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- Appendix

ASYMPTOTIC FORM OF THE PAIR iNTERACTION

The evaluation of the asymptotic behavior of G1§ is

 laborious and complicated. Only in the <10> and <11> direc-

tions is the calculation reasonébly direct.‘-We shail find
that the pair intefaction'decays éccording to ah R"5 inverée
power law. Itvis'proportional to én anisotropic oscillatory -
‘factbr in EF. The enveloﬁe functioh Eo£>the Greéﬁ's fﬁnqtibn
for fiXéd R has critical points‘at:EC = i 3, i 1; these afe

IE E ‘1/2 1/2
C

at the band edges, and |E - Ec] or |E - Ec]-l/Z 1

at E, = + 1 in the <10> or <l1> direction, respectively.
In order to evaluate thé asymptotié form of thé pair

intefaction, we must find the asymptotic form of the.pair

Green's function, G1§<E>- Naturally, this function becomes

arbitrarily small. It is thus permissable to expand eqn.

(3.25) to

AW?Q:(

.A Er . _ . :
L | VEIaE e de
| = (A.1)
We recall eqns. (3.3), (3.1), (3.6), (3.2)

A
. = Z, "(hx n "'k A)
C"“J (E) Ha,JI“Qy/fU Qn (E) IQU) € y

Gy, (& k, ) - 25(0»44’*0‘%‘.'

L = &= .+ cos ‘Qx + cos ley ,
where we have taken T = 1/2, as in our calculations, m = i-1,
| | 219 |
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‘n=3j -1, and redefined kxa as kx,and‘similafly for ky-

(Jor‘set'a = l).' The two cases <10> and <11> correspond to
= 0 and n = m, respectively.

Weitransform,the summation to an integral:
' S ™ : ' L 5
2 | : 1y them o Uk
& (e) sz)”j”ék’fj‘lkf (weifrmor)e ™7, 10"
oo s br .

Since the integrand is identical on opposite points of the

(A.2)

domain, we cennot do an‘endpoint>expansion. The asymptotic .
behavior arises from singularities in‘the'interior. More-
over, since the exponent is flat we cannot use a stationary
phase approacn. We must resort to the method of generalized
functions, as treated by Lighthill.(LB) The asymptotic be-
havior will spring from the points where the Fourier-trans-
'fdtmed function is not smooth. In this case, ® is smooth,
but{ 1 - w? is not infinitely differentiable nhere o is + 1.
Hence we can drop w from subsequent treatment.

To find the <10> behavior, we will consider the form of

i.,'.r .
' :lgm TS : :
f_T mdé s

for large integers m. The phase of the square root is such

m

Gex

that

’ !
iil—wL T ]Lol—)}/Z « L lwl < |

—Sjn(w) !w/>/ (A-4)
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let us'define

d

(S éo; }Qy = W= £ 4 cos éx | .(A.54)

| ‘We see that there will be sihgularitieé in the iﬁtegrand at
w = 1n ’ First we focus on the'singularity at v = 1. . Onl§
fpf 0 <& % 2 cén w:= 1. Sﬁpposé we'definé‘k+ such that

k+ > 0 and cos k+‘=v1 - &€, Then for K = k'-.k+bsma11 .

"wz_,} 72 /[VE,* Y‘C” (‘K+ k+)]2 _ // Yo

Yz

= ) (l‘—'- s}nKﬂysin k,,_)z“ ])

¥ Jaki-ci-er |7
S (A.6)

An identical expansion holds about ~k+ . The fundamental

(L3)

integral we will use is , ‘
, - FL AN
| I+-(0) . fe ik om HE_JVZ @”2):1& :_‘/;Tz e 7 m o
‘ v - (A.7)

- L [ 7 [ i
7 s ‘ B ) o ) - - g - o : | J .
4 8

where ¢ is the unit stép function (Heaviside function). It

- follows that

I, (k)= [eikm bk, 1% o (hk,)db

s e LIS
m

I, (s) - {7 . 2wl hy m -3
; « (A.8)

