest
method is to just pick the wvalue giving agreement'with the
_ computed.values. We find that

4 (E) ~ S y(z—zsl)(/é/*,)’ "—"’E/.sju:'
v M, b . 2mrm C1er-1) : >

2.k

- G- El)(l&’/‘)] L 1< Ele3

L Y"““ngtrgr’/' 23— E](!+&J] ,{
J

- 1l< E<y
is even, while its real part lS

We observe that ImG e+l kL
odd in E, (i.e. G(-E) = -G*(E) ), as requlred (remark 3).
Again we find-m‘2 decay with a phase factor raised to the
mth power. However, néw the Green's functioﬁ.is non-vanish-
ing in the interior third of the band, and the singularities
‘at + 1 are | |E| 1|—l/2 rather than | |E| —111/2 as in the
<10> direction. We still find +1/2 singularities at the

band edges. The singularities at E = + 1 indicate that G
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falls off more slowly at these energies. Indeed, a closer
'ihspection shows that af these two values, h(k) can become‘
a constant.‘ The asymptotic expression does nbt fitbthe
actual Gfeen‘s function very well until m = 4, farther than
iﬁ the.<10> case. That it works réasonablj well iﬁ that
case is verified by the displéy»of computation in Table
A-2, | ” |

The calculatlon of the palr 1n£eractlon energy pro—

__1—E

ceeds as before. We set t = cos” ( )Aand integrate

'by parts to find . - :
—-—V’@L—’“— Y

Awuq.,,hwr T Grcm L E) Crm_‘jm“ F}
-5 |

~ 'm
Wwe fully expect, but cannot explicitly verify, that this
R-5 decay holds for arbitrary direction. The detailed be-
havior is highly dependeﬁt on direction and Fermi energy.
“The pair interaction iS»oscillétory in E_ and R and aniso-

F

' tropic.
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