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A B S T R A C T

We present a kinetic Monte Carlo study of the relaxation dynamics and steady state configurations of 〈110〉
steps on a vicinal (001) simple cubic surface. This system is interesting because 〈110〉 (fully kinked) steps have
different elementary excitation energetics and favor step diffusion more than 〈100〉 (nominally straight) steps.
In this study we show how this leads to different relaxation dynamics as well as to different steady state
configurations, including that 2-bond breaking processes are rate determining for 〈110〉 steps in contrast to 3-
bond breaking processes for 〈100〉−steps found in previous work [Surface Sci. 602, 3569 (2008)]. The analysis
of the terrace-width distribution (TWD) shows a significant role of kink-generation-annihilation processes
during the relaxation of steps: the kinetic of relaxation, toward the steady state, is much faster in the case of
〈110〉−zigzag steps, with a higher standard deviation of the TWD, in agreement with a decrease of step stiffness
due to orientation. We conclude that smaller step stiffness leads inexorably to faster step dynamics towards the
steady state. The step-edge anisotropy slows the relaxation of steps and increases the strength of step-step
effective interactions.

1. Introduction

Zigzag 〈110〉 steps on a vicinal (001) simple cubic lattice with only
nearest-neighbor interactions allow step-edge fluctuations (with geo-
metric constraints) which have no energy cost, a situation which does
not hold for straight 〈100〉 steps [1–3]. This suggests the possibility of
different relaxation dynamics and steady state configurations for zigzag
steps. A deeper understanding of steps is, of course, relevant to the
study of surface nanostructures and is therefore technologically
important. Indeed, the physical properties of epitaxial thin films can
be manipulated by the understanding of the interfacial strain on the
grown material. However, the strain can be controlled by adjusting the
miscut angle of the vicinal substrate prior to growth. For example,
anisotropic dielectric properties were observed and attributed to
different tetragonalities induced by the vicinal substrate (LaAlO3) with
miscut orientations along the 〈100〉 and 〈110〉 directions with different
miscut angles [4]. Moreover, different nanostructuring behaviors were
obtained depending on the step-orientation [5,6].

Metropolis Monte Carlo [7–11] was used long ago to study step-
edge equilibrium properties as a function of orientation. Subsequent
kinetic Monte Carlo (kMC) [12] studies of 〈100〉 steps considered the

evolution to equilibrium. Here we apply kMC [13] to the study of 〈110〉
steps on a vicinal (001) simple cubic surface in order to investigate the
change in behavior due to distinctly different step-edge fluctuations.

This study is further motivated by investigations of flexible chains in a
2-D system [14] and interfacial configurations in a 2-D Ising ferromagnet
on a square lattice [15], in which the primary observables of interest are
interface energy and interface tension as functions of interface orientation.
For a 2-D Ising ferromagnet, the surface tension depends on direction,
being minimized along the 〈110〉 direction andmaximized along the 〈100〉
direction. Returning our attention to surfaces, interface free energy per
unit area, is used in the Wulff construction, yielding minimal free energy
domain shapes at equilibrium [16,17].

The fluctuation behavior of steps underpins the self-assembly and
control of nanostructures. The stiffness determines how a step responds to
interactions with other steps, to atomistic mass-transport processes, and
to external driving forces [18–20]. Atomic-scale simulations can address
comprehensively this problem and provide a complete and fairly accurate
database of step stiffness and its anisotropy, providing an alternative to
experiment. A precise knowledge of step stiffness, including its anisotropy,
is thus an essential ingredient for determining the dynamics of stepped
surfaces using the continuum step model and/or simulations. In fact, the
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attachment-detachment mechanisms of atoms at step edges depend
strongly on the kinetics at step edges, thus on the step stiffness.
Therefore, the measurement of this latter is very important for describing
step fluctuations, since it might contain valuable information about the
dynamics of the surface and particularly some details concerning the main
processes governing the motion of atoms and the fluctuation of steps [21].

The relationship between step orientation and step-edge stiffness has
been the subject of extensive experimental and theoretical studies [22–26].
These works showed that steps which deviate from the close-packed
direction have a smaller line tension and are less stiff, allowing more step
wandering. Hence, 〈110〉− steps are significantly less stiff than 〈100〉 steps.