Tk [tk k)t o ek dk s R

2

ke R = 3Ty, _ .
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We thus find the contribution from ® = + 1 to be (fbf 0
0 <e<?2) ‘
G,:f k‘“[I(@ “I_(0)]ve *k"[zm@hI@@rUUEﬁ@
T (-0 s,))/V w7 (5T T ) e e
| . ( _377'!/91 - "'717‘/) —-cL ]

"

e l: I&*_ m

o Cl—(l—E)z).'/V'm'B/z e,’”?"e L (A.10)
For -2 < &€ < 0, the o = -i,éingularity contributes similér— -
ly. #e define k_> O.by cos k; = ;l -&, let K’= k - k_, L
and find N , |

v, ~ — |

|11 v |2k {1 '('**g) | / 11y

The éontribution from w = -1 is

< ILIQ-M t
Cc‘," fe I/0)+t; /o)]+a )Q [hl"(o)q;(o)]f
| | X Y““ (1- (}+—a)L) /v
:’1??7(%'(H£y)%,M;%en%e—&"M
(A.12)

We are now left with

C%mfg L (E):_ @nr)” fﬂ Jé‘ GE (k ) (A.13)

This time we are fortunate to see that‘Gx contains an expo-

nential which is not flat, so that we can use the method of

stationafy phase,(C3’E3) which we write in a form convenient
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for application here. Suppose o
o Lo ko) .
o ot

where'h(k)'andvg(k) are real and'(a,b) is on the real axis.

T W

Let there be one point koe(a,b) such that'h'(ko) =0

‘but h'"(k_) # 0. Then

; Yy ' . . - )
' {(M)N[ﬁ{‘—”m] | j(hb) exp -L‘ml\[f(;)?it{n:%n(h("ao))]
' ' - ‘A(A.14)

-

o
5

From (A.5) we see that we must distinguish several

regions of energy E. Since {6] < 2, for |E|>3 we pick up

‘

no contribution. This is what we would expect for the im-
‘aginary part ovaij, as we are outside the band. The ab-

sence of a real part outside the band indicates that it

decays faster with distance than the expression we wiil }
calculate} For -3<E<-1 we will pick up only the singularity
corresponding to -2<€<0, namely w = -1, For 1<E<3 we reach
only the w = +1 singulérity. For -1l<E<l we contact boﬁh.
In all cases we see that the answer will behave like m~
times some phase faétOr.

We first consider € > 0.

(k) = ot ocosT (1-E) = cos™ - E -cos |
H) ke CE) e (1 Ereesk)

where we will suppress the unimportant subscript y. Then
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for application hére Suppose
| ~im h(L)
if’(M) Jﬁ e " jCkJ JE

| - where h(k) andvg(k).are real and (a,b) is on the real axis;
‘v.Let‘there be one point koq(a,b) such that'h'(ko) =0
but h"(k_) # 0. Then e
, ' v
{(M)rv[;;ﬁEZE;ﬂ*]/i;j(go)exf ~[mL[EJ-+LE33n(h%%w)]
. ” :  (A.14)

Ffbm (A.S) we see that we must distinguish several
regions of energy E. Since fet < 2, for |E|>3 we pick up
no contribution. Tﬁis is what we.wguld expégt fof the im-
aglnary part of G'j’ as we are outside the band - The ab-
sence of a real part outside the band indicates that it
decays faster with distance than the expression we w111 ‘
calculate. For -3<E<-1 we will‘pick up only the singularity
corresponding to -2<6%0, namely w = -1. For 1<E<3 we reach

only the o = +l singularity. For -1<E<l we contact both.

In all cases we see that the answer will behave 1ike m2
times some phase factor.
we first consider & > 0.
hik) = k+ = cos! (1-&) = cos (|- E —Cosh)
: ' : (A.15)

where we will suppress the unimportant subscript y. Then
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Wiek) - “(I- (e cos b)*) e sk

Kb - (-0 mw) A (1 €= cosk) sinh

=~ (1= (1- € ~cos k)¥) " cos b (A.16)
But h'(k) =0 implies sin k = 0; This is satisfied ét
kb % 0, %‘v. Since we don't want to deal with endeLnté,
and since the integrand is fully perlodlc, w1th perlod 27,
we can shift our domain from (-w,7r) to (-7/2, 37/2), for in-.
‘staﬁce. We will have two fiat points, at k = 0 and + 7.

