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In this paper we explore the meandering instability of vicinal steps with a kinetic Monte Carlo simulations
(kMC) model including the attractive next-nearest-neighbor (NNN) interactions. kMC simulations show that
increase of the NNN interaction strength leads to considerable reduction of the meandering wavelength and to
weaker dependence of the wavelength on the deposition rate F. The dependences of the meandering wavelength
on the temperature and the deposition rate obtained with simulations are in good quantitative agreement with the
experimental result on the meandering instability of Cu(0 2 24) [T. Maroutian et al., Phys. Rev. B 64, 165401
(2001)]. The effective step stiffness is found to depend not only on the strength of NNN interactions and the
Ehrlich-Schwoebel barrier, but also on F. We argue that attractive NNN interactions intensify the incorporation of
adatoms at step edges and enhance step roughening. Competition between NNN and nearest-neighbor interactions
results in an alternative form of meandering instability which we call “roughening-limited” growth, rather
than attachment-detachment-limited growth that governs the Bales-Zangwill instability. The computed effective
wavelength and the effective stiffness behave as λeff ∼ F −q and β̃eff ∼ F −p , respectively, with q ≈ p/2.
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I. INTRODUCTION

Thin-film growth processes involve many different
types of kinetics giving rise to a variety of surface
morphologies. Experimental and theoretical investigations
carried for different materials and a broad temperature range
revealed that island nucleation (or 3D growth) is the dominant
mechanism ([1] and references therein). However, at relatively
low deposition rate on vicinal surfaces, two-dimensional (2D)
“step flow” growth takes place, with the morphology evolving
towards many different nonequilibrium structures. Such
structures are found to be governed essentially by surface
diffusion and mass transport, both on the surface terraces and
at step edges. Many other mechanisms have been proposed in
the literature [2–4] that may play a more or less important role
in structuring the surface and governing their morphology.

In this paper, we are concerned with a well-known feature
of surface morphology, the meandering instability. This form
of instability, specifically its characteristic wavelength, has
been studied extensively, particularly in the context of the
Bales-Zangwill (BZ) picture. Continued theoretical work has
been spurred by the instability of BZ theory to account for
the observations in classic investigations of vicinal copper
by Ernst’s group [5–7]. This has led to the discovery of
alternative mechanisms for the formation of a meandering, as
well as of a mounding, instability [3,4].

In conventional materials, the nearest-neighbor (NN) inter-
action strength is found to be dominant [8]. Hence, either for
that reason or for simplicity and clarity, most theoretical studies
and simulation models usually neglect further interactions.
However, on a surface lattice with square symmetry, the
assumption of just NN interactions leads to idiosyncratic
fluctuations of steps in non-close-packed orientations, since
many different paths have the same rectilinear L1 distance
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(“Manhattan” or “city block”) and so give a large degeneracy.
The simplest way to remedy this anomalous behavior is to
include a next-nearest-neighbor “NNN” interaction, although
trio (three-atom, nonpairwise) interactions and others could
also serve this function. Here, we investigate how NNN inter-
actions (in particular, attractive ones) compete with NN ones
and alter the wavelength of the meandering instability of steps.

In addition to their effect on the surface morphology
(i.e., the instability), we also consider the effect of the
NNN interactions on step dynamics—more precisely, on
step stiffness and adatom mobility. The resulting surface
morphology, specifically in the step-flow-growth regime, is
strongly governed by the step motion (or velocity) and the
energetic cost of step bending (local curvature energy). Indeed,
the step dynamics is the result of interplay between two
processes that occur on terraces and at step edges. The physics
on terraces is controlled by the adatom concentration or the
adatom mobility on terraces. At step edges, in contrast, the step
stiffness and the adatom mobility determine such properties
as step anisotropy, Ehrlich-Schwoebel (ES) barrier, and kink
ES barrier; their effect translates into effective boundary
conditions on the adatom density (or mobility) field.

The paper is divided into five sections. The computational
details of our kMC model are described in Sec. II. Section III
is devoted to a brief comparison between the theoretical and
experimental results of the meandering wavelength. Then our
simulation results are presented in Sec. IV, where the previous
effective quantities (wavelength and stiffness) are computed
as functions of the deposition rate F, and their behavior is
discussed for different NNN interaction strengths. Conclusions
are provided in Sec. V.