In addition, < 110 > steps have different elementary excitation
energetics than 〈100〉 steps. For 〈110〉 steps,1 an elementary excitation
breaks 2 nearest-neighbor bonds and then reforms 2 nearest neighbor
bonds, leaving the step length invariant. However, for 〈100〉 steps an
elementary excitation breaks 3 nearest neighbor bonds, and then
reforms 1 nearest-neighbor bond, increasing the step length by 4 links.
See Fig. 1 for images of an initial configuration of zigzag steps, as well
as the same steps following an elementary excitation. To the extent that
step energy depends only on the step length [14,27], elementary
excitations of 〈110〉 steps cost no energy, in contrast to elementary
excitations of 〈100〉 steps.

Moreover, the steps are taken to have entropic repulsions along the
step edges, since steps cannot cross (although they can touch at corners or
links). The step touching that is allowed in our model gives rise to an
effective (finite-size correction) attractive interaction between steps, in
comparison to the non-interacting (free fermion) model that we consider
[27]. It should be noted that 〈100〉 straight-steps were studied earlier by
the present authors [12] and are used here only for comparison purposes.
So only the results concerning 〈110〉 zigzag-steps are novel.

The scheme of this paper is as follows: In Section 2 we describe the
computational details of our kMC model for two orientations of steps
along the 〈100〉 and 〈110〉 directions; then we present the theoretical
model of the step stiffness adopted in this work in Section 3. Section 4
is devoted to an extensive study of the step dynamics by means of the
TWD computation during step relaxation with a special focus on the
steady state regime; along with a comparison between the two
orientations. In Section 5, we check our previous results with step-
stiffness measurements. A conclusion is given in Section 6.

2. Computational details

The 2-D solid-on-solid (SOS) model for 〈110〉 steps assigns an
integer height h r(→) to each point r→ on a square grid with zigzag edges
of size L L×x y embedded in a larger square grid, as depicted in Fig. 1.
We use “Maryland notation” to assign Cartesian directions [12] in
which the ŷ direction is along the mean step direction and x̂ is
orthogonal to ŷ , pointing upstairs. We adopt periodic boundary
conditions in the ŷ direction and screw-periodic boundary conditions
in the x̂ direction. The fundamental length units are the lattice constant
a ≡ 1 and a a= 2z (see Fig. 2).

The system Hamiltonian is written [12]:

∑H E h r h r δ=
2

(→) − (→ +
→

) ,a

r δ→,
→ (1)

where δ runs over the four nearest neighbors of a site. Unless specified
otherwise in the text, for both step configurations we used surfaces with
the same step length along the ŷ direction and the same number of
terraces in the x̂ direction (Fig. 3).

The system sizes are L = 5000y and L = 80x , expressed either in

terms of a for straight steps or a a= 2z for zigzag steps; this means,
we used 10 terraces of average width w a= 8 or w a= 8 z. The other
simulation parameters are:E eV= 1d , E eV= 0.35a , T K= 580 , where Ed
and Ea are the terrace diffusion and nearest-neighbor bonding energy
barriers, respectively, for atom motion, and T the surface temperature.

These energetic barriers are typical values for silicon; however, we expect
that this study should be applicable to a wide range of materials. For specific
simulations, as in Figs. 5–7, we used: eV E eV0.9 ≤ ≤ 1.1d , eV E eV0.3 ≤ ≤ 0.42a

and K T K520 ≤ ≤ 580 . As depicted in Fig. 2-b, relevant lengths for zigzag
steps are defined such that [28]:a a a= = / 2// ⊥ (note that for straight steps,
a a a= =// ⊥ ).

The value of Ly is suitably large: it is chosen to be larger than the
collision length ycoll [7] which is estimated in the next section. The
choices of temperature and the range of energetic barriers follow
similar kMC investigations of vicinal surfaces [12,29,30] to allow direct
comparison with prior kMC results on straight steps. The temperatures
used here are also the same as in other kMC simulations involving
different shape dynamics; such as the shape relaxation of 2D islands
[31] and 3D crystallites [32].

The surface is evolved to steady state using a rejection free kMC
scheme [12], allowing step touching and but no vertical overhangs (i.e.,
two neighboring steps can touch along links at a given y-value but they
cannot cross), leading to entropic repulsions between steps. Atoms with
i = 4 lateral nearest neighbor bonds are “frozen in” (not allowed to move).
Furthermore, sublimation is forbidden. We have examined two cases:
with symmetric and asymmetric step edge attachment (i.e., with an
Ehrlich-Schwoebel (ES) barrier hindering atoms from crossing steps
downward). Atoms with i = 0, 1, 2, 3 nearest neighbor bonds are chosen
at random with a probability proportional to E iE E k Texp[−( + + )/ ]d a ES B

and subsequently allowed to move with equal probability in any one of
four nearest-neighbor directions. Since E k T/d B is the same for all moving
atoms (adatoms), E k T/a B (and eventually the ES energyEES) is what is
expected to govern adatom motion and, therefore, step relaxation. Lattice
configurations having double-valued x y( ) (e.g., islands and multiple
ledges as in Fig. 2-b) were discarded in our measurements.2 Also, 100
MCS → 1 second was defined as the unit of time in the simulations [12].

