Two-step Unconventional Protocol for Epitaxial Growth in One Dimension with
Hindered Reactions, with Implications For Experiments

Julidn A. Sénchez* and Diego Luis Gonzalez!
Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali, Colombia

T. L. Einstein}
Department of Physics and Condensed Matter Theory Center,
University of Maryland, College Park, MD 20742-4111 USA
(Dated: October 19, 2019)

We study the effect of hindered aggregation and/or nucleation on the island formation process in
a two-step growth protocol. In the proposed model, the attachment of monomers to islands and/or
other monomers is hindered by additional energy barriers which decrease the hopping rate of the
monomers to the occupied sites of the lattice. For zero and weak barriers, the attachment is limited
by diffusion while for strong barriers it is limited by reaction. We describe the time evolution of
the system in terms of the monomer and island densities, N; and N. We also calculate the gap
length, the capture zone and the island distributions. For all the sets of barriers considered, the
results given by the proposed analytical model are compared with those from kinetic Monte Carlo
simulations. We found that the behavior of the system depends on the ratio of the nucleation barrier
to the aggregation barrier. The two-step growth protocol allows more control and understanding
on the island formation mechanism because it intrinsically separates the nucleation and aggregation

processes in different times regimes.

I. INTRODUCTION

The study of growth processes has attracted the at-
tention of the scientific community not only because of
their academic importance but also for their industrial
applications. For instance, epitaxial growth (EG) is used
in film growth to fabricate nano and micro-electronic de-
vices. EG involves intriguing out-of-equilibrium phenom-
ena which are not yet fully understood. For instance, the
functional forms and the information about the growth
process contained in some measurable quantities, such
as capture zones, gap lengths and island size distribu-
tions, have generated some controversy and discussion
[1-7]. For these reasons, it is not surprising to find several
theoretical studies devoted to this subject in one dimen-
sion (1D) [6-14] and in two dimensions (2D) [1-5, 15-25].
Experimental studies in 1D and 2D can be found in [26—-
39] and [40-46], respectively. A principal focus of these
works is to understand the microscopic mechanisms in-
volved in growth. This is a fundamental requirement to
achieve control of the properties of the formed material.
Basic models of growth involve three fundamental pro-
cesses: mass transport (diffusion), formation of stable
clusters (nucleation), and growth of stable clusters (ag-
gregation) [5-8, 20, 47]. The basic growth units (atoms
or molecules) are usually called monomers and the stable
clusters are called islands. Most of the studies about is-
land formation are based on a one-step growth protocol
(1SG) where the monomers are deposited at a controlled
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constant rate F. After deposition, the monomers dif-
fuse over the substrate and eventually begin to interact,
forming clusters.

In the standard 1SG protocol, for short times the sys-
tem evolves basically by nucleation. Thus, in this regime
the relevant processes are nucleation, deposition, and dif-
fusion. Consequently, at least three time scales are re-
quired to describe the microscopical processes. For long
times, the system reaches a quasi steady state where the
the density of monomers is much smaller than that of
that islands. Thus, the nucleation term in the rate equa-
tion for the density of monomers can be neglected in
comparison to the aggregation term [6, 8, 18, 48]. There-
fore, the time scale associated with aggregation has to
be also taken into account. In an effort to make easier
the control and understanding of the growth processes, a
entirely new deposition protocol has been recently pro-
posed by Tokar and Dreyssé in Ref. [14]. Basically, their
protocol consists of two different steps of growth (2SG).
In the first step, a small quantity of monomers are de-
posited simultaneously on the substrate. Experimentally,
this can be done by a fast deposition of monomers onto
a substrate at low temperature in such way that the
hopping rate is negligible. After deposition, the tem-
perature of the substrate is raised, increasing the diffu-
sivity; thus, the monomers diffuse and eventually form
islands. Note that, at the end of the first step, the sys-
tem reaches an equilibrium state characterized by the
absence of free monomers. In the second step, additional
monomers are deposited sequentially at a constant rate
F. Those monomers predominantly aggregate onto the
islands formed in the first step. In the second step only
the aggregations are relevant because the nucleations are
rare events because the typical time between consecutive
depositions, 74, is selected in such way that it is much


mailto:julian.a.sanchez@correounivalle.edu.co
mailto:diego.luis.gonzalez@correounivalle.edu.co
mailto:einstein@umd.edu

larger than the typical aggregation time, 7,. Accordingly,
the simultaneous presence of two free monomers on the
substrate is unlikely. In the 2SG protocol, nucleation and
aggregation occur at different times. In the first step, ag-
gregation is negligible while in the second step nucleation
is. The physics involved in the 2SG protocol is intrin-
sically simpler than that of the 1SG, mainly due to the
direct separation of reactions into different steps. In 1SG
it is common to delineate two stages, which are tradition-
ally identified as transient and steady-state. However, in
the 2SG there are actually two different steps of growth.
Additionally, it is important to make clear that the 25G
deposition protocol is a theoretical proposal which of-
fers an alternative to the standard 1SG protocol, seeking
to offer more control of the formation of islands. To the
best of our knowledge, the 25G protocol has not yet been
implemented experimentally.

In the diffusion-limited aggregation (DL, distinct from
DLA in fractal growth) regime, nucleation and aggre-
gation are considered instantaneous because the typical
times associated with aggregation and nucleation are neg-
ligible compared to the diffusion time of a monomer on
the substrate. Most of the literature is devoted to the
DL regime [1-25]. However, there are experimental re-
sults which suggest the existence of additional nucleation
and/or aggregation energy barriers [27-30, 34-41, 49, 50].

For high enough barriers, the typical reaction time
can be much longer than the diffusion time; this is the
reaction-limited regime (RL) [48, 51-58]. In the RL
regime, the monomers require many attempts before at-
tach to a cluster/monomer. Thus, the free monomers
density is more spatially uniform in the RL regime than
in the DL regime. The description of island formation
in the 1SG protocol for the DL and RL regimes leads
to a complex set of self-consistent equations which have
to be solved numerically because it is not possible to
find analytical expressions for the quantities of interest
[6, 18, 19, 59].

There are basically two ways to model the attach-
ment /interaction range. In the Shi, Shim, and Amar
model (SSA model) [15], in order to react a monomer
must hop onto an already occupied site. In contrast, the
model proposed by Evans and Bartelt (EB model) [24]
includes an implicit short-range interaction. In the EB
model a monomer reacts if reaches a site which is the
nearest neighbor of an occupied site. Thus, in the SSA
model there is no short-range interaction while in the EB
there is what amounts to a very strong nearest-neighbor
attraction. In this paper our simulations use the SSA
model.

