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Narrowing of Terrace-width Distributions During Growth on Vicinal Surfaces
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We present analytic and numerical results for the steady-state, non-equilibrium terrace-width
distribution (TWD) of steps during growth on vicinal surfaces. Kinetic Monte Carlo shows that
the TWD narrows progressively with increasing flux until the model breaks down. The narrowing
corresponds to kinetic repulsion between moving steps, due to the intrinsic asymmetry of the adatom
diffusion current on a growing surface. With a 1-dimensional (1D) model, from a Burton-Cabrera-
Frank approach, we make contact with previous work, in which the attachment asymmetry can also
be due to electromigration or to asymmetry in attachment rates; we deduce an expression for the
narrowing via a Fokker-Planck analysis. We illustrate how Ehrlich-Schwoebel barriers (although
inducing an instability in 2D) also lead to such asymmetry and narrowing.

PACS numbers: 68.35.-p,81.15.Aa,05.10.Gg

With equilibrium properties of vicinal surfaces [1, 2]—
especially the form of the terrace width distribution
(TWD) [3]—relatively well understood, much attention
now focuses on non-equilibrium aspects, notably in long-
fascinating field of growth [4–6]. In this paper, we ap-
ply a well-tested generic model to study how deposition
modifies the TWD. We identify a deposition rate below
which the flux does not measurably alter the TWD and
show that higher flux produces a narrowing of the TWD
equivalent to the creation of an effective repulsion be-
tween steps. This heretofore undocumented narrowing
heralds the breakdown of the standard quasi-static ap-
proximation; the narrowing increases with flux until the
step model loses meaning. We present a formal argu-
ment to account qualitatively for the narrowing in terms
of flux-induced asymmetry in attachment probability p
to upper and lower step edges. A more familiar source of
such asymmetry is the Ehrlich-Schwoebel (ES) barrier [7]
EES . In the limit of very slow growth, EES also produces
an attachment asymmetry leading to such narrowing, but
eventually leads to a Bales-Zangwill (BZ) meandering in-
stability [8]. In contrast, an inverse Ehrlich-Schwoebel ef-
fect (in this context due to EES < 0) leads to a bunching
instability [9] with an attendant bimodal TWD. Hence,
it is of interest to investigate the stable case EES = 0,
even if physical systems are not likely to precisely sat-
isfy this condition [10]. (This limit has been examined,
e.g., for spiral surface growth [11].) Other well-known
sources of attachment asymmetry are electromigration
[12, 13], [atomistically induced] differences in attachment
rates [9, 14], and impurities [15–17].

In equilibrium the width of the TWD narrows with in-
creasing strength A of the energetic (i.e. non-entropic)
repulsion A/w2, where w is the separation between two
steps (in the downstairs direction, x̂ in “Maryland nota-
tion” [1, 3, 18–20]. Invariably the analysis of the TWD
is based on the transcription of the configuration of steps

in two spatial dimensions to the world lines of spinless
fermions in one spatial dimension (x̂) and a time-like di-
mension (ŷ, along the steps). It follows that the only
dependence on A is through the dimensionless combi-
nation Ã ≡ A ˜̄/(kBT )

2, where ˜̄ is the step stiffness.
In the, alas, customary [1] fit of the TWD by a Gaus-
sian, the standard deviation ¾ ∼ Ã−1/4. Whether this
is a precise proportionality, and what the proportional-
ity constant then is, depends on the approximation used
[18]. A more sophisticated analysis [3, 18–20] uses a fit
to the “generalized Wigner distribution” (GWD)
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where the dimensionless s≡ w/⟨w⟩, with ⟨w⟩ the mean
terrace width. The single adjustable parameter % is re-
lated to Ã by Ã = %