3. Step stiffness model

Since we are trying to compare zigzag steps with straight steps
(rather than do a comprehensive simulation study such as needed to
determine relaxation exponents [28,33]), w was chosen large enough
to allow continuum modeling while also maintaining computational
tractability. Given that Ly dependence of observables (once large
enough) was not noted in earlier kMC work on straight steps [12],
Ly=5000a (or 5000az) was left fixed for both step configuration runs.

The lattice width Ly should be greater than the “collision length”,
ycoll, the length in the ŷ direction for a step to wander a distance w /2
(in the x̂ direction). For straight steps we refer to an earlier terrace-
step-kink (TSK)-based estimation [12] to show that Ly for our straight
step runs is greater than the collision length, we found y a= 250coll

str (for
T=580 K, Ea = 0.35 eV and w a= 8 ). For zigzag steps, we estimate the
collision y length to be about y a a= 36 2 = 36coll

zig
z for all temperatures

and energies [7]; thus, it is significantly smaller than the lattice length
L a= 5000y z. This calculation was based on the terrace definition and
corresponding terrace width measurement scheme (see Fig. 2) due to
Abraham et al. [27] and guided by an earlier study [7], in which the
step-position correlation function (mean square displacement as a
function of distance y along the step) is defined as:

1 In preliminary work [12], the terrace width is measured normal to the 〈100〉
direction on 〈110〉 steps, instead of the 〈110〉 direction. In fact, the global behavior of the
TWD remains unchanged because, qualitatively, the latter is independent of the direction
with respect to which it is computed, but quantitatively (specifically its characteristic
variance) should be slightly changed.

2 In fact, our simulation model does not reject such provisional (temporary) config-
urations, but they are neglected during our TWD measurements because their number is
insignificant since an isolated atom configuration (without nearest neighbor bonds) does
not represent a favorable (permanent) position for a moving atom.
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G y x y x k T
β a

a y( ) = [ ( ) − (0)] = ,∼x
B2

//
//

(2)

with x again the coordinate perpendicular to the mean orientation of the
step profile and y the coordinate parallel to it. For a short distance y, we
have diffusive step relaxation (random walk) and the correlation function
behavior for G y( )x is found to be linear with y and has the form [7]:

G y b T
a

y( ) = ( ) ,x
2

// (3)

where b T( )2 is the mean square perpendicular deviation with each pace
forward by a// along the step (or the diffusivity). The behavior of Eq. (3) is
verified in our simulations (Fig. 8-b); the step edge stiffness related to the
diffusivity via:

β k T
b

a=∼ B
2 // (4)

The diffusivity is given as an expectation value weighted over all
possible values of the kink size. Specifically for a kink of size n (or
length na⊥), with energy E n( ):

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

b T b T
a

n
( ) = ( ) =

2 ∑ exp −

1 + 2 ∑ exp −

∼ n
E n
K T

n
E n
K T

2 2

⊥
2

=1
∞ 2 ( )

=1
∞ ( )

B

B (5)

where a⊥ is unit length perpendicular to the step. For straight steps, in
the TSK approximation E n n ε( ) = (ε E= /2a and n=1,…,∞), this
becomes [7,12]:
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⎠⎟

⎛
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∼
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2
2

−2
B

B (6)

For zigzag steps, the preceding TSK analysis is inappropriate. Since for
each pace forward a// along the step (in ŷ direction), the step is displaced by a
single unit a⊥ (in the absence of multiple ledges as illustrated in Fig. 2(b)),
then the expectation value in this Modified Restricted Model becomes (n=1):

⎛
⎝⎜

⎞
⎠⎟

b T( ) = 2

exp + 2

∼
zig

ε
k T

2

B (7)

Fig. 1. (a) Initial, unexcited zigzag steps before any kMC evolution.L a= 10y z and L w a= 3 = 24x z, Ly spans the length of a single step and Lx goes from the base of the bottom step to

the top of the highest step. This figure displays 3 steps, with all terrace widths w a= 8 z. In the ŷ direction there are periodic boundary conditions. Screw-periodic boundary conditions in

the x̂ direction are applied when an atom diffuses out/off the top right or the lower left terrace (cyan). (b) The same set of zigzag steps as above, where one example of step excitation is
now activated. This excitation annihilates 2 single terraces of length w and generates 2 single terraces of length w a± z in the x direction.