II. COMPUTATIONAL DETAILS

The principles of our simulation model can be found
elsewhere [9–12]. We focus on the effect of the deposition
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FIG. 1. Natural log of effective wavelength vs inverse growth
temperature at F = 3 × 10−3 ML/s, T = 250−310 K, for vanishing
and finite NNN interactions E2. The wavelength takes the form λeff =
λ0 exp(−Ea/kBT ), where λ0 is a constant and Ea is the activation
energy.

rate on vicinal surfaces, with asymmetric step attachment
(arising from the ES barrier [13] at step edges) with energy
EES = 0.07 eV. We carried out extensive simulations on
stepped surfaces of size 1000a × 100a. In the same spirit as
Refs. [9,11], our kMC simulation model used a standard solid-
on-solid model on a simple-cubic model rather than an fcc
template, with lattice spacing a, containing ten steps initially
perfectly straight, extending 1000 units in the x direction, and
with dimensionless terrace width �̃ = 10 (expressed in units of
a). In the presence of an ES barrier, step fluctuations lead after a
few monolayers of growth to the appearance of the meandering
instability in the direction y perpendicular to steps. The surface
height h (in the z direction, normal to the terraces) is a
single-value function, so overhangs are forbidden, but single
vacancies can form temporarily.1 After long-time growth,
digs of varying depth may be observed between the meanders
depending on the deposition rate. The deposited atoms diffuse
on the surface, with desorption forbidden, corresponding to
the assumptions of molecular beam epitaxy (MBE). Periodic
and screw-periodic boundary conditions are assumed in the
x and y directions, respectively. The growth temperature is
fixed at T = 280 K (except for results of Fig. 1, where the
temperature is varied between 250 and 310 K at fixed flux),
and the deposition flux was varied between F = 5 × 10−4

and 2 × 10−2 ML/s, where ML denotes monolayers. These
rates span the range from a barely perceptible effect (small
step fluctuations) to the verge of the meandering instability
that announces the crossover from 2D step-flow growth to 3D
mound growth.

1In early growth, vacancies (in 2D) may form temporarily (until the
site is revisited) in the vicinity of steps due to the formation of fractal
structures caused by NNN interactions, as well as 3D holes in later
growth.

The NN bonding energy is fixed at E1 = 0.26 eV through-
out our simulations, while the NNN interaction energy E2

(included in our simulations) is used as an independent
parameter that is varied between 0 and E1/2, with particular
attention devoted to E2 = (1/6)E1 = 0.043 eV [8]. Once
deposited on the surface, adatoms diffuse with a hopping
barrier E = Ed + n1E1 + (n2E2 + EES), where Ed = 0.4 eV
is the diffusion barrier for free adatoms and n1 and n2

are, respectively, the number of nearest- and next-nearest-
neighbor adatoms before hopping (n1,n2 = 0,1,2,3,4). This
amounts to assuming a constant height for the diffusion barrier
energy and an initial state determined by bond counting. The
attempt frequency is set to ν0 = 1013 s−1. We note that all of
these parameters are exactly or nearly representative of the
experiment in Refs. [5–7] and in the range of the theoretical
predictions of Refs. [9,14] for Ed , Refs. [15,16] for E1, and
Refs. [17–21] for EES.

Our simulation results were directly compared to the exper-
iment of Ref. [5], for Cu(0 2 24) (〈001〉 step edges), in which
the mean terrace width is (2.17 ± 0.05) nm, corresponding to a
dimensionless length �̃exp ≈ 8.5 ± 0.2 (given the interatomic
Cu distance a = 0.255 nm), slightly lower than the value we
used. The temperature ranges between 250 and 400 K, and the
flux between 8 × 10−4 and 10−2 ML/s (see Figs. 4 and 5 of
Ref. [5]). The effective meandering wavelength λeff and the
step stiffness β̃eff are computed as functions of the deposition
rate and for several NNN interaction strengths, while an
effective adatom mobility σeff can be defined from the two
previous quantities.2

III. THEORETICAL PREDICTIONS VS EXPERIMENTAL
RESULTS FOR COPPER

As noted above, our goal in this paper is to cleanly investi-
gate theoretically a simple mechanism (the NNN interaction)
that lifts the Manhattan-length degeneracy of steps on a square
lattice in non-close-packed directions. NNN interactions are
often intentionally neglected, but their effect could be crucial
or at least among the most effective mechanisms for step
dynamics—and consequently on the meandering instability, as
we will see for the case of copper. Kinetic Monte Carlo (kMC)
is well suited for this kind of study [22]. Before presenting our
kMC results, we summarize the main results concerning the
meandering instability.