2

(
%
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)
. This formalism also shows

that a good estimate of Ã can be obtained from the stan-
dard deviation ¾2 of a Gaussian fit, albeit from a 4-term
relation [3, 19, 21] rather than the conventional Ã ∝ ¾−4.
Our expectations of the behavior of the TWD dur-

ing growth are conditioned by intrinsically limited one-
dimensional (1D), simplistic models, studied by Gossman
et al. [22] and by Williams and Krishnamurthy [23]. In
particular, the latter performed Monte Carlo simulations
of a model in which atoms were deposited on terraces at a
deposition rate F , and then attached to either ascending
or descending steps with a probability p or 1− p, respec-
tively. The initial TWD was random, with a uniform
probability between 0 and 2⟨w⟩. Gossman et al.’s model
is couched in terms of the motion of steps in the pres-
ence of a diffusion bias, such as an electric field, rather
than asymmetric attachment due to growth or asymme-
try in attachment rates; the evolution equation for all
these cases is the same in 1D.
So long as p ≤ 1/2, the terrace widths evolved to-
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wards a stationary state characterized by a Gaussian or
Wigner distribution. For p close to 0 (corresponding to
infinite ES barrier), the standard deviation of this dis-
tribution was found [22, 23] to behave as (1 − 2p)−1/2,
a result which is easily obtained from a simple mean-
field argument, given below. On the other hand, in
the seemingly simpler case of a symmetric attachment,
p = 1/2, the standard deviation was observed to at-
tain a finite value, as it should, instead of diverging
as implied by (1 − 2p)−1/2. The model seems superfi-
cially to be flux-independent until one recognizes that
p depends on F . Williams and Krishnamurthy [23] ar-
gue that the long-time (saturation) standard deviation
¾ =

√
⟨w⟩ (assuming, for now, unit lattice constant for

clarity) and demonstrate it numerically for p=0; Krug
and Schimschak [24] show rigorously that ¾ =

√
⟨w⟩

for p=0, in which case the TWD is a Poisson distri-
bution. In contrast, the equilibrium variance associ-
ated with 2D picture leading to Eq. (1) is ¾GWD =
[(%+1)/(2b%)−1]1/2⟨w⟩ → 0.422 . . . ⟨w⟩ for steps with no

energetic repulsion (Ã = 0 ⇒ % = 2); the exact value for
this special case is ¾exact = 0.424 . . . ⟨w⟩ [20, 25]. Thus,
for ⟨w⟩ ≥ 6, the kinetic ¾ is less than ¾GWD; thus, in this
model, growth more strongly suppresses step fluctuations
for more widely separated steps.
Analytic work on steps motion is based on the Bur-

ton, Cabrera and Frank (BCF) model [26], which as-
sumes that adatoms on terraces obey a deposition-
diffusion equation, with boundary conditions specified at
the steps. In 2D, steps are lines, whose shape and po-
sition are dictated—through mass conservation—by the
flux of adatoms to and from the steps themselves. Thus,
the full 2D BCF model is highly nonlinear, and solving
it is a formidable task, that can only be attacked with
kinetic Monte Carlo (kMC) simulations. Analytic cal-
culations can be performed when the time scales for an
adatom and for a step to cross a terrace, ⟨w⟩2/D, and
⟨w⟩/v = 1/F , respectively, are widely separated, namely
when

1/F ≫ ⟨w⟩2/D ⇒ F/D ≪ 1/⟨w⟩2, (2)

where D is the surface diffusion constant. By this
same reasoning, we estimate the temperature-dependent
threshold value Fc for the flux, above which the effective
interaction plays a significant role (and below which the
equilibrium TWD obtains); equating rates in Eq. (2), we
take

Fc=D/⟨w⟩2. (3)

After solving the adatom deposition-diffusion equation
assuming immobile steps, one computes the step velocity
from the adatom flux. This quasi-static approximation
resembles the Born-Oppenheimer approximation. Since
steps are fixed when the adatom diffusion field is com-
puted, step motion clearly cannot affect adatom diffusion

in the quasi-static regime. Decoupling step motion—
and therefore, terrace-width fluctuations—from the dif-
fusion field makes the TWD totally insensitive to step
motion. It also implies that the adatom density on a ter-
race is symmetric with respect to the middle of that ter-
race. Hence, this situation is referred to as the symmetric
model [27]. To make the adatom density asymmetric on a
terrace within the quasi-static approximation, one must
modify the boundary condition at one or both of the
steps bordering that terrace (e.g. via EES) or introduce
external drift.
Eventually the motion of the steps must affect the