Motivated by the work of Tokar and Dreyssé in Ref.
[14], and based on previous theoretical and experimental
work [48, 57-59, 61, 62], we present a one-dimensional
growth model based on the 2SG protocol where nucle-
ation and/or aggregation are hindered by additional en-
ergy barriers. For zero and weak barriers, the system
is in the DL regime, while for large barriers the system
reaches the RL regime. In the limit 7; > 7,, the physics

involved in the second step of the 2SG protocol is much
simpler than that in the first step. In this limit, the sec-
ond step can be understood from the analytical study
of a single monomer diffusing between two islands. In
contrast, in the first step the nucleation process in which
there are several monomers must be addressed. Taking
this into account along with the formation of almost all
the islands in the first step, we focus this paper on the
first step of the 2SG protocol. We emphasize that this
work is a theoretical exploration of the capabilities of the
2SG protocol; thus, most of our results can not be ap-
plied and/or compared directly to previous studies based
on the 1SG protocol.

This paper is organized as follows. In Sec. II the con-
sidered model is explained in detail. In Sec. IIT an an-
alytical study of the model is presented. In Sec. IV the
results of extensive kinetic Monte Carlo (kMC) simula-
tions are compared with those from the analytical ex-
pressions. Finally, in Sec. V we present some conclusions
and an illustrative example of how our model can be ap-
plied. In particular, we use an analytical expression for
the island size distribution to describe experimental data
on the formation of one-dimensional atomic Ag wires on
a Pt(997).

II. MODEL DESCRIPTION

In order to describe the first step of growth in the 2SG
protocol, we consider a one-dimensional defect-free sub-
strate with length L. At ¢t = 0, a small number of mobile
monomers are randomly and simultaneously deposited.
After deposition, the monomers diffuse with a diffusion
constant Dg. Eventually, the monomers meet, forming
stable clusters called islands. This process is known as
nucleation. Distinctively in 1D, the islands divide the
substrate into independent sections called gaps [6-14].
For the sake of simplicity we assume a critical nucleus
size ¢ = 1; i.e., in our model just two monomers are
required to form a stable and static island. An aggrega-
tion event occurs when a mobile monomer is captured by
an island. This process increases the island size by one
unit. Monomers which belong to an island do not dif-
fuse. Given that the initial density of monomers is small,
we assume the point-island model, where the islands oc-
cupy just a single site on the substrate, and their size is
given by the number of monomers which belong to the
island. In Refs. [6, 59] it is shown that, for low coverages,
the more realistic model of extended-islands gives simi-
lar results to those obtained by the point-island model.
As mentioned in Sec. I, for short times aggregation is
usually negligible and the nucleation is the dominant re-
action. However, at the end of the first step there are
always some aggregations due to the existence of gaps
with a single monomer inside. Therefore, within the first
step there are two regimes: the nucleation regime, where
almost all the islands are formed, and the second one,
where the surviving monomers attach to the existing is-



lands. Eventually, all the mobile monomers disappear
because they are captured by the islands. Then, the
second growth step begins with the deposition of more
monomers at a constant rate F'. As usual, the deposition
rate satisfies F' < Dy. Thus, the monomers deposited in
the second step are more likely to aggregate to the islands
formed in the first step than to find and join with an-
other free monomer. In the proposed model the two key
reactions, nucleation and aggregation, are hindered by
additional energy barriers €, and €,, respectively. These
barriers act to decrease the hopping rates of monomers
to occupied sites of the lattice. Thus, the hopping rates
of a monomer to a site occupied by another monomer
and by an island are given by D,, = Dgexp(—e,/(kgT))
and D, = Dg exp(—¢,/(kpT)), respectively. Usually,
the asymmetry between the diffusion rates is quantified
through the associated lengths, [, and [,, which can
be written as Dy/D,, = I, + 1 and Dy/D, = l, + 1
[48, 55, 57-62]. For large values of €, and €g, lo, I, > 1,
the nucleation and aggregation are hindered and the sys-
tem is in the RL regime. In this regime, monomers re-
quire many attempts in order to be incorporated into the
monomers/islands. In contrast, for zero and weak barri-
ers the system is set in the DL regime and the monomers
attach to the monomers/islands once they reach the in-
teraction range.

There are several quantities which can be used to char-
acterize the properties of the growth process. Two are
the density of islands with size s, N,, and the density
of monomers, Ni. Both densities give information about
the average rates associated with nucleation and aggre-
gation processes. From N, it is possible to define the
island size distribution Py = Ni/N with N = > _, N
the total density of islands. A particularity of the 1D
systems is that the islands divide the substrate into in-
dependent segments called gaps. As a consequence of
this geometrical constraint, each monomer inside a given
gap must eventually either aggregate to one of the is-
lands at one end of the gap or meet another monomer
to nucleates forming a new island inside the gap. The
segment between bisections of the gaps at both sides of
a given island defines its capture zone. The structure
formed by the islands can be partially characterized in
terms of the gap length and capture zone distributions,
pg(¢) and Pozp(y), respectively. These two distributions
are related in a non-trivial and unknown way. However,
they can be measured experimentally, and therefore, can
be used to obtain from experimental results information
about the growth processes, such as the key microscopic
parameters. We emphasize that the formation of islands
in the second step is negligible; thus, the structure formed
by the islands only depends on the first step. For this rea-
son we focus on the study of the first step of growth in
the 2SG protocol.

FIG. 1: Schematic representation of the basic processes in
the first step of growth. The point-islands are represented
by red spheres and occupy just one lattice site. The
monomers are represented by green spheres. For leftward
arrows, the illustrated processes are, from left to right,
aggregation, nucleation, and diffusion to empty sites. The
green arrows represent hops to an empty site (diffusion), the
blue arrow a hop to a site occupied by a monomer
(nucleation) and the red arrow a hop to a site occupied by
an island (aggregation).