We find now

Ll(o)_= cos”! (-€)
Kito) - - (1-€2 )%
hem) = cos™l (2o E)

‘ . -1
hem = - (a-e)Y )T .
| (A.17)

Since the function must be real on the interval, k = 7 must
. be the root for 1 < E < 3, and k = 0 for -1 <E'< 1. v¥or

1l <E< 3, we thus find

A .2 (=) Ly Y
G%M*U’ (€) Gt mr © i (1-(1-£)8) 7"
' : —e )l g v
» - -E y the €057 (3 -€) -7/
(1-(2-E))% L
B o)l im0 L,

- (A.18)

Lﬂsz;;ETE?Eﬁ[Q.@-Jﬁjgﬁffy
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For -1<E< 1, the k = 0 root contributes:
At 2

MH))

(A.19)
The equations for € < 0 are'quite similar.,7W¢ have
Wikl ko= cos™ (1-8) = cos? (L1 g —cos k)

hl(U oo (1 (~1- E -cos }Q)AZ)“’/Z. sm/a

L\"(L,) . C}- (~1- E-coys E)L)—VL {-'I—E—cosé) s/‘u"é

— (- (-1 -‘E'C.OS’(L,)Z)-’/L cosk -

(A.20)
Again, the flat points are at kb=.0, T
hio) : cos Tt-2-€) |
K'to)= < (1< (-5- g))

. A.21
h (nj = cos ! (-€) .( )-

hmo- (- DT

For -3 < E < -1, the real root is k = 0, so
A -2 ({7 )2 NIy :
lg). —zC¥=m/ Y
o T G e Ceewey) ]

X ("(*Z—*E‘)z) 7y e__"T/Ve - to;"(_z..E)

o yr““~25?2;25\[k‘2 e)-iler Ej(ff}-] (A.22)

2mrm®

Finally, for -1 < E <1, we add the k = q root to Gi; of

eqn.v(A;l9)yto obtain -
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A . ‘.’-‘ 5 | | |
. e = T -
,Q““;' te) e C’J' =L 2T m* )5 7 (1-€2)% (1-ey "
x.e'(‘“&(asﬂ(_e)e._t'v/y

.= G+ ot - I
TGy TGy 2O e erder

. We can summarize G

A

o ; Y - ]
thj,(E)= -;;;;V(z’}EU(zefg)[}g IEUsjn(g?
NG e
,. 0 | oﬁﬁwu/a‘se_ | ' (A.23)
A

We should check whether G 1F(E) satisfies the sym-

m+1,

metry remarks catalogued in Section III.B. Since (2-1E])

N | v l
sgn E is odd in E, while | (3 - |E]) (|E| - 1) 1is even,
we find (remark 3) that ImG and ReG do have the opposite .
symmetry with respect to inversion of the band (E %—E).

A A . . v
Also,\for example, Ime+1,1 and Ime+2,1 have opposite

energy inversion symmetries. From the form of the phase

factor we sée that theﬁnumber of hodes and extrema increases
* linearly with m (remark 6); it is not clear how they in-
crease in the center of the band, wherevhigher"order terms

determine behavior. Obviously ImGij vanishes outside the

band (remark 5), s:'ane‘(;;.lj does. However, the asymptotic

ImG grows initially with the 1/2 rather than 3/2 poiwer of
|E - EOI, the energy above the bottom of the band (or below

the top), and is initially negative at the bottom of the
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This apparent‘discrepancy’warrants closer scrutiny.
We let ¢ = |E _4Eo‘ be the energy away from tﬁe band edge,"
toward the band interior. For E<<WB’ we can Write
ImGy4 (E,ky) =€ - knz . It then follows that