adatom density, since a fast-moving step will collect more
adatoms from the terrace in front of it, as it sweeps
through, than from the terrace behind it. To investi-
gate this problem analytically, we restrict ourselves to
the special case of straight steps.
Previously [28] we studied a vicinal surface relaxing to

equilibrium by computing the behavior of the TWD as a
function of time. Here we extend the numerical analysis
in Ref. [28] by performing kMC simulations of the sta-
tionary TWD during deposition and growth on a vicinal
surface, based on the standard, well-established [29] two-
dimensional (2D) solid-on-solid (SOS) model with barrier
energies Eb determined by lateral bond-counting: Eb is
a diffusion barrier Ed plus a bond energy Ea times the
number of lateral nearest neighbors in the initial state.
This number is 1 for an edge atom leaving a straight
segment of step edge for the terrace, 3 for a detaching
atom that originally was part of this edge (leaving a notch
or kink-antikink pair in the step), or 2 for a kink atom
detaching, either to the step edge or the terrace. We
adopt our oft-used [28, 30] generic values Ed=1.0 eV and
Ea=0.3 eV, with T= 723K. (For larger Ea/Ed step-flow
collapses at smaller F [31].) Sublimation is forbidden,
and there is no interaction between steps besides the en-
tropic repulsion. There are 1000 lattice sites in the ŷ
direction along the steps, with periodic boundary condi-
tions. In the x̂ direction, there are 200 lattice spacings
a and N=20 steps, created by screw-periodic boundary
conditions, so that ⟨w⟩=10a. To gauge Fc from Eq. (3),
we estimate the hop rate as the generic value 1013s−1

[32]. Then

Fc =
4a2×1013 e−Ed/kBT

⟨w⟩2 s → 4×104
atoms

s
= 0.2

ML

s
(4)

We focus on the effect of deposition with symmetric
attachment (EES = 0), considering non-zero EES near
the end. After trial runs at various deposition rates F ,
we carried out extensive studies for F = 0.1, 1.0, and
10 ML/s. These rates span the range from a barely per-
ceptible effect to the verge of the meandering instabili-
ties that herald the crossover from step-flow growth to
nucleation-limited growth. Fig. 1 shows “snapshots” of
the step configurations at these three deposition rates af-
ter 150 monolayers (ML), steady-state being reached by
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FIG. 1: Images (200×1000 sites) of the vicinal surface after
deposition of 150 ML for 3 growth rates (left to right): near
equilibrium (F=0.1 ML/s), moderate growth (F=1 ML/s),
and rapid growth (F=10 ML/s) near the upper limit of step-
flow growth.
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FIG. 2: [Color online] Simulated terrace-width distribution
(TWD) for the 3 cases of Fig. 1. The F=1.0 set is displaced
upward by 0.4, the F=10 case by 0.8, for clarity. The solid
curves show fits to, a Gaussian while the dotted curves are
GWDs, Eq. (1), for the indicated values of %.

100ML. [30] In Fig. 2 there are corresponding plots of the
TWD. [30] Unlike in our equilibrium studies, we do not
average over several runs. Noteworthy results include:

∙ 1) For F = 0.1 ML/s the TWD is nearly unchanged
from the equilibrium TWD. The curve is well described
by the Wigner distribution for %=2 (best fit value =
2.07), corresponding to only entropic interactions (“free
fermions”). This behavior is consistent with our estimate
in Eq. (4): F = 0.1ML/s <∼ Fc is a “small” deposition
rate, at which the quasi-static approximation is expected
to apply. The higher deposition rates, above Fc, lead to
best fits with %≈4.39 and 5.24 (which values, at equilib-
rium, would translate into effective interaction strengths
Ã ≈ 2.6 and 4.2) for F = 1 and 10 ML/s, respectively.
In other words, the deposition leads to a TWD progres-