The BZ theory predicts an instability wavelength that
varies with the deposition flux as λBZ ∝ F−q , where the
exponent q = 1/2. This prediction is confirmed by kMC
simulations of step meandering with an ES barrier [19,23]
as well as in our own simulations [9,11]. However, an in-plane
variant microscopic mechanism, spawned by asymmetric
incorporation into kinks (the kink-Ehrlich-Schwoebel effect
(KESE) [3,24], leads to the prediction that the wavelength of

2The exact measurement of the mobility of adatoms is not
straightforward; nevertheless, from the knowledge of the effective
wavelength and stiffness, we can define a quantity which has the
dimension of an effective mobility as follows: σeff ∝ (λ2

effF/β̃eff ),
independent computation of the latter is, of course, required for better
understanding of the role of mobility on the wavelength limitation.
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the instability varies as λm ∝ F−1/4, in better agreement with
experiments and in disagreement with the prediction of BZ
theory.

On the other hand, Ernst’s group’s experimental STM
results yielded λ100

∼= 1.55 × F−(0.17±0.09) for Cu(0 2 24) and
λ110

∼= 2.18 × F−(0.21±0.08) for Cu(1 1 17), where steps are
oriented in the open 〈100〉 direction and the close-packed
〈110〉 direction, respectively. They also showed that when
deposition is continued beyond 10 ML at higher flux (F >

10−2 ML/s), relatively regular square-base pyramids appear
on the meanders. This obvious disagreement of the exponent
q with the prediction of BZ has stimulated much theoretical
work (for more details, see Refs. [9,23]).

In recent years some of us have also explored the effect of
an extrinsic component, specifically, some kind of codeposited
impurity on the structuring of stepped surfaces and the mean-
dering wavelength [9,11,25]. Indeed, codeposited impurities
during growth are known to have remarkably great influence
on surface morphology, even in small amounts, and may also
serve as a nanostructuring tool ([26] and references therein).
They are shown to produce quantitative and qualitative changes
in the surface morphology. In particular, impurities make
adatom diffusion less dependent on the deposition rate,
affecting thus the wavelength of the meanders and, conse-
quently, alleviating the previous disagreement and partially
explaining the experimentally observed features (appearance
of pyramids). Indeed, impurities are shown to act as nucleation
centers, causing the observed small pyramids to form on the
surface. On the one hand, the diffusion of adatoms (and so their
mobility) obviously may be impeded by the deposition rate,
analogous to the effect of impurities. On the other hand, the
NNN interactions may also hinder adatom diffusion, thereby
decreasing both their mobility and the step stiffness.

According to the theoretical model of Bales-Zangwill and
starting from a linear stability analysis of a growing stepped
surface, the fastest growing mode is found to be the in-phase
mode with a wavelength that can be written in terms of the equi-
librium stiffness and adatom mobility [5,7,17,19,20,27–30]:

λBZ = 4π

√
a4β̃eq

(
σ

eq
s + σ

eq
T

)
fES�2F

, (1)

where the strength of the ES barrier appears in the factor
fES. The term in parentheses is the equilibrium total mobility
σ eq, which is a sum of two terms: the mobility of adatoms
on the terraces σ

eq
T , corresponding to the mass transfer (or

relaxations) via terraces diffusion, and the mobility of adatoms
at the steps σ

eq
s , corresponding to the relaxation via step-edge

diffusion. The driving force of both of these mass currents
is the gradient of the step chemical potential. The mobility of