III. ANALYTICAL MODEL FOR THE FIRST
STEP

A. Rate Equations

The time evolution of N7 and N, in the first step can
be described by standard rate equations (RE) [6, 8, 18,
64, 65]. For N1 we can write

AN, )
— =2k N} — Ny Y ko N, (1)

s>2

where the first term in the right side of Eq. (1) repre-
sents nucleation while the second one takes into account
the aggregation. The time-dependent factors k, and kg
are the capture rates for nucleation and aggregation, re-
spectively. In the same way, the evolution of Ny is given
by

dN
dt

= Nl(ks—l Ns—l - ks Ns)a (2)

where ks—1 = ky, [59]. The two terms of Eq. (2) represent
the aggregation of monomers to islands with size s—1 and
s, respectively. Let 8y be the initial density of monomers.
Thus, at ¢t = 0, the densities satisfy Ny = 6y and N, = 0.
The total density of islands is defined by N =" ., N;.
Equations (1) and (2) can be written in terms of N as
follows:

dNy

W:—QkMfo—léj\le, (3)
and
dN

In Eq. (3) the average aggregation rate, k, is defined as

- 1
k: NZ‘ICSNS' (5)

s>2



Adding Egs. (3) and (4), and integrating the result with
respect to the time, we arrive at:

Nl(t)+2N(t):60—/Ot dtk Ny N. (6)

The solution of the RE depends on the relative values
of the barriers associated with nucleation and aggrega-
tion, which in turn are given by the characteristic lengths
l, and [,,. We considered four different cases: weak and
zero barriers (I, = I, = 0), strong aggregation barrier
(I > 1 and l,, = 0), strong nucleation barrier (I, > 1
and [, = 0), and strong barriers (I,,l, > 1). No mat-
ter the value of the barriers, nucleation is the dominant
reaction for short times, while aggregation is dominant
for long times. Thus, for short times, the REs can be
reduced to:

4Ny

dN
o~ 2k N} and =~k NE, (7)

and Eq. (6) reduces to 2N + N; = 6y, implying that
there are just islands with size s = 2. For long times, the
nucleation is negligible; thus, aggregation is the relevant
process:

dNy . dN

— =~ —kN; N and — = 0. 8

dt L ARE T ®)
However, in order to make analytic progress solving the
REs, the time dependence of k, and ks must be esti-
mated by taking into account the spatial fluctuations of
the density of monomers.

B. Nucleation Rate

As mentioned before, for the 2SG protocol, the nucle-
ation regime occurs at short times in the first step of
growth. An equivalent way to write Eq. (7) is

dNy Ny
2N Dyt
dt 0 52 ) (9)

with & the capture length of monomers associated with
nucleation. On the other hand, the local density of
monomers 7 (z,t) around a given monomer placed at
x = 0, evolves according to [10, 15, 17-19]:

m
5727
Subtracting Eq. (9) from Eq. (10) and using the approx-

imation On; /0t ~ dN;/dt, we can eliminate the time
dependence:

om D %

ot = Poggz Do

(10)

82771

2 &% (m — Ny) =0, (11)

with boundary conditions 71(c0) = N; and 7:(0) =
ln, Om(x)/0x|,_, [48, 57-59, 63]. The solution of this

differential equation is given by:
exp(—z
mz) =N [1- M . (12)
T+l

Now, by comparing the global and local nucleation rates,
we can calculate the nucleation rate [6]:

dm
2k, N1 = 4Dy — , 13
1 x|, (13)
which gives:
2Dy
w = . 14

From Egs. (7) and (9) the capture length and the nucle-
ation rate are related by

2N k
—92 1~y
= . 1
er= 2L (15)
Using Egs. (14) and (15) we obtain
1++v1+4N1,
g= V1IN (16)

8Ny

Using Egs. (14) and (16), we find that, for zero and weak
barriers k, = 8 Dy N7, while for strong barriers k, =
2 Dgy/l,, becomes time independent.

C. Aggregation Rate

For long times, the first step of the 2SG protocol is
dominated by the aggregation of monomers which were
unable to find another monomer with which to nucleate.
Thus, we can write the following equation for the time
evolution of monomers at position z inside of a gap of
size y, ny(x;t) [66, 67]:

ony(x;t) 0?nq (x;t)
=D 1
ot 0 g2 (17)
with boundary conditions:

mt) = 1,200

f (18)
m(yt) = —1 Ona (y; t)
e “ox

The solution of this differential equation depends
strongly on the value of l,. The aggregation rate k can
be calculated as follows. From the solution of Eq. (17),
the average density of monomers can be estimated from

n —1 ’ xrni(x;
m(ywyfo da o (5 ) (19)

Thus, the total number of monomers on the substrate,
Nji, can be calculated from [59, 63]:

N = Zﬁlpg(y)-/vv (20)



and the associated average density, Ny = N;/L, is given
by

Ny = N(ny), (21)

where the (---) denotes an average over the distribution
of gaps. Equation (21) implicitly contains information
about the aggregation time 7,. However, we note that
calculation of the mean value in Eq. (21) requires knowl-
edge of the gap-length distribution, py(y).

D. Gap size distribution

Since few monomers are deposited randomly onto the
substrate in the first step, the nucleations can reasonably
be considered to be uncorrelated events. Under this as-
sumption, py(¢) can be calculated from the convolution
of two gap-length distributions between a pair of adja-
cent monomers, ¢(¢). In order to illustrate this idea, we
consider two neighboring monomers of a given island, as
shown in Fig. 2. We assume that both ¢; and ¢5 follow
the distribution ¢(¢). Inspired by the Gruber-Mullins
approximation [68], we allow just the monomer in the
middle to be mobile. Thus, nucleation occurs when the
mobile monomer reaches the static monomer.

Naturally, nucleations can occur in other positions;
therefore, our approximation underestimates the vari-
ance of py(£). The probability that a nucleation event
creates a gap of length ¢ is given by:

pg(l) = /dgl dly q(l1) q(l2) 6(L — (1 + £2)).  (22)

Under the assumption that the positions of the monomers
are uncorrelated, the length distribution between con-
secutive monomers is given by ¢(¢) = afpexp(—aby¥)
with 0 < a < 1 a time dependent parameter which
is related with the fraction of nucleated monomers. In
this way, the average distance between two consecu-
tive monomers is 1/(afp) with a6y the fraction of non-
nucleated monomers. Consequently, the gap length dis-
tribution between adjacent islands can be written as:

py(£) = a b3 € exp(—abyl). (23)

For t = 0, there are no islands implying a = 2 Ny /6y while
for long times there are no monomers and a = 2 N/6,.

The gap length distribution gives information about
nucleation around a given island. In general, py(¢) can
be written in the form:

4
pg(£) = c(£) exp < /O C(y)dy> , (24)

with ¢(z) the density of islands at a distance x from a
given island at position x = 0. Naturally, c¢(x) is re-
lated to the probability of nucleation; for example, in the
mean-field (MF) approximation the probability of nucle-
ation is written as the square of the density of monomers,
ie., c(z) ~ ni(z,t)2.
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FIG. 2: Scheme of the nucleation process in the case where

the positions of the monomers are uncorrelated. As before,

the islands and monomers are represented by red and green
spheres, respectively.