sively narrower than in equilibrium; this can be expressed
as an effective repulsion between the steps, and points to
a breakdown of the quasi-static approximation.
∙ 2) The breakdown of the quasi-static approximation
takes place well into the step flow regime, before any
islands nucleate on the terraces. As such, it is experi-
mentally relevant, and may complicate the estimates of
the ES barrier, which is known to also produce narrowing
of the TWD. (See quantitative analysis below.)
∙ 3) For the highest two deposition rates the TWD can be
adequately described by a Gaussian, although it is then
less straightforward [18] to extract the effective interac-
tion strength. [21] This TWD behavior is reminiscent of
that found by Videcoq et al. [33].
∙ 4) The meandering of the individual steps increases
with F . In equilibrium this would correspond to a de-
crease in the step stiffness ˜̄. Correspondingly, at fixed A
we would expect Ã ≡ A ˜̄/(kBT )

2, and so %, to decrease
as well. The observed increase in % clearly highlights the
kinetic origin of the repulsions (all the more so because
A=0 in our simulations).
∙ 5) For the largest value of F , we see that a key assump-
tion, that the step position is a single-valued function of
the position y along the step, is about to break down.
This analysis was done for ⟨w⟩ = 10 on a 200×1000

lattice. The large size in the ŷ direction minimizes finite-
size effects. In some early runs [30], we considered several
values of ⟨w⟩—2, 4, 8, 10, 20— but on a 400×400 lattice.
Saturation of ¾ was achieved after of order 100 ML. These
saturation values were semiquantitatively consistent with
the

√
⟨w⟩ behavior found in Ref. [23], but better fit

by a logarithmic rise with ⟨w⟩. Further investigation is
warranted.
We can gain some understanding of the origin of the

effective repulsion, in the previously mentioned 1D per-
spective [22, 23] by considering the equations of motion
of a train of [descending] steps (cf. Fig. 3) in the co-
moving frame [4], from the BCF perspective [26]. The
deposition-diffusion equation satisfied by the adatom
density cm+1(x) on the terrace between down-steps at
xm and xm+1, and thus of width wm+1 = xm+1 − xm is

Dc′′ + vc′ + F = 0, (5)

where v = F ⟨w⟩ is the velocity of the comoving frame.
Eq. (5) is the limit of zero desorption (infinite desorp-
tion time ¿) of a long-known [34, 35] and often applied
[9, 11, 27, 36] result. In this limit one loses the con-
cept of equilibrium flux and finds an infinite surface dif-
fusion length xs =

√
D¿s and so an infinite Péclet number

vxs/D [35], rendering the step motion “slow”.
Assuming the boundary condition c(xm) = c(xm+1) =

0, we find the adatom density to be

cm+1(x)=
F

v
(xm−x) +

F

v
wm+1

1−exp[−v(x−xm)/D]

1−exp[−vwm+1/D]
.

(6)
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FIG. 3: Schematic of 1D model of a vicinal surface. The
position is step m is xm. Terrace m has width wm=xm−xm−1
and adatom concentration cm(x).

From Eq. (6) it is straightforward to find the velocity

D
[
(∂cm+1/∂x)∣x=x+

m
− (∂cm/∂x)∣x=x−

m

]
of themth step:

ẋm =
F

2

[
wm+1e

vwm+1/2D

sinh(vwm+1/2D)
− wme−vwm/2D

sinh(vwm/2D)

]
. (7)

By subtracting from Eq. (7) the corresponding equation
for ẋm−1, we obtain the equation for ẇm. For comparison
with previous work, [22, 23] we linearize this equation of
motion, expanding to lowest order in each wm−⟨w⟩. After
straightforward algebra, we find

ẇm=F [(1− p) {wm+1 − wm}+ p {wm − wm−1}] , (8)

p ≡ 1

2

[
Φ

sinh2 Φ
− e−Φ

sinhΦ

]
, Φ ≡ v⟨w⟩

2D
=

F ⟨w⟩2
2D

. (9)