Fig. 2. (a) Depiction of straight steps. The thick line represents the step edge, with blue
dots spaced distance a apart. The dashed red box is an island (isolated atom), which is a
disallowed configuration because x(y) is double valued for those values of y. (b)
Illustration of zigzag steps. Again, the thick line represents the step edge with the blue
dots spaced distance a apart. Relevant lengths az, a// and a⊥ are also displayed. The dotted

red line represents the mapping of zigzag step ledge to a straight ledge using the
Abraham scheme [27] such that terrace width measurements can be determined
straightforwardly. The dotted red lines, parallel to the ŷ direction connected by the

vertical arrow at the far right of the figure is an example of a multiple ledge (forbidden
since x(y) is double valued).
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For T K≥ 500 ,
⎛
⎝⎜

⎞
⎠⎟b T( ) ≈ 2 exp∼

st
ε

k T
2 −2

B
and

⎛
⎝⎜

⎞
⎠⎟b T( ) ≈ 2 exp∼

zig
ε

k T
2 −

B
.

Therefore we obtain our Modified Restricted Model for the collision
length, estimated by putting G y w( ) = /4x

2 into Eq. (3):

y w a
b T

≡
4 ( )

.coll

2
//

2 (8)

By subsequently inserting values for w 2,a// and b T( )2 , we can
deduce the collision length for zigzag steps. Note, for no kinks of size
zero (the 1 in denominator is absent), one obtains: b T a( ) =zig

2
⊥
2, which

means that the diffusivity is the same for all energies and temperatures
as predicted theoretically in Ref. [34] and confirmed in Ref. [35]. Since
w a= 8 z and a a= = a

⊥ // 2
, one easily obtains the collision length

estimate for zigzag steps cited earlier in the section.

Moreover,

⎛
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1 − exp
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ε
kBT

ε
kBT

2

2

−

−
2 roughly equals 1 for T < 400 K and

reaches 1.14 at T=600 K (See Fig. 3) (between 1.08 and 1.12 for
520K≤T≤ 580K); therefore, using Eq. (4), the stiffness ratio is
approximately:

β

β
a

a
b T

b T
= ( / 2 ) ( )

( )
≈ 1

2
.

∼

∼

∼

∼
zig

st

st

zig

2

2

4. TWD analysis

4.1. Dynamic results

In this section, we consider the relaxation to steady state for the
zigzag steps, compare it with that of straight steps, and examine the
implications of the time scales with which this relaxation occurs. The
first item we consider is the evolution of the standard deviation of the
terrace width distribution (TWD) to its steady state values.

Analytical and simulation results, studying the evolution of the
variance of the TWD for different physically interesting and experi-
mentally testable examples, have been achieved [10,12,33]. The steady-
state solution of the probability density of the TWD is the generalized
Wigner surmise describing the probability of finding neighboring steps

at a specified separation s=w/〈w〉, states [10]:

P s a s b s( ) = exp(− ),ρ ρ
ρ

ρ
2 (9)

where the constants aρ and bρ assure unit mean and normalization, can
be expressed in terms of Gamma functions. In principle, the parameter
ρ (typically called β in random matrix theory) describes the strength of
the assumed inverse-square step-step interactions and so gives in-
formation about their sign and size.

To compare numerically simulated data with experimental data,
one typically computes the standard deviation σ t( ) of the distribution
and then studies its time dependence. If the relaxation starts from an
initial configuration of “perfect” straight steps, then σ t( ) obeys [10]:

σ t σ e( ) = 1 − ,sat
t τ− / (10)

where the saturation value σsat is the standard deviation for an infinite
system at long time. When dealing with numerical data, we take the
standard deviation to be normalized by the mean spacing, to mimic the
formal analysis and deal with a dimensionless quantity. While σsat is
related to the interaction strength, τ provides crucial information for
determining the main activated process of the dynamics [10,12].