E. Island size distribution with constant rates

The island size distribution Ps = Ns/N can be de-
termined explicitly from the REs in the case of time-
independent rates as follows. First, we suppose that
ks = k for all s, which is valid for point islands. Sec-
ond, we assume that the aggregations begin when all the
islands are formed only by two monomers, thus Py = 5 2.
Finally, we assume that for long times the nucleations are
rare events, so that the total number of islands can be
considered constant. Under these approximations and
using the change of variable 7 = fttc dtk Ny, the REs are
reduced to: 4

:stl_Nm (25)

and

4N

~— N 2
dr > (26)

with t. the crossover time between nucleation and aggre-
gation, and Na(7 = 0) = Nds2. Now, after a Laplace
transform, we find:

N, = W7 (27)
and
~ N
Ny = m (28)

After taking the inverse Laplace transform and the large-
time limit, we can write Ny as:

N
Ny(7) = ———=7°72

G2 exp(—7), (29)



Finally, taking § = Y oo, s Ps, we see that § = 7 + 2.
Equation (29) gives a parametric expression for the island
size distribution, where the parameter § is the average
size of islands.

IV. RESULTS AND DISCUSSION FOR THE
FIRST STEP

A. Case I: Weak and zero barriers (I, =, =0)

As shown by Eq. (14), for short times and zero barriers,
ky ~ Np. Consequently, the solution of the REs in this
regime is given by:

) et

On the other hand, the explicit solution of Egs. (1
(18) satisfies [66, 67]:
sin [
Y
(31)

where y~! [dzni(z;0) = ¢ is the average density of
monomers at the beginning of aggregation regime (' =

Ni(te)).

For long times it is possible to approximate Eq. (31)

as:
46’ m2Dot\ . [z
ni(z;t) ~ —exp | ——— sin | —|.
m Y Y

The average density 77 of monomers inside a gap with
length y, can be written as:
2Dyt
(—W 2 ) . (33)
)

From Eq. (33) we conclude that the typical aggregation
time for a gap with length y is given by 7, = y?/(72D3);
which agrees with previous results [48, 58, 61-63]. The
mean value in Eq. (21) can be calculated by using the
approximate expression for py(¢) given by Eq. (23) and
evaluating the resulting integral by means of the saddle-
point approximation [66, 67]:

1
Ny ~ (2
32 Dot + 0,
(30)
7) and

> 40 _ (@m+1)2x2Dgt
E 2
7( 2m +1

m=0

(2m+ 1)7x

(32)

1 Y 8¢
ﬁlzf/ dzny(x;t) = —5 exp
0 m

leﬁN/ dynyype(y),
0

> N 2D,
N/ dyy2 exp( [ y—i— 0})
0 y?

3
~t1/6 exp ( 3 (27T2N2D t) 1/3>

(34)

The argument of the exponential function gives the
average aggregation time in the entire system, 7, =
1/(272N?Dy), which agrees with an earlier study [47].
Taking into account that the average gap length is given

1
<4Dot+6‘

|

by 4 = 1/N, we can write 7, = 52/(27% Dy). It is im-
portant to note that the local aggregation time, 7,, is
proportional to the square of the gap length, while the
global aggregation time 7, goes like the square of the av-
erage gap length. Thus, the average aggregation rate can
be calculated by inserting Eq. (8) into Eq. (34):

2/3 1/3
- 2 D
k= (28 =0 (35)
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FIG. 3: Time evolution of the densities N; and N for zero
and weak barriers (I, = [, = 0). Dots correspond to kMC
results while continuous lines to analytical expressions. The
inset shows the behavior of N for short times.

The comparison between the results obtained analyt-
ically with those from the kinetic Monte Carlo (kMC)
simulations are shown in Fig. 3. The inset shows the
behavior for short times, the analytical model suggest
N ~ t while the kMC results give N ~ ¢, with the ex-
ponent § between 3/4 and 1. The predicted slope for
short times given by Eq. (30) is about to 2 x 1073, which
is close to the numerical value suggested by the kMC re-
sults. The discrepancies are due to the small but non zero
probability to deposit at random two or more consecutive
monomers at t = 0. The probability of having n consec-
utive monomers after a random deposition, P,, satisfies
0o/ > ooy m; = > o, i P; where m; is the number of do-
mains with size . On the other hand, the probability to
deposit n monomers in an equal number of consecutive
sites is 6(. Thus, neglecting the formation of monomer
domains with length larger than two units, we find that
since 0y < 1, ma ~ 63. Finally, at very short times,
about the half of the domains formed by two consecutive
monomers will give rise to islands of size two. In our
case 0y = 0.05, which leads to ma ~ 1.25 x 107% and
N(0) ~ 1075, as shown in Fig. 3. On the other hand, for
long times, the fit is excellent, validating the analytical
considerations used to write Eq. (34). In writing Eq. (34)



the time origin is taken at ¢ = t., when the islands are
completely formed. Consequently, it is necessary to use a
time translation in order to compare Eq. (34) with kMC
results. In the main panel the function N7 + 2 N is also
included, showing that the aggregation plays an impor-
tant role for times greater than 10 while for short times
the dominant reaction is nucleation, and Ny + 2 N = 6.

Figure 4 shows the results obtained for the gap length
distribution using the scaled distance ¢ — ¢/f. The fit
given by Eq. (23) is very good, validating the nucleation
mechanism for the formation of gaps illustrated in the
Fig. 2. From Eq. (24) the results clearly suggest that
the density of monomers becomes constant far from the
islands but decreases quickly near them, forming a deple-
tion region. In fact, to recover Eq. (23) from Eq. (24) the
argument of the exponential in Eq. (24) must be written
as:

/ (y) dy ~ / Pody = Poa, (36)
0 0

with P,(z) ~ P,, where P, is the uniform nucleation
probability at a distance z from a given island. For x > 1
the nucleation probability must be uniform in such a way
that the gap size distribution decays exponentially, as in
Eq. 23). On the other hand, for z <« 1 we have that
¢(x) ~ x, so that the density of monomers and therefore
the nucleation probability go to zero in the neighborhood
of islands. The Eq. (23) shows that the density of islands
close to a given island grows linearly with x, implying
P, ~ x. However, Eq. (32) predicts a linear behavior
for the monomer density close to an island, leading to
P, ~ 22. Thus, the MF approximation for the descrip-
tion of nucleation must not be valid for small values of z.
Figure 4 (b) confirms the linear behavior of the left tail of
the distribution and the exponential behavior of the right
tail. The kMC results support the assumption of statis-
tical independence between consecutive gaps. Thus, the
formation events of consecutive islands are uncorrelated
because most of the nucleations occur when the system
is still well mixed and the density of monomers can be
considered homogeneous. In this way, the capture zone
distribution, Pczp(y), can be determined from the con-
volution product:

Pczp(y) = /d& dly pg(£1)pg(£2)d (y - M) ;

2

(37)

which gives explicitly
Pozp(y) = §a40§y3 exp(—2afyy). (38)
The numerical results agree with the formula in
Eq. (38); see Fig. 4(c). Finally, the behavior of the is-
land size distribution is shown in the Fig. 5. Again, the
results obtained from the kMC simulations and the ones
given by Eq. (29) agree with each other. Consequently,
we conclude that P can be determined assuming that k,,
and k are time independent. We note that the work of

Tokar and Dreyssé neglects aggregation in the first step
of growth. However, Fig. (5) shows that some aggrega-
tion events occur, due to the fact that there are islands
with size larger than s = 2. This is also suggested by
Fig. 3 because N + 2N; is no longer a constant at long
times.