adatoms on terraces is σ
eq
T = �DT c

eq
T

kBT
[19,20,23,31], where DT is

the terrace diffusion constant, ceq
T the adatom concentration on

the terrace. The mobility along step edges is assumed to have a
similar form: σ

eq
s = aDsc

eq
s

kBT
. This latter may be neglected under

several conditions.3 We emphasize here that Eq. (1) is valid

3The concentration of the edge adatoms, i.e., adatoms having lateral
bonds with the step edge, may be nearly independent of deposition

at equilibrium; it contains the “equilibrium” step stiffness and
the adatom mobility. One can also measure the same quantity
during deposition; therefore, all these quantities we measured
from our simulations are “effective” nonequilibrium ones and
should, eventually, depend on deposition rate F; this is the
main assumption of the present study and its accuracy will
be tested by comparison of results from our kMC simulations
to those from heuristic expectations deduced from available
theoretical models. To better grasp our assumption, one must
bear in mind that the measured quantities can be affected
by intrinsic effects (notably in our study, NNN interactions),
much as they can be affected by extrinsic effects, such as
impurities, and their values should deviate from those at
equilibrium. Therefore, we distinguish between the original
BZ instability (fundamentally caused by step anisotropy or
the ES barrier) and the BZ instability affected by any other
mechanism (NNN, impurities, etc.); in the last case, we talk
about “effective quantities.” Note that in our case the NNN
effects are in the barriers of the kMC model, and so affect the
evolution under deposition and contribute to nonequilibrium
coefficients. When NNN interactions just enter in the lattice
gas energies, they contribute to the equilibrium stiffness, etc.,
as in Ref. [32].

Henceforth, we assume that both the effective step stiffness
β̃eff and the effective adatom mobility σeff are affected by the
NNN interactions strength, consequently affecting the wave-
length of the meandering instability. The exact dependence of
the latter quantities on the deposition rate F and on the NNN
interactions strength will be detailed in the next section.

IV. SIMULATION RESULTS

A. Wavelength of the meandering

In Fig. 1 the meandering wavelength is plotted vs the
inverse temperature (in semilog Arrhenius fashion, λeff =
λ0 exp(−Ea/kBT )) at fixed flux F = 3 × 10−3 ML/s. The
thermal activation energy of the meandering wavelength is
found to be Ea = (0.26 ± 0.01) eV at E2 = 0, i.e., roughly
equals E1 (which should be the thermal activation energy
for the BZ instability) and decreases with NNN inter-
actions to Ea = (0.14 ± 0.01) eV (≈E1/2 ≈ E1 − 3E2)4 at

rate F due to the intensive exchange, enhanced by NNN interactions,
between the edge adatoms and the atoms in the kink positions.
However, the solution of the surface diffusion equation subject to
the kinetic boundary conditions, such as Eq. (6) in Ref. [29], shows
that the adatom concentration depends on F even in the vicinity of
the step edge.

4In equilibrium the attachment-detachment process is the mecha-
nism limiting step fluctuation. However, in growth, the attachment
is the limiting process, which is enhanced with NNN interactions,
making the process seemingly more complicated. Indeed, the best
fit is rather exponential, Ea ≈ E1 × exp(−3 × E2/E1); then Ea ≈
E1 − 3 × E2 is a good approximation for E2 < E1/6. We are not
able to justify definitively this result, but the limiting process could
be the attachment of a free adatom from the terrace (from the incoming
flux) to a kink position of height 2 (which is a more stable position
than attachment into a step edge or into a simple kink of height 1).
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TABLE I. Prefactor CkMC and exponent q of the effective
wavelength vs NNN interaction strength E2, extracted from the best
fit to kMC data plotted in Fig. 2.

E2/E1 CkMC q

0 0.434 ± 0.046 0.447 ± 0.015
1/25 0.587 ± 0.036 0.346 ± 0.009
1/20 0.605 ± 0.049 0.331 ± 0.012
1/15 0.652 ± 0.057 0.307 ± 0.013
1/12 0.710 ± 0.040 0.274 ± 0.008
1/10 0.752 ± 0.050 0.253 ± 0.010
1/8 0.778 ± 0.051 0.225 ± 0.010
1/6 0.952 ± 0.055 0.167 ± 0.009
1/4 1.245 ± 0.049 0.095 ± 0.006
1/2 1.509 ± 0.091 0.036 ± 0.010

E2 = (1/6)E1. The latter is in good agreement with the
experimental result, Eexp = (0.132 ± 0.012) eV [5,17].