Note that Eq. (10), established theoretically using a Fokker–Planck
approach with a mean-field approximation [10], has been well verified for
straight steps [12]. However, for zigzag steps, this expression no longer gives
a good fit for our numerical results, specifically at early time, as shown in
Fig. 5. Indeed, starting from a perfect zigzag steps (Fig. 4), a close analysis of
stepmorphology in the early-stage regime, indicates the presence of two time
constants. The first, τ1, is influential at short time and corresponds to a
transient arrangement of steps during which the number of kinks per step
decreases. The second,τ2 τ( > > )1 , operates at longer time and governs the
step relaxation to the steady state. Thus, τ2 is the proper relaxation time
constant. A slightly modified version of Eq. (10) containing three parameters
(rather than two for straight steps) then suggests itself:

σ t σ e e( ) = 1 − ( + ) ,sat
t τ t τ− / − /1 2 (11)

where σsat is expected to depend on the step orientation.
Fig. 4 illustrates the morphology of < 110> steps, at temperature

T=580 K, early in the surface evolution t τ( < < )2 before real relaxation
becomes effective. We observe the formation of local facets along a step

Fig. 3. Diffusivity vs. temperature (Eqs. (6) and (7)) for straight and zigzag steps. The inset shows their ratio, roughly equals 1 for 520K≤T≤580K).
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edge (indicated by arrows), whose number increases with time. Our
simulation results show that the ratio τ τ/2 1 is on the order of 20 (Fig. 5).
Again, τ2 is the physically significant rate describing the surface evolution to
its steady state; it is the characteristic time that should be compared to the
relaxation time constant τ for the case of straight steps (τ τ≡2 ). Since the
characteristic time τ1 depends on the initial configuration, it has no general
meaning. Besides the difference in the magnitude of the relaxation time, we
clearly note that as the zigzag system approaches steady state, σ reaches
different saturation values. We measure a clear shift, on the order of 12%,
in the standard deviation at infinite time between straight and zigzag steps.

The relaxation time τ , i.e. the crossover time between growing and
saturation of the fluctuations, is expected to depend typically on the
longitudinal step length Ly in the context of surface growth [36,37]. In
fact, it is possible that the relaxation parameters, especially the relaxation
time, could exhibit finite-size effects. In order to avoid this issue, prior
simulations were done by varying the system sizes, as it is shown in Ref.
[12,29]; finally, Ly is chosen large enough for both step orientations. As
for straight steps [12], we can use Arrhenius plots to determine which
bond-breaking mechanism is the rate limiting process. The decay time is
expected to exhibit Arrhenius behavior: τ E k T∝ exp( / )b B , where Eb is the
activation barrier of the relaxation process. We investigate Eb closely in
the two traces of Fig. 6 by ramping one simulation parameter while
holding the others fixed. It is straightforward to deduce that the effective

energy barrier Eb is Ed+3Ea for straight steps (see Ref. [12] for more
details) and Ed+2Ea for zigzag steps.

From Arrhenius analysis of the plots in Fig. 6, we immediately
deduce τ E k Tlog ( ) ∝ ( / ),b B which implies that τ E E k T∝ exp[( + 3 )/ ]d a B

for 〈100〉 steps and τ E E k T∝ exp[( + 2 )/ ]d a B for 〈110〉 steps, where the
proportionality factor can be expressed in terms of τ = 100

−13 s [10,12].
In summary, we reach the interesting conclusion that the equilibration

of terraces on a vicinal (001) simple cubic crystal is closely linked to step
orientation. Our analysis then shows that 2-bond breaking processes are
rate-determining for 〈110〉 steps, in contrast to 3-bond breaking processes
for 〈100〉. Indeed, at equilibrium, the rate of the fluctuations is controlled
primarily by the step stiffness, which is often used to describe the
meandering of a step. The step stiffness describes the inertial resistance
to meandering of the step and is closely related to the energy required to
generate a kink in the step [18]. Moreover, the elementary process driving
the step fluctuations is arguably linked to the transport of an atom from one
kink to another, underpinning the diffusion of kinks along the step [36,37].
Thus, one would expect that the relaxation kinetics of steps towards
equilibrium is also controlled (or at least affected) by the step stiffness.
Since β∼ depends on step orientation [34,38], it should contain further
information about the relaxation kinetics of steps. To verify this reasoning,
we compute the step stiffness in Section 5 for straight and zigzag steps.

Fig. 4. Snapshots of the simulated morphology for the 〈110〉 steps during early relaxation time t τ< < 2 at temperature T=580 K. We observe the formation of localized facets along step-

edge (indicated by arrows). From left to right t=0, 2, 10 and 20 s.