B. Case II: Strong aggregation barrier (I, > 1 and
l, =0)

By definition, the aggregation barrier does not affect
nucleation. Therefore, the behavior of the system for the
short times is the same of that found in Case I given by
Eq. (30). Nevertheless, for long times, the aggregation
barrier plays an important role by increasing the typ-
ical time associated with aggregation. From Eq. (17),
the density nq(x,t) can be calculated following the same
procedure used in Case I. In this way, we found

¢ [2 [ 2 [ 2
ny(z,t) = Ble_% (sin mx +1, w cos lyx) ,
(39)

with B; a parameter dependent on the initial condition.
The average density of monomers inside a gap takes the
form:

By
fiy &~ = (2l4y)"? exp (—
Y

2Dgt
. 4
Yla ) ( 0)

Again, the argument of the exponential function gives the
typical aggregation time, 7, = I, y/2 Dy, which is much
longer than the one found in Case I. For zero and weak
barriers, the aggregation time is equal to the typical time
that a monomer needs to reach one of the islands at the
gap edges.

Using the Eq. (21) in conjunction with py(¢), we can
calculate the average density of monomers. Given that
the mechanism of island formation is not modified by the
existence of the aggregation barrier, it is reasonable to ex-
pect that the gap length and capture zone distribution
remain close to the ones found in Case I. This can be seen
in Fig. 4, which shows that, in the case of a strong aggre-
gation barrier, the kMC results for p,(¢) and Pozp(y)
are well fitted by the Egs. (23) and (38), respectively. In
fact, the fit is even better than the one found in Case I.
As in Case I, the spatial fluctuations are only relevant in
the neighborhood of the islands/monomers; they can be
neglected far away from the islands. The behavior of the
average density of monomers for long times is given by

Ny ~ N/ dyn1ype(y), (41)
0

[ (2 2. o

ND t Y
~ 3% exp ( 0 > ~t738 (43)
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FIG. 5: Comparison between the kMC results for the island
size distribution and Eq. (29) for Case I (I, = l,, = 0). Dots
represents the results of kMC simulations, while the line
represents Eq. (29).

where the condition N Dy t/l, < 1 has been used. After
the same process used in Case I, the average aggregation
rate takes the form:
- 3
k = —

SIN (44)

Due to the action of the barrier, aggregation becomes
an infrequent event, implying that the approximation
N + 2N; = 0y works even better than in Case I. It
is also worth noting that N; now decays algebraically:
Ny ~ t73/8 see Fig. 6 (a). Additionally, Fig. 6 (b) shows
that the existence of the barrier decreases the mean size
of the islands because, typically, only islands with very
few monomers form. In fact, practically all islands have
sizes s = 2 and 3. The case of strong aggregation bar-
rier is closer to the ideal model proposed by Tokar and
Dreyssé, where the aggregation in the first step of growth
is neglected. The results given by Eq. (29) fit well the
island size distribution found in kMC simulations.

C. Case III: Strong nucleation barrier (I, =0 and
ln>1)

The nucleation barrier does not affect the behavior of
the densities at long times. Nevertheless, the formation
process of islands is strongly affected by the barrier. In
the limit of strong nucleation barriers, the monomers re-
quire many encounters before having a nucleation. The
existence of €, increases the repulsion force between
monomers, inducing correlations between their positions.
Thus, the simple model of two monomers used in Cases
I and II, represented in Fig. 2, is not viable.

As we showed in Sec. III, in the limit of strong nucle-
ation barriers Eq. (14) reduces to k, = 2 Dy/l,,. In this
way, for short times the global densities take the form:

Ny~ 0y (1— ky,00t) and N~ k,03t.  (45)

Taking into account that the nucleation barrier does not
affect aggregation, we expect that for long times the den-
sities satisfy Eq. (34), as shown in Fig. 7 (a).

Given the effect of the nucleation barrier, we expect
that in the aggregation regime most of the islands have
size s > 2. Then, we propose that p,(¢) can be written as
the convolution of three ¢(I) distributions instead of two
as in cases I and II. Due to the strong nucleation barrier,
it is reasonable to expect that nucleations occur in con-
figurations where there are three consecutive monomers
in the neighborhood of a preexisting island. As in cases
I and II, we consider just the monomer in the middle as
mobile. Due the repulsion of the island, the movement
of the mobile monomer is biased in favor of the direction
away from the island. Therefore, a new gap is formed
when the mobile monomer reaches the monomer furthest
from the island. Hence, we propose the following semi-
empirical expression based in the convolution of three
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q(¢) distributions:

3
pg(l) ~ / lH dfiQ(fi)] 00— (b + L2+ £3))
~ (1/2)_(1308’82 exp(—abyl), (46)

rather than the one used in the two previous cases
Eq. (23), which is obtained from the convolution of just
two ¢(¢) distributions. Comparing Eq. (24) with Eq. (46)
we conclude that the density of monomers is approxi-
mately constant far away from the islands, with impor-
tant fluctuations in the neighborhood of them; see Fig. 8
(a). The results suggest that, for small z, the island den-
sity grows as c(z) ~ x2. In this case, the nucleation rate
is ky, & 2 Dy/l,, = 0.008; consequently, the slope of N ()

is approximately 0.00002. This value is very close to the
numerical value found by kMC simulations, see Fig. 7 (a).
As expected, given the presence of the nucleation barrier,
island formation occurs for later times than in the two
previous cases. Additionally, the island size distribution
is well described by Eq. (29), with small differences for
islands of size s = 3.