In Fig. 2 the meandering wavelength is plotted vs flux for
different NNN interaction strengths E2, at fixed temperature
T = 280 K. As we can see, for all E2 values, λ decreases with
F in a power-law fashion, with an exponent q that decreases
from q = 0.45 at E2 = 0 to a very small value (implying
weak F dependence) with increasing E2. In particular, for
E2 = (1/6)E1 we found qkMC = 0.167 ± 0.009 (see Table I).

This exponent q is nearly the value found in the experiment
of Maroutian et al. for Cu(0 2 24) at T = 294 K [5]. However,
the prefactor CkMC = 0.952 ± 0.055 (see Table I) is much
lower than the experiment (Cexp = 1.55). Indeed, in order
to match our simulation results with the experiment, we
should rescale the temperature and the terrace width to our
simulation values. From Fig. 4 of Ref. [5], we can easily extract
the experimental wavelength corresponding to our tempera-
ture (T = 280 K → 1000/T = 3.57 K−1) and for F = 3 ×
10−3 ML/s, we find (λ/�̃)exp ≈ 3 = Cexp × (3 × 10−3)−0.17,
so Cexp = 1.12, and then (λ/�̃)exp = 1.12 × F−0.17. Rescal-
ing the experimental mean terrace width �̃exp

∼= 8.5 to our
value �̃ = 10 yields (λ/10)exp = (8.5/10) × 1.12 × F−0.17 =
0.95 × F−0.17, which is in excellent agreement with our
simulation values found for E2 = (1/6)E1 (see Table I).
This energy is, indeed, the NNN bonding strength computed
theoretically in Ref. [8].

The rescaling to the experimental temperature and terrace
width is a common numerical manipulation. This is arguably
the most remarkable agreement between the experiment and
our simulations found in this study, strongly supporting the
validity of our model. The latter seemingly takes into account
the most important effective processes in the studied system
and confirms the ability of our simulations to reproduce the
experimental results over the experimental temperature range.

FIG. 2. (Upper) Snapshots of the simulated surface (segment of 500 × 500 sites shown) at F = 2 × 10−3 ML/s and for different NNN
interactions bonding energy value E2 after growth of 20 ML. Steps are evolving from top to bottom of the images; i.e., the terraces at the top
are higher than those at the bottom. (Lower) Meandering wavelength vs deposition rate with increasing NNN interaction strength (E2/E1). The
measured wavelength is the mean of all meander widths. Error bars are obtained over ten independent simulations. The wavelength follows a
power law: λeff ∼ CkMC × F −q (in agreement with BZ theory), where the prefactor CkMC and the exponent q are found to depend on the NNN
energy E2. The flux is varied between 5 × 10−4 and 2 × 10−2 ML/s at T = 280 K and with EES = 0.07 eV.
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To summarize, we found excellent quantitative agreement
with the experiment, not only for the exponent q = 0.17 when
E2 = (1/6)E1, but also for the prefactor Cexp = 1.55. The
latter agreement confirms that our simulations are reproducible
at the range of temperature where the meandering instability
develops, estimated between 250 and 320 K in our simulations.

Our results could be interpreted as follows: The meandering
instability seems to be sensitive to even small perturbations,
specifically NNN interactions but also small concentrations
of impurities, affecting the dynamics of steps and surface
diffusion of adatoms. These effects are manifested in the
instability-wavelength behavior. Particularly, the latter is found
to be very sensitive to attractive NNN interactions and
presumably to any more complicated mechanism that lifts
the degeneracy of Manhattan path lengths of steps. In our
context, NNN interactions increase step fluctuations and cause
fractal fingers to form at the step edge. These fractal shapes
drastically affect the effective step stiffness, competing with
the meandering instability, decreasing both the stiffness and
the instability wavelength as strength of the NNN interactions
increases.