'%‘GM:}, (& +e) - urffg:r (M)LWJJ#
o ’ - ;,,-,é%f

oljocﬁ)ﬂfl_—?; A,
. @A

: wher,e’we have set t = k/{<¢ and s = mm and JO isb the Bessel -
function of zero order. For ¢ < m_z, i.e, é < 1,'tHe Béséel

function can be replaced by unity,.and we find the advertised

3/2-

~ behavior, ImG « + ¢ For s >> 1, we can check our asymp-

totic expression. Using the asymptotic expression for Jg

(4

- we have
! | 3 o -my ! st
Q/M' G‘mﬂl[vg"f'é)'vzrré“&;/;z;; &2 yfe tji-t2 Jj"
J . v

(A.25)
Recalling eqn. (A.9), we see that[ :

I C
st - o ‘ -3 ; -2
L'@-b I A =~ 13 I_(y = T ¢ 4 R Yo
Hence ~

b G ("Ere)~ m2meh sTTR

Wt

. - T ‘/;__ ; '
= - =L ¢ Ve
‘ 2 cos m (A.26)

reproducing the (el/z/mz)} phase factor behavior of eqn.(A.23).
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The most surprisihg aspect of the asymptotic fofm’bf}
¢i+ﬁ,l is-its vanishing»in‘the‘center of‘the'band. Certain-
ly, as Fig. 4.1 suggests, this is not the case for nearest
neighbor Green's functions. To ascertain the limits of the
reiiability of our»asymptotic expression, we have compared
directly the Green's functioﬁs calculatéd by Kalkstein and
: Sovéh's program with those-predicted 5}'the asymptotic form.
Table A-1 displays the results for m = 1, .3, and 7. wWe find
’ﬁhat for m = 3, the asymptdtié form does give a fair account-
ing of the exact behavior. For m > 7, the decrease in the
size of G(E) in the center third bf the band isvas precipi-
tous as our equation (A.23) suggests. For m = 1 and m = 2,
(nearest and third nearest neighbors), the asymptotic formula
- is completely invalid, as our comments on the exponenﬁial-
like fall~off of the interaction energy for small sépafations
requires. This is in‘shérp diétinction to Céroli's(cz)
{findings'for the asymptotic form of the (Anderson-model in-
direct) interaction betweén localized bulk magnetic impuri-
tieé.‘ He finds that even for neéﬁest neighbors, the asymp-
totic formula gives fhe same energy,  to within a factdr of
two, of a more exact expression. However, this more exact
eXpreSsion embodies‘somé approximations untenable for us

2

(in particular, that V°G X(E) can be replaced by a constant),




- Table A.L.

I
>
w
]
—_
u
~
-
< ¥
I
oW '
m=l ~C§
-3.0 0.0
=2.8 ~0.1528
=2.6 -0.1528
-2.4 -0.1167
-2.2 -0.0624
=240 0.0C00
~1.8 0-062"
. =lab 0.1167
C=1l.% 0.1528
~1.2 0.1528
-1.0 0.0
~0.8 0.0
- -0.6 0.0
-0.4 0.0
“~De2 0.0
0.0 0.0
=3
-3.9 0.0
-2.8 0.0075
~2.b 0.0265
244 0.0326
-2.2 0.0137
-2.0 ~0.0000"
~1.8 -0.0197
-1.6 -0.0306
~1.4 -0,0265
-1.2 -0.0075
-1.0 0.0
-0.8 0.0
-0.5 0.0
-0.4 0.0
~0.2 0.0
04D 0.0
m=7
“343 0-0
~2.8 0.0008
2.5 -0.0051
-2.4 . 0.0015
-2.2 0.0063
~2.0 -~0.0000
~1.8 -0.0063
-1.5 ~0.0015
-1.4 0.0051
~1.2 -0.0008
=1.0 0.C
-0.8 0.0
=046 0.0
~0.4 0.0
tepe2 0.0
0.0 0.0

Exact and asymptotic Green's functions

Rl

229

in the <10> direction.