The effect of the correlations between nucleation events
implies a weak time dependence of k, and k. Given that
the typical time for nucleation is longer than the aggre-
gation one, the aggregations are favored over the nucle-
ations, making possible the formation of islands having
several monomers. In that case, the average island size
is larger than the ones found in Cases I and II. We em-
phasize that in this case the gap length distribution is



affected significantly, implying an important change in
the nucleation mechanism. In this case, the positions
of monomers are correlated, and the fluctuations of the
monomer density near the islands are stronger than in
Cases I and II. On the other hand, for large gaps, the
distribution decays exponentially as before, meaning that
the monomer density stays uniform far away from the is-
lands, i.e., for z > &, with £ the capture length [72]. The
capture zone distribution can be calculated satisfactorily
as before, i.e., from the convolution of two gap size dis-
tributions (Eq.(46)). This means that in spite of correla-
tions between the positions of monomers, the consecutive
gaps can be considered statistical independent. This re-
sult is consistent with our model for gap formation, where
it is only necessary to consider statistically independent
spacings between few monomers (two for ,, = 0 and three
for I,, > 1) around a given island, regardless of any other
islands or monomers of the system.

D. Case IV: Strong barriers (I, > 1 and [,, > 1)

Finally, the case where both nucleation and aggrega-
tion barriers are strong is considered. Figures 9 (a) and 9
(b) show the results for the gap length distribution. We
note that the distribution decays exponentially for large
values of ¢, in agreement with Eq. (23). In this case, the
spatial fluctuations in the neighborhood of islands and
monomers are quite important, which is reflected in the
slope of py(¢) for small values of .

The temporal evolution of densities is shown in Fig. 10
(a). For short times, the system behaves very similarly
to the case [, = 0 and [,, = 250, and nucleation is the
dominant process. For late times, the densities have the
same behavior as those found in the Case II. The nucle-
ation barrier delays the formation of islands. For late
times N; only changes by aggregation.

Figure 10 (b) shows the behavior of the densities as a
function of time. The scale behavior is found by using
the transformation ¢t — kt with k = k, = k. This trans-
formation causes the curves for parameters to collapse
onto a single curve, as predicted by the RE.

We note that Figs. 3, 6a, 7a, and 10 show that the time
at which N ~ N; satisfies the relation N(~ Ny) = 6y/3,
regardless of the values of the barriers and in agreement
with the predictions of Eq. (6). Figure 10c shows the
behavior of P, for four different sets of barriers. The
distribution is basically the same for all the sets of barri-
ers. We conclude that the island size distribution seems
to be less sensitive to the barrier values than the gap
length and capture zone distributions. This is exempli-
fied by comparing p,(¢) for the cases I, = [, = 0 and
lo = I, = 250; see Figs. 4a and 9a. Note that p,(¢) is
similar for both set of barriers for large values of s, with
considerable differences for small values. Many experi-
mental and theoretical works have focused on calculating
just the island size distribution or the capture zone distri-
bution. However, our results show that the two distribu-
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tions give complementary and not necessarily equivalent
information about the microscopic processes of the sys-
tem. Therefore, both distributions should be taken into
account to obtain a more complete description of growth.

V. CONCLUSIONS

A brief summary of the key results is shown in Table I.
In 2SG, most of the islands are formed in the first step of
growth while in the second step the islands just increase
their size by aggregation. The 2SG protocol suggested
by Tokar and Dreyssé intrinsically separates nucleations
from aggregations, allowing us more control and under-
standing of the growth process. This advantage is more
pronounced in the case of large aggregation barriers. In
contrast, in 1SG, nucleation and aggregation often occur
simultaneously, requiring us to consider many time scales
to describe the evolution of the system. Consequently, it
is easier to treat 2SG analytically than 1SG.

It is well known in the literature that generally in the
systems in the RL regime, the spatial fluctuations can be
neglected; consequently, the reaction rates can be taken
as constants in the respective REs. However, we found
that, for the case in which two monomers form a stable is-
land, the spatial fluctuations in the density of monomers
are relevant in the spatial region close to the monomers,
even in the case of a strong nucleation barrier. This is
not an unexpected result because the nucleation reaction
has an upper critical dimension d. = 2/i, while the ag-
gregation reaction has d. = co. The effect of the spatial
fluctuations in the monomers density is always present in
the slope of p,(¢) and Pozp(y) for small values of £ and
1y, respectively.

Our results suggest that, in the 2SG protocol, Pozp(y)
decays exponentially regardless of the values of the bar-
riers. On the other hand, some of us have argued that
the generalized Wigner surmise should account for the
CZD [70]. The behavior that we found in this work is
quite different from the Gaussian tail of the generalized
Wigner surmise [1, 2]. Extensive simulations in one di-
mension by Shi et al. [15] for the 1SG model and zero
barriers found good agreement with the Wigner surmise
for the exponent 8 = 4 (so no generalization needed):

Pezp(y) = (64/97)° y* exp(—(64/97) y?), (47)

with different asymptotic behavior for both small and
large y. Additionally, the right tail of the CZD has been
studied numerically for the DL regime in the 1SG pro-
tocol suggesting Pozp(y) ~ exp(—const y3) [7, 9]. From
Eq. (24) it is clear that the growth protocol modifies the
probability of nucleation around a given island, changing
the behavior of py(¢) and Pozp(y). We conclude that
the behavior of the CZD is not universal and strongly
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depends on the growth mechanism. In the 2SG proto-

col most of the islands are formed when the system is
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TABLE I: Key Results
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Egs. (29) and (37) Valid Valid Valid Valid
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7t 212 N?Dy N Do/l 212 N2 Dy N Do/l

still well mixed leading to a exponential tail in p,(¢) and
Pozp(y). In contrast, for the 1SG the numerical evi-
dence suggests that the probability of nucleation around
an island cannot be taken as a constant, even at large
distances from the island.

The distributions calculated in this work, Ps, py(¢) and
Pozp(y), can be determined experimentally. Therefore,
these distributions can be used to describe the micro-
scopic processes involved in EG.

Our results suggest that different sets of barriers could
lead to the same island size distribution. In order to dif-
ferentiate those cases, it is necessary to calculate py(£)
and/or Pozp(y), the latter seeming more sensitive to
the energy barriers. In all cases, Ps is well described by
Eq. (29), which assumes constant kernels and neglects the
time dependence due the spatial fluctuations. However,
both p,(¢) and Pozp(y) can only be well described if
the spatial fluctuations of the monomer density are taken
into account. In all cases p,(¢) decays exponentially im-
plying that P, can be taken as a constant for points far
away from the islands. In contrast, for small distances the
monomer density and P,, strongly depend on the distance
from the island. It is clear that Ps, py(¢) and Pozp(y)
give complementary but not necessarily equivalent infor-
mation about the microscopic growth processes. Thus,
for the analysis of experimental results, those distribu-
tions must be considered jointly and not separately, as
was done in several previous works.
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FIG. 11: Comparison between the experimental data and
the equilibrium model reported in Ref. [42] with the island
size distribution given by Eq. (29).