From Eq. (3) we have Φ = F/2Fc. Expanding in
F , p ∼ 1/2 − Φ/3 + (2/45)Φ2 + O(Φ5); also 1−2p ≈
tanh(2Φ/3) = tanh(F/3Fc) (where the approximation is
accurate to better than 0.5%). Thus, for nonvanishing F
there is an apparent asymmetric attachment of diffusing
atoms to steps, with preferential attachment to ascending
steps (p < 1/2), even with no ES barrier.
To proceed, we make the mean-field assumption that

wm+1 = wm−1 = ⟨w⟩. Since these neighboring terrace
widths are anticorrelated with wm, the quadratic poten-
tial about ⟨w⟩ in this approximation underestimates the
restoring force. Introducing white [37] delta-correlated
noise ´, we find the Langevin equation

ṡ = −F (1− 2p)(s− 1) + ´. (10)

The corresponding Fokker-Planck equation is

∂P (s, t)

∂t
=

∂

∂s
[F (1−2p)(s−1)P (s, t)] +

∂2

∂s2
[P (s, t)],

(11)
which, assuming initially uniform spacing and setting t̃ ≡
F (1−2p)t, has the solution [38]

P (s, t̃)=

[
F (1−2p)

2¼(1−e−2t̃)

]1/2
exp

[
−F (1−2p)(s−1)2

2(1− e−2t̃)

]
. (12)

FIG. 4: Images of the simulated 200×1000 vicinal surface
after deposition of 20 ML for Ehrlich-Schwoebel barriers
EES, from left to right: 0.1eV, 0.3eV, infinite. Other pa-
rameters are L=10, T=723K, F=0.01ML/s, Ed=1.0eV, and
Ea=0.3eV.

The variance ¾2 of this Gaussian distribution is

¾2 =
1−exp(−2t̃)

F (1−2p)
−→
t̃→∞

1

F (1−2p)
≈ 1

F tanh
(

F
3Fc

) , (13)

the characteristic 1D dependence found by Gossman et
al. [22]; the distribution starts as the delta function ±(s−
1) and broadens monotonically to the long-time limit in
Eq. (13), with width ¾ ∝ F−1 for small F and ¾ ∝
F−1/2 for large F . Since the Gaussian is centered about
s = 1 and since P (s< 0) > 0 is unphysical, the analysis
must fail once ¾ ≈ 1, setting a lower limit on F for the
description to be viable.
Since this analysis neglects both entropic or ener-

getic repulsions, the behavior for small flux, F → 0+,

p → 1
2

−
, should have the form of a Poisson distribution,

P (s) = exp(−s), associated with creation of a vicinal
surface by the random deposition of straight stiff steps.
(Note also Ref. [24].) Furthermore, the dependence
on F is expected to be exaggerated in the model since
only F is the only source of TWD narrowing. Indeed, it
would predict that, in our kMC simulations, the TWD for
F=10ML/s should be narrower than that for F=1ML/s
by a factor ≥ √

10 ≈ 3.2, much greater than observed,
highlighting the risk of using such simple 1D models (also
unfaithful at early times) for more than qualitative pur-
poses.
Another concern is the effect of the mean-field nature

of our calculation. In equilibrium, the venerable Gruber-
Mullins approximation [39] is known to underestimate
the variance as a function of step-step repulsion [40].
Margetis [41] has recently obtained the exact variance
of the 1D linear model, Eq. (8), going beyond the mean-
field limit given in Eq. (13). While the power series of his
result agrees with that of the first result in Eq. (13) until
the third-order term, ∝ t̃ 3/(1− 2p)2, the exact variance

actually diverges for long time like
√
t̃/(1− 2p) rather

than saturating, in contrast to the numerical results in
2D; however, this long-time behavior is sensitive to the
assumptions about the noise term added to Eq. (8) [42].
An Ehrlich-Schwoebel barrier [7] offers a different, well-

known way to break the upstairs-downstairs symmetry
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FIG. 5: [Color online] TWDs from simulated configurations
(cf. Fig. 4) with T=723K and very small F=0.01 ML/s. The
smooth curves are Gaussian fits, with the indicated standard
deviations ¾. With increasing EES the TWD evidently nar-
rows (¾ decreases).