Fig. 5. Simulated standard deviation of the TWD vs. time (symbols) for zigzag and straight step systems, with examples of fits using Eq. (10) (dashed lines) and Eq. (11) (solid line),
used to extract τ .The standard deviation can be adjusted exactly with Eq. (10) for 〈100〉 steps and Eq. (11) for 〈110〉 steps. Simulation parameters are: Ed=1.0 eV, Ea=0.35 eV, T=580 K,
L=〈w〉. The system sizes are: Ly×Lx=5000×80 expressed in (a×a) and (az×az) for straight and zigzag steps, respectively. Time t is essentially in seconds (see text).
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4.2. Step-edge anisotropy effects

We finish this section with a brief analysis to see how the Ehrlich-
Schwoebel barrier affects the variance of the TWD. Indeed, this mechanism,
which offers a well-known way to break the upstairs-downstairs symmetry,
can have important consequences in the evolution of surface morphology
[30,39]. In our simulations, the resulting step-edge anisotropy is controlled
through energy EES, ranging from 0 to 0.4 eV; we simulated four values 0.1,
0.2, 0.3, and 0.4 eV. The corresponding standard deviation is plotted (only
for zigzag steps) in Fig. 7 versus EES, at T=580 K, Ea=0.35 eV and Ed=1 eV.
For all value of EES, good agreement is reached between the kMC data and
the functional form proposed in Eq. (11). Similar good agreement (not
displayed here) is obtained for straight steps with Eq. (10). The plots show a
clear increase in the relaxation time τ accompanied by a decrease of the
saturation variance σsat of the TWD, when the anisotropy is increased at
step-edges. This means that the increase of anisotropy slows down the step
dynamics (i.e., longer relaxation time) and also increases the effective step-
step interaction strength (i.e., bigger ρ, Table 1).

An interesting difference between the two step orientations is that
for EES < ≈ 0.1 eV, step interactions are attractive for zigzag steps,
whereas for straight steps they are always repulsive no matter the size
of the ES barrier. Moreover ( ) ≈ 1.05ρ

ρ
1/2st

zig
for ρ > 2, which is roughly

equal = = 1.11σ
σ

0.48
0.43

zig

st
. This ratio can be also compared to

⎛
⎝⎜

⎞
⎠⎟ ≈ 1.08A

A

1/4∼

∼
zig

st

for ρ ≥ 3, in the regime where the Wigner distribution can be adequately
approximated by the Gaussian distribution. Indeed, using the relation
σ ∝

β A
4 1

∼ from the Gaussian approximation for the TWD [3], it is

straightforward to write:
⎛
⎝⎜

⎞
⎠⎟=σ

σ
A β

A β

1/4∼
∼

zig

st

st st

zig zig
. Alternatively, from the predic-

tion
⎛
⎝⎜

⎞
⎠⎟ ≈ 2β

β
1/2

∼
∼

st

zig
, we have,

⎛
⎝⎜

⎞
⎠⎟ = 2 = 1.09β

β

1/4
1/8

∼
∼

st

zig
. This means that the

interaction anisotropy is almost included in the stiffness, i.e. in A∼ rather
than in A. Next, we focus on the influence of temperature on the stiffness.

5. Step stiffness computation

In this section, we consider the case of no Ehrlich-Schwoebel barrier
hindering atoms from crossing steps, with all other simulation parameters
kept the same as in Section 2. Our goal is to compare the surface mass
transport between straight and zigzag steps in order to confirm the
difference in relaxation kinetics between 〈100〉 and 〈110〉 steps found
previously in the TWD analysis.

We focus on steps moving under thermal excitation; this means that the
surface steps are considered as entities which can move by mass transport
between them. Step stiffness can be used as a gauge for step bending. For
isolated steps, arguably the most important parameter is the step stiffness,
which measures how easily a step fluctuates or wanders perpendicular to its
mean orientation [38]. At finite temperature, steps on vicinal surfaces relax
toward their equilibrium (steady) state. This relaxation is dictated by the
surface energetics and the step stiffness, which controls the relative
amplitude of fluctuations about the equilibrium shape.