0.0000
0.017%
0.0307
0.0288
0.0144
-0.0065
-0.0269
-0.0392
-0.0377
-0.0235
-0.0065

-0.0103"

-0.0129

-0.0122 -
-0.0074

0.0000

0.0000
-0.0001
-0.0051

0.0021

0.0066
-0.0005
~0.0068
-0.0020

0.0047
-0.0002
~0.0001

0.0000

0.0004
~0.0010
~0.0011

0.0000

0.0
-0.0199
-0.0100

0.0107
0.0285
0.0354
0.0285
0.6107
-0.0100
-0.0199
0.0

[-R-R=NoRel
.
o000

0.0
0.0038
-0.0011
~-0.0058
0.0010
0.0065
0.0010
~0.0058
-0.0011
0.0038
0.0

‘-0.1003
~0.1363

-0.,1565
-0.1614
-0.1509

. =0.1258
-0.0864

-0.0338
0.0319
0.1101
0.2002
0.2725
0.3248
03617
0.3838
0.3911

-~0.,0109
-0.0152
0.0006
J.0214
0.0367
0.0416
0.0337
0.0151
~0.0055
-0.0199
-0.0136
-0.00789
-0.0109
-0.0155

" -2.0204

-0.0227

-0.0009
0.0040
-0.0018
-0.0059
0.0017
0.0066

0.0C13

~0.0055
-0.0014
0.0C42

~0.0010

-0.0004
0.0009
0.0011

-0.0001

-0.0006

Y

ey |

A
wmel, |

0.0

J.1910 .

042546

0.2917-

0.3119
0.3183

(o)

A
l gi W‘;'i

0.1003

J.1388
0.1707

"0.1998

0.2263
3.2533
0.2793
0.3056

0.332)

J.358¢%4
0.3820
0.3862
0.3883
D.3899
0.3%908
0.3911

0.0109
0.0235
0.0307
0.0359

0.0394

0.0421
0.0431
0.06 24
0.0381
0.0308
0.0151
0.0130
0.0163
0.0198
0.0217
0.0227

0.0009
0.0042
0.0254
J.0063
0.0068
0.0066

0.027)

0.0259
0.0049
0.0042
0.0012
0.0004
0.0010
J.0015
0.0011
0.00C8

s g = e S e kg e 17T

vt

-

e T

S TN AT L
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and relies_on_a free electron picture to obtain that asymp-

Fotically | ‘ ER
A ~ €

Crb,& (e ) T G, (E)

We are now ready to find thérasymptotic form of the

pair interaction to lowest order in ( % ). For EF s--1, 
we find that equation (A.1l) becomes
. A s . )
@ “qul ~ 7 VT (' ”Lm*)

. EF_ : _ : '—‘im. s",_;
o ar s erg et 0

We make thé charge df variable‘t = cOs-l (- 2 - E), and.
»accdrdingly'défine tF é cos;1 (- 2 ;FEF)}. Then
A ey ) * e ot
AWy ) ~ 7 9mvv( vvat" ]O‘Crg't (Et) sin®t e ot

| | | (A.28)
Since the integrand is smooth in t, there are no internal
critical points. we éanktherefore find the asymptotic forﬁ
using the integration by'parts technique. (See Ref. EB):‘
.’AW$MIV%%%VW’#?”‘ ' '
)l Ttew 5’"2‘“‘6—2M]L,6F’ e

—-2im

For E_ = -1, t_ = 7, and the integrated term vanishes. We

F F
can similarly find the pair interaction in the upper third
of the band by integrating down from the top, using the sub-

stitute t = cos-l(z - E). Our result is

TR
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awl e - VLog f ZAT (E) G (EH]

Mt
.So : , ) |
. S | |
A WW.HJI (EF)""J’- 'n\’/’“mg ( 2- /EF/) ”EF/'I) R, {[CZ”/EF/) 3
xsqn (Ep) - ‘[[3—)@/)[/@/-;)']&55 : (e,,)jl 15 k3
0‘“7.«1(5%’ o "o%em;;e

We have~thusAfound Ehat the‘éair interaction falls off as .
:the>fifth power of distgnce iﬁfthe <10> direction, for the
band less than a‘third filled or more than 2/3 filled. 1In
the middle third, the interacfion decays évenvfaster.k This
factyno ddubt éontribﬁteé to our finding exponential-like
decay in the interacfion} However, its appearance for
X # A suggests that in fact inverse power béhavior does not
hold Within a few lattice spacings;
It is.natﬁr;l,to-ask what happens in other directionms.
. The enefgy factors will bé different. The actual computa-
tions are quite mes;y. If we try an integration in the kX :
and ky direétions, as above, we find that the reSulting G