The spatial fluctuations in the monomer and island
densities are more important in one dimension than in
higher dimensions. When the spatial dimension is higher
than the critical dimension, the monomers tend to remain
well mixed. For nucleation, d. = 2 for ¢ = 1; thus, ne-
glecting logarithmic corrections, the spatial fluctuations
are less important for two dimensional systems than they
are for one-dimensional ones. Therefore, the mean-field
description of the 1SG presented here should work even
better in two-dimensional systems. Thus, we can expect
that the advantages offered by the 2SG protocol and dis-
cussed in this paper should also be present in the most
relevant case of growth on two-dimensional substrates.
Finally, we believe that the experimental implementation
of 25G could offer a new approach to the experimental
groups which use EG, simplifying the understanding and
analysis of the growth processes.

As a closing illustrative example, we consider the
rather extensive experimental data in Gambardella et
al. [42] on the formation of one-dimensional atomic
Ag wires on a Pt(997) surface, with an array of
steps with very few kinks and nearly uniform terrace
widths. Because of the increased binding energy at
step sites, monomers deposited on vicinal surfaces can
self-assemble—for suitable temperature—into chain-like
structures along the step edges. In this case, there is no
deposition; the equilibrium gap-size distribution is found
to decay monotonically, as predicted by their equilibrium
analysis. From Eq. (24), this implies that the density of
islands around a given island, ¢(¢), is uniform even for
small values of £. Thus, the positions of the islands are
uncorrelated, in contrast with the 2SG protocol (where
there are fluctuations for small values of £). On the other
hand, the analytical model proposed in Ref. [42] for the
island size distribution also decays monotonically and so
disagrees with their experimental data. Given that the
system remains uniform during growth, the nucleation
and aggregation rates are presumably time independent.
Consequently, Eq. (29) can be applied to describe the is-
land size distribution. Figure 11 shows the fit found for
Eq. (29) with the experimental data reported in Ref. [42].
The agreement given by Eq. (29) is clearly better than
that of the equilibrium model of Gambardella et al., es-
pecially for small values of s.
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Appendix A: kMC Simulations

The kMC simulations were carried in the usual way
[71]. Let r{ and r’ be the hopping rates of the i-th
monomer to the left and to the right, respectively. As
mentioned in the main text, i = Dy exp(—¢/(kgT))
with € = ¢4, € = ¢, and € = 0 if the right neighbor is an
island, a monomer or an empty site, respectively. The
rate r} is defined analogously. At each time step, a list
of all monomers is created, and the hopping rates asso-
ciated with each one are calculated. Then, the sum of
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the hopping rates r = >, (rl + r}) is calculated, and a
uniformly-distributed random number, R, between 0 and
r is generated. R determines which particle can move and
the associated direction for the corresponding simulation
step. For instance, in Fig. 12 ri < R < r}; thus, the i-th
monomer is selected to move to the next site at its right.
Finally, the time is increased by log(p)/r, where p is an-
other uniformly distributed random number between 0
and 1. This procedure is repeated for each time step.

FIG. 12: The uniformly distributed number R determines
the particle which might move and the direction of that
possible motion.

[1] A. Pimpinelli and T. L. Einstein, Phys. Rev. Lett. 99,
226102 (2007).
[2] A. Pimpinelli and T. L. Einstein, Phys. Rev. Lett. 104,
149602 (2010).
[3] M. Li, Y. Han, and J. W. Evans, Phys. Rev. Lett. 104,
149601 (2010).
[4] T. J. Oliveira and F. D. A. Aarao Reis, Phys. Rev. B 83,
201405(R) (2011).
[5] J. W. Evans and M. C. Bartelt, Phys. Rev. B 63, 235408
(2001).
[6] J. G. Amar, M. N. Popescu, and F. Family, Surf. Sci.
491, 239, (2001).
[7] D. L. Gonzalez, A. Pimpinelli, and T. L. Einstein, Phys.
Rev. E. 84, 011601 (2011).
[8] J. A. Blackman and P. A. Mulheran, Phys. Rev. B 54,
11681 (1996).
[9] K. P. O’Neill, M. Grinfeld, W. Lamb, and P.A. Mulheran,
Phys. Rev. E 85, 021601 (2012).
[10] J. G. Amar and M. N. Popescu, Phys. Rev. B 69, 033401
(2004).
[11] P. A. Mulheran, K. P. O'Neill, M. Grinfeld, and W.
Lamb, Phys. Rev. E 86, 051606 (2012).
[12] M. Grinfeld, W. Lamb, K. P. O’Neill, and P. A. Mul-
heran. J. Phys. A: Math. Theor. 45 015002 (2012).
[13] V. I. Tokar and H. Dreyssé, Phys. Rev. B 80, 161403(R)
(2009).
[14] V. 1. Tokar and H. Dreyssé, J. Phys. A: Math. Theor. 50,
375002 (2017).
[15] F. Shi, Y. Shim, and J. G. Amar, Phys. Rev. E 79, 011602

(2009).

[16] P. A. Mulheran and D. A. Robbie, Europhys. Lett. 49,
617 (2000).

[17] J. G. Amar and F. Family, Phys. Rev. Lett. 74, 2066
(1995).

[18] M. N. Popescu, J. G. Amar, and F. Family, Phys. Rev.
B 64, 205404 (2001).

[19] M. N. Popescu, J. G. Amar, and F. Family, Phys. Rev.
B 58, 1613 (1998).

[20] F. Shi, Y. Shim, and J. G. Amar, Phys. Rev. B 71,
245411 (2005); 74, 021606 (2006).

[21] T. J. Oliveira and F. D. A. Aardo Reis, Phys. Rev. B 86,
115402 (2012).

[22] C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vveden-
sky, Phys. Rev. Lett. 72, 3194 (1994).

[23] C. Ratsch, Y. Landa, and R. Vardavas, Surf. Sci. 578,
196 (2005).

[24] J. W. Evans and M. C. Bartelt, Phys. Rev. B 66, 235410
(2002).

[25] H. Ibach, Physics of Surfaces and Interfaces (Springer,
Berlin, 2006).

[26] L. Tumbek and A. Winkler, Surface Science 606, L55
(2012).

[27] T. C. Chang, I. S. Hwang, and T. T. Tsong, Phys. Rev.
Lett. 83, 1191 (1999).

[28] T. C. Chang, K. Chatterjee, S.-H. Chang, Yi-Hsien Lee,
and I. S. Hwang, Surface Science 605, 1249 (2011).