The mass transfer between step edges is assumed to be governed by the
thermal energy. Indeed, the simplest conditions under which step motion
can be observed are equilibrium conditions in which the step position

Fig. 6. Semi-log plots of the relaxation time τ (in seconds) for the zigzag and straight step systems vs. Ed /kBT at Ea=0.35 eV (a) and vs. Ea/kBT at Ed=1.0 eV (b), where the temperature
is maintained fixed for both systems at T=580 K. (c) the relaxation time τ versus 1/kBT for Ea=0.35 eV and Ed=1.0 eV, with temperature varied between 520 K and 580 K. The numbers
inside the plots are slopes of the solid lines, best fits of the simulation data (symbols). From the slope of the fitted data, we determine the activation energy Eb, which is in excellent
agreement with Ed+3Ea=2.05 eV for 〈100〉 steps; however, Ed+2Ea=1.7 eV for 〈110〉 steps. It is evident that 2-bond breaking processes are rate determining for zigzag steps, in contrast
to 3-bond breaking processes for straight steps. The relaxation time is extracted from fitting the simulated variance in Fig. 5.
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fluctuates due to thermal excitations. The variation of the step position x is
accompanied by a variation in the total step length; then, to determine the
step stiffness, it is convenient to use the spatial step-edge correlation function
of the step profiles x y( ).The equilibrium thermal fluctuation of an isolated
step allows the measurement of the step stiffness. This latter is measured
from the fit of the mean-square displacement spatial function Gx(y) at small
distances, which increases linearly with y [7].

From our kMC simulations at steady state, we have computed the
step auto-correlation function,3 Gx(y), whose expression is given in Eq.
(2). The data used for determining the step displacement x(y) are taken
from the same surface profiles used for extracting the TWD. In Fig. 8a
we plot the step-position correlation functions for 〈100〉−straight and
〈110〉−zigzag step at steady state for two temperatures T=580 K and
T=520 K and with same lattice sizes used in Fig. 7. The correlation
function evidently increases with temperature for both steps orienta-
tion. At fixed temperature, the plot for zigzag steps shows more
oscillations than for straight steps, which means that zigzag steps
exhibit more fluctuations, consistent with larger TWD seen in Fig. 7.
Fig. 8 b is the zoom of Fig. 8 a for small distances |y| along the step,
where the stiffness is extracted from the slope of each plot. Evidently,
the inverse of the stiffness increases with increasing temperature, in
qualitative agreement with the theoretical predictions [38].

The inverse step-stiffness measurements are accomplished over the
temperature range T520 ≤ ≤ 580 for 〈100〉 and 〈110〉 steps; simulation
results are listed in Table 2. As can be observed, fully kinked steps have
smaller stiffness β∼ 110 than straight steps β∼ 100 .This result has been
verified experimentally and theoretically in many works [38,40,41];
moreover, the ratio of the stiffness is almost independent of T and
roughly 1/ 2 in agreement with the prediction in Section 2 based on the
Ising model [40]. Indeed, the step-edge fluctuations are very sensitive to
the step stiffness, which is often used to describe the step mobility, but
also to the density of kinks (that provide a source or sink of diffusing
atoms). Since the step stiffness describes the resistance to meandering of
the step and is closely related to the energy required to generate a kink in
the step, weaker step stiffness should yield faster step dynamics.

These static measurements of the stiffness are consistent with our
previous conclusions obtained from the TWD analysis and allow a better
understanding of the underlying mechanisms governing the mass transport
during step fluctuation, to which a considerable amount of work has
already been devoted [21,25,42,43].

6. Conclusions

This work is motivated by experimental [24,44] and theoretical papers
[38,45,46] showing that the step stiffness β∼, which governs step fluctua-
tions, depends on both temperature and step orientation. To determine and
clarify the dominant mechanism governing the relaxation of zigzag steps to
steady state, we have performed kMC simulations of a solid-on-solid model
which incorporates only nearest-neighbor interactions, previously em-
ployed to study the fluctuations of straight steps at equilibrium [12,30]
and coarsening during unstable epitaxial growth [29,39]. Good agreement
with recent theoretical and experimental results is found. Here, we have
studied the change in the dynamics and steady-state properties of vicinal
(001) simple cubic surfaces for which steps have zigzag orientation along
〈110〉 direction, in contrast to straight steps in the 〈100〉 direction in
contrast to straight along 〈100〉 direction. The relaxation kinetics and step-
step interactions are analyzed through the TWD and within a mean-field
approach [10]. We showed that fluctuations of zigzag steps are much more
pronounced than those of fluctuate much easier than straight steps and are
activated by 2-bond (rather than 3-bond for straight steps) breaking
processes as the rate determining. Our results prove that relatively small
step stiffness, as in the case of zigzag steps, imperatively leads to faster the
step dynamics; where kink-generation processes seem to play a significant
role in the step equilibration. Step anisotropy is also found to slow the step
dynamics and also to increase the effective step-step interaction strength.