[4–6, 43, 44]. The resulting anisotropy is controlled
through EES, which ranges from 0 to ∞; we consider the
intermediate values 0.1, 0.2, 0.3, and 0.4 eV. At T=723K,
the TWD has nearly converged to the infinite-barrier
limit by EES=0.4, and the runs become prohibitively
slow. To distinguish ES-induced narrowing from flux-
induced narrowing, we simulate at low enough flux that
there is no observable narrowing when EES=0; we use
F=0.01 ML/s. (Even at F=0.1 ML/s, by 100 ML there
is a Bales-Zangwill (BZ) [8] instability—absent when
EES = 0.)

Fig. 4 shows snapshots of the step configurations for a
range of values of EES. Initially sharp, the TWD reaches
its saturation width after a short transient regime of a
few ML growth. The configurations are recorded after
20 ML, before the onset of periodic unstable BZ mean-
dering. The resulting TWDs, for all values of EES that
we studied, are displayed in Fig. 5, along with Gaussian
fits. The standard deviation of the TWD decreases from
¾ ∼ 0.43 (NB: ¾=0.42 for Ã=0 at equilibrium [20, 28])
to ¾ ∼ 0.22 for an infinite ES barrier. Correspond-
ingly, in Fig. 4 we see behavior reminiscent of Bullet
4 above, with increasing EES rather than F ; the num-
ber of close-approaches decreases [45], and the number
of kinks increases, though now as a prelude to the BZ
instability. When F is too small to produce significant
attachment asymmetry, the asymmetry due to EES satis-
fies p/(1− p) = exp(−EES/kBT ). With Eq. 9 we obtain
an effective barrier—when actually EES=0—due to the

flux:

Eeff
ES

kBT
=ln

(
2 sinh2 Φ

Φ−e−Φ sinhΦ
−1

)
∼ 4

3
Φ+

4

3
Φ3+O(Φ5). (14)

Similarly we could deduce an effective electromigration
force [36] due to the flux.
In summary, we have gauged the flux (F ⟨w⟩2/D <

2×10−7 exp(Ed/kBT ) in our model, 0.1 ML/s for our
choice of parameters) below which there is negligible
change from the equilibrium TWD. With stronger flux,
the quasi-static approximation fails, and the TWD nar-
rows progressively, consistent with an effective step-step
repulsion. Most experimental techniques used to probe
equilibrium TWDs could observe the TWD narrowing
during growth, though efforts have focused instead on
step bunching and other instabilities [46]. In simulations
of etching, the TWD can have the same GWD-like shape
when the etchant is stirred (i.e. surface diffusion is unim-
portant) [47]; however, ¾ should be rate-independent
since etched atoms do not diffuse before detaching [48].
Flux effects might well contribute to the TWD narrowing
(by ∼1/4) observed with reflection electron microscopy
on vicinal Si(111) at 1100∘C (compared to 900∘C), where
an incident flux compensated for desorption [49].
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edited by A. Voigt (Birkhäuser, Basel, 2005), p.69;
arXiv:cond-mat/0405066.

[15] J. P. v.d. Eerden and H. Müller-Krumbhaar, Phys. Rev.
Lett. 57 (1986) 2431.

[16] J. Krug, Europhys. Lett. 60 (2002) 788.
[17] A. Ben-Hamouda, N. Absi, P.E. Hoggan, and A.

Pimpinelli, Phys. Rev. B 77 (2008) 245430; A. BH.
Hamouda, T J Stasevich, Alberto Pimpinelli, and T L
Einstein, J. Phys.: Condens. Matter 21 (2009) 084215.

[18] T. L. Einstein, H. L. Richards, S. D. Cohen and O. Pierre-
Louis, Surf. Sci. 493 (2001) 460.

[19] H. L. Richards, S. D. Cohen, T. L. Einstein, and M.
Giesen, Surf. Sci. 453 (2000) 59.

[20] T.L. Einstein and O. Pierre-Louis, Surf. Sci. 424 (1999)
L299.
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