-B/Zn_l/z or n-3/2m_1/2, depending on which direc-

- goes as m
tion we do first. This suggests that we rotate perpendicular
‘axes, so that one points along the direction adjoining the

two adatoms. HoweVer, the endpoints are then quite
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complicated. '(Presﬁmably.if we write n = am, and gfind‘
thfough the morass,'éur ansﬁer éhould be invariant to
a->1/a.) | | |
The sole éXCeptiOn to this statement is the <11> dif—_
’ eétion. vThe rotation of axes can bé éharacterized by.the |

change of variables, E :

ky = (horhJ)/2 bos(k, - k)2

Then equations (A-2), (A-3), and (A-13), combined, are

/

transformed to
' k.

A 7 4 ‘ zimé , |
G'_MHI - (€)= (:::rr)?—rfb k_J(‘ di’a; e ! 2 (w+ L‘Jl—wZ-)J
- TT- . o . '.
W = E. ‘+ 2 cos lQ+ c.é.s l&-

This double'intngal can then be attacked in a manner similar
to the <10> problem. The k  integration is performed using

Lighthill's generalized function technique (eqn.s A.7, A.8,

and A.9). Subsequently we do a stationary phase integration
over k. We find the same résult as when we use an alterna-
. tive approach, namely, first doing the kx integration, which
is identical to eqn. (A.3), and consequently gives us eqns.
(A.10) and (A.12). ”The stationary phase integral is changed
however; we now find | |

h(k}; cos ™ (i:/——E'-‘c,os A) — k

‘We again find flat points, this time where cos k ==F—.

This equation suggests that there are a total of eight flat
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points, but other considerations (the value of sin ko) show

there are only four: two for each sign of 1, with one between

-7/2 and 0 and the second between v/Zyand T, iﬁ each case.
In all éases we find that- | |
W (k)] = | ot b, |
Determining the phase factor is soﬁewhat tricky; the easiest
method is to jﬁst pick'thé‘value giving agreement‘with the
_ computéd values;'>We find that | | ‘

- () ~ . —L___V(z—xeuczé1+9’

2mm (lE/"’)

IE/

Sjn E

hul/ mt|

2. b

- ( E’)(/E/ )] I<IE/<3

2mrm® g P G+E)’ilg €) [[ E——v(wE)u EJ]
E)(HE) |
FT‘*[ 3= E)(H—e:)] j)y

- 1< E<¢y
1 is even, while its real part is

"
We observe that Ime+1?m_ |
odd in E, (i.e. G(-E) = -G*(E) ), as required (remark 3).
‘ Azain we find m;2 decay with a phase factor raised to the

mth power. However, now the Green's function is non-vanish-

ing in the interior third of the band, and the singularitiesb

| ét + 1 are | |E| -1|_1/2 rather than | |E] —111/2 as in the

<10> direction. We still find +1/2 singularities at the

band edges. The singularities at E = + 1 indicate that G

—




234

falls off more slowly at these energies. Indeed, a closer
iﬁspection shows thét af these two values, h(k) can bécome‘
a constant. The astptotic'EXpression does not fit.thé
actual Green's fﬁnction very well until m = 4, farther than’:
in the <10> case. That it works reasonably well invthat
case‘is Verified by the display of compqtation'in Table
 ~A_2° .

The caléulation of fhe pair interaction energy pro-
ceeds as before;' We set t_=.‘cos-1 (;EEL_E ). and integrafe
by parts to find y ; ‘ 4 2

Awu‘tum, ~ ;‘f.; (RL g Cffqz“zep) Gy s (Ep)f
;v  nQ,5? | , |
We fully expect, Buf:cannot expliéitly vérify, that this
R—5 decay holds for arbiﬁrary direction. The detailed be-
havior is highly dependent on’directioﬁ ahd Fermi energy.
“The pair interaction ié oscillatory in E_ and R and aniso-

F

tropic.
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