The long-time saturation of the variance of the TWD (t τ> > ) indicates
that the system has reached steady state, characterized by specific standard
deviation and relaxation time constants. Both of them are affected,

Fig. 7. Standard deviation (left) and the corresponding distribution at steady state (right) of the TWD for various Ehrlich–Schwoebel barrier (EES) for zigzag steps at T=580 K,
Ea=0.35 eV and Ed=1 eV. Lx is the same as in Fig. 6, but here we used Ly=2000az rather than Ly=5000az. The distributions were fitted with the Wigner function (Eq. (9)). The fit
parameter ρ is listed in Table 1.

Table 1
The fitting parameter ρ (Eq. (9)) of the TWD and the corresponding dimensionless interaction
strength A∼ vs. ES barrier for both step-orientations. From Refs. [4–7], ⎛

⎝⎜
⎞
⎠⎟A = = − 1∼ Aβ

kBT
ρ ρ

( )2 2 2

∼
,

where A is the interaction strength and β∼ the step-stiffness.

< 100 > steps < 110 > steps

EES (eV) ρ A∼ ρ A∼

0 2.00 ± 0.01 0.00 ± 0.00 1.51 ± 0.01 −0.18 ± 0.01
0.1 2.13 ± 0.04 0.07 ± 0.02 1.92 ± 0.03 −0.03 ± 0.02
0.2 2.43 ± 0.06 0.26 ± 0.04 2.25 ± 0.05 0.14 ± 0.04
0.3 3.01 ± 0.08 0.76 ± 0.08 2.80 ± 0.07 0.56 ± 0.08
0.4 3.49 ± 0.10 1.30 ± 0.12 3.18 ± 0.09 0.93 ± 0.08
0.5(∞) 3.52 ± 0.10 1.34 ± 0.13 3.21 ± 0.10 0.97 ± 0.10

3 For both zigzag and straight steps, Gx(y) increases linearly at small distances along
the step (we emphasize that within this distance, which sets the appropriate length scale
for measuring the stiffness, step collisions are ignored), consistent with diffusive behavior
in y (i.e. in the fictitious time associated with the mapping of steps to the world lines of
1D spinless fermions) [7]. The linear behavior is found over a y range much larger than
the average step-step distance (approximately 46nm) while for larger y values the linear
dependence ceases, in qualitative agreement with theory [7]. The slope is clearly greater
for zigzag steps than straight steps, consistent with the Modified Restricted Model for
zigzag steps and how it differs from the TSK theory model appropriate for straight steps
[36,40].
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eventually, by the presence of step-edge anisotropy and depend on the
orientation of steps. They also prove to be a direct manifestation of step-
stiffness properties and its precise dependence on energetic barriers. Indeed,
the analysis of the stiffness for both step orientations confirms that zigzag
steps have smaller stiffness than straight steps; in turn, this explains why the
dynamics of steps is faster in the former case. Then, the stiffness behavior,
which is also step-orientation dependent, provides more information about
the step relaxation, in accordance with previous TWD results.

Our study presents comprehensive information for the microscopic
mechanism driving the surface dynamics. Indeed, the step kinetics is
governed essentially by the generation-annihilation of kinks, the steady
state by the density and the distribution of kinks. There is some evidence
that the density of kinks might affect the adatom mobility on the surface,
consequently affecting the step-meandering instability during epitaxial
growth. For more thorough understanding of the step relaxation and the
significant role of kinks generation, this work will be extended by adding
next-nearest-neighbor interactions, whose effect on the step-stiffness and
step-meandering has been revealed recently [45] during growth of vicinal
surfaces (far from equilibrium).
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Fig. 8. (a) Step-position autocorrelation function G y( )x vs. the coordinate y running parallel to step edges. Comparison between 〈110〉−zigzag and 〈100〉−straight step systems at steady

state averaged over 20 steps, where EES=0 eV and for two temperatures: T=580 K and T=520 K. (b) Zoom at small y, where the straight lines are linear fits of simulation data (symbols),
with a slope of k T β/∼B .

Table 2
Inverse step-stiffness ( ± 0.005) for zigzag and straight steps at four temperatures. The
stiffness ratio is almost independent of T and very close to 1/ 2 .

T K( ) k T a β( / )/∼B 100 k T a β( / )/∼B 110 β β/∼ ∼
110 100

520 0.224 0.328 0.683
540 0.276 0.397 0.695
560 0.326 0.466 0.699
580 0.409 0.589 0.694
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