[29] I. S. Hwang, T. C. Chang, and T. T. Tsong, Phys. Rev.
Lett. 80 4229 (1998).

[30] I. S. Hwang, T. C. Chang, and T. T. Tsong, Jpn. J. Appl.
Phys. 39, 4100 (2000).

[31] P. Meakin, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New
York, 1988), Vol. 12, p. 335.

[32] R. Jullien and M. Kolb, J. Phys. A 17, L639 (1984).

[33] A. Pimpinelli, L. Tumbek, and A. Winkler, J. Phys.
Chem. Lett. 5, 995 (2014).

[34] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F.
McCarty, New J. Phys. 10, 093026 (2008).

[35] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F.
McCarty, New J. Phys. 11, 063046 (2009).

[36] J. Ning, D. Wang, D. Han, Y. Shi, W. Cai, J. Zhang, and
Y. Hao, J. Cryst. Growth 424, 55 (2015).

[37] H. S. Mok, A. Ebnonnasir, Y. Murata, S. Nie, K. F.
McCarty, C.V. Ciobanu, and S. Kodambaka, Appl. Phys.
Lett. 104, 101606 (2014).



[38] J. Park, J. Lee, J.-H. Choi, D. K. Hwang, and Y.-W.
Song, Sci. Rept. 5, 11839 (2015).

[39] S. M. Binz, M. Hupalo, X. Liu, C. Z. Wang, W.-C. Lu, P.
A. Thiel, K. M. Ho, E. H. Conrad, and M. C. Tringides,
Phys. Rev. Lett. 109, 026103 (2012).

[40] J.-S. Lee, S. Sugou, and Y. Masumoto, J. Cryst. Growth
205, 467 (1999).

[41] J.-S. Lee, M. Sugisaki, H.-W. Ren, S. Sugou, and Y. Ma-
sumoto, Physica E 7, 303 (2000).

[42] P. Gambardella, H. Brune, K. Kern,
Marchenko, Phys. Rev. B 73, 245425 (2006).

[43] V. I. Tokar and H. Dreyssé, Phys. Rev. B 76, 073402
(2007).

[44] F. Picaud, C. Ramseyer, C. Girardet, H. Brune, and K.
Kern, Surf. Sci. 553, (2004).

[45] M. A. Albao, M. M. R. Evans, J. Nogami, D. Zorn, M.
S. Gordon, and J. W. Evans, Phys. Rev. B 72, 035426
(2005).

[46] J. Javorksy, M. Setvin, 1. Ost’adal, P. Sobotik, and M.
Kotrla, Phys. Rev. B 79, 165424 (2009).

[47] M. C. Bartelt and J. W. Evans, Phys. Rev. B 46, 12675
(1992).

[48] D.L. Gonzalez, A. Pimpinelli, and T. L. Einstein. Phys.
Rev. E 96, 012804 (2017).

[49] C. Ratsch and J. A. Venables, J. Vac. Sci. Technol. A 21,
S96 (2003).

[50] H. Jénsson, Annu. Rev. Phys. Chem. 51, 623 (2000).

[61] D. Kandel, Phys.Rev.Lett. 78, 499 (1997).

[52] R. C. Ball, D. A. Weitz, T. A. Witten, and F. Leyvraz,
Phys. Rev. Lett. 58, 274 (1987).

[63] H. Kallabis, P.L. Krapivsky, and D.E. Wolf, Eur. Phys.
J. B 5, 801-804 (1998).

[54] J. Krug, P. Politi, and T. Michely, Phys. Rev. B 61,
14037 (2000).

[55] Y. Han, E. Gaudry, T. J. Oliveira, and J. W. Evans, J.
Chem. Phys. 145, 211904 (2016).

[66] Z. Zhang and M. G. Lagally, Science 276, 377 (1997).

and V. L

14

[67] D.L. Gonzélez, Revista de Ciencias 18, 81 (2014).

[58] D.L. Gonzélez, J. Phys. A: Math. Theor. 50, 035001
(2017).

[59] D. L. Gonzélez, M. A. Camargo, and J. A. Sdnchez, Phys.
Rev. E 97, 052802 (2018).

[60] P. Politi and J. Villain, Phys. Rev. B 54, 5114 (1996).

[61] C. Castellano and P. Politi, Phys. Rev. Lett. 87, 056102
(2001).

[62] P. Politi and C. Castellano, Phys. Rev. E 66, 031605
(2002).

[63] D. L. Gonzélez, M. A. Camargo, and J. A. Sdnchez, Rev.
Cienc. 21 (1) (2017).

[64] M. Korner, M. Einax, and P. Maass, Phys. Rev. B 86,
085403 (2012).

[65] V. I. Tokar and H. Dreyssé, Phys. Rev. E 92, 062407
(2015).

[66] D. ben-Avraham and S. Havlin, Diffusion and Reactions
in Fractals and Disordered Systems (Cambridge Univer-
sity Press, 2000).

[67] P. L. Krapivsky, S. Redner and E. Ben-Naim, A Kinetic
View of Statistical Physics. (Cambridge University Press,
2010).

[68] E. E. Gruber and W. W. Mullins, J. Phys. Chem. Solids
28, 875 (1967).

[69] D. Walton, J. Chem. Phys. 37, 2182 (1962).

[70] T. L. Einstein, A. Pimpinelli, and D. L. Gonzilez, J.
Cryst. Growth 401, 67 (2014).

[71] A. F. Voter, Introduction to the Kinetic Monte Carlo
Method, in Radiation Effects in Solids, edited by K. E.
Sickafus, E. A. Kotomin, and B. P. Uberuaga, NATO
Science Series 235 (Springer, Dordrecht, 2007).

[72] Following Ref. [8], the local density of monomers around
a given island can be written as ni(z) = Ni(1 —
exp(—z/€)), where the capture length ¢ is given by Eq.
(16). Thus, the monomer density becomes constant for
x> €.



	Two-step Unconventional Protocol for Epitaxial Growth in One Dimension with Hindered Reactions, with Implications For Experiments
	Abstract
	Introduction
	Model Description
	Analytical Model For the First Step
	Rate Equations
	Nucleation Rate
	Aggregation Rate
	Gap size distribution
	Island size distribution with constant rates

	Results and discussion For the First Step
	Case I: Weak and zero barriers (ln=la=0)
	Case II: Strong aggregation barrier (la1 and ln=0)
	Case III: Strong nucleation barrier (la=0 and ln1)
	Case IV: Strong barriers (la1 and ln1)

	Conclusions
	Acknowledgments
	kMC Simulations
	References

	References