Indeed, in the submonolayer regime, the islands growing
on nominal surfaces have nearly smooth step edges (compact
islands) for vanishing E2, but for E2 > E1/6, very rough
island edges are observed in simulations, exhibiting numerous
bifurcations (fingers) which look like fractals at the highest
NNN values. These fractal fingers cease to grow, thereafter
decreasing the meandering wavelength. This reasoning is
confirmed by recent work on island size distributions in models
of submonolayer surface growth [33]. The latter showed
that fractal morphologies exhibit a lower coalescence rate
than compact ones caused by the fact that fingers of two
approaching fractal islands typically first avoid each other,
which subsequently leads to a screening effect and a slowing
down of further growth of these fingers.

Now we focus on why both impurities and NNN interac-
tions lead to similar behavior of the wavelength dependence
on deposition rate. Besides the effects of NNN or similar
symmetry-breaking interactions, the instability behavior may
be affected by nucleation mechanisms, as reported in Ref. [9]
and recently in Ref. [34]. Indeed, the presence of 2D islands
influences step-flow growth; moreover, the coalescence of such
islands with neighboring steps can modify the wavelength of
the meandering transition from step flow to 3D layer-by-layer
growth. During this transition, 2D nucleation and island
coalescence significantly modify the meandering instability
from the well-known BZ instability to a different “form”
of instability—the nucleation and coalescence meandering
instability [34].

In our case, when we increase the NNN interactions, one
can expect that the growth process switches over to the step-
roughening mechanism (or nucleation for impurities), which
might produce a dependence of the effective stiffness on the
deposition rate essentially similar to that in the impurities case
(Ref. [9]); this similarity is illustrated in Fig. 3. This is why the
NNN interaction strength can be seen to act like an effective
impurity concentration—the higher the interaction, the more
effective adatoms are as “traps” (and the more impurities,
the more traps there are). Thus, what sets the length scale
of the instability is step roughening (as it is nucleation for
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FIG. 3. Plot of the exponent q vs the ratio x = (E2/E1) at fixed
E1 for �̃ = 10 (blue squares). For purpose of comparison, we show the
data for �̃ = 5 (green circles, where finite-size effects could explain
the mediocre accuracy of some points), and also the result found in
Ref. [9] where ci is the concentration of impurities (red triangles).
The dark solid line is the best fit of the overall data to an exponential
decay.

impurities), which is presumably the main aspect that NNN
affects. Indeed with NNN interactions, the effective “size” of
an adatom is extended, that can now capture other diffusing
adatoms not only when they are NN, but also when they are
NNN. When we further increase the interaction strength, the
step roughness becomes ever less dependent of the deposition
rate, because atoms simply stick where they touch the step
and do not move anymore and the steps are progressively
more ramified. Therefore, in the spirit of Ref. [34], we obtain
a different form of meandering instability—the roughening-
limited growth, which is simply the BZ instability altered by
NNN interactions.

In conclusion, the introduction of NNN interactions into
the system affects the meandering wavelength, decreasing
its dependence on the deposition rate F . The exponent q

in the λ−F relationship decays exponentially with the NNN
interaction, the best fit giving (Fig. 3):

q(E2) ≈ (0.45 ± 0.02) exp[−(6.0 ± 0.2)E2/E1]

≈ (1/2) exp(−E2/2kBT ). (2)

From the latter equation, we can see that for vanishing NNN
interactions, q = 1/2, which is the BZ prediction, whereas for
a particular finite NNN strength (E2 = (1/6)E1), q = 0.16,
just as in the experimental results. In Fig. 3, the behavior for
each set of points for small x looks almost linear; for small
E2, one can write q(E2) ≈ 0.45 × (1 − 6E2/E1).

Even though the meandering instability has been exten-
sively studied over the last three decades, the disagreement
between the experiment and current theories remains unre-
solved. Here, we present a mechanism (NNN interactions) that
accounts for the disagreement. This finding should stimulate
more theoretical models of step instabilities.
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FIG. 4. Autocorrelation function of the step profile y(x): (a) for various flux, at fixed E2 = 0 and (b) for various E2/E1 values, at fixed
F = 5 × 10−4 ML/s, EES = 0.07 eV, and T = 280 K. Error bars are obtained over ten simulations.

B. Effective stiffness

Within the solid-on-solid (SOS) approximation, Stasevich
et al. [32,35] demonstrated the equilibrium dependence of the
step stiffness on NNN interactions for Cu(001). Mehl et al. [8]
found that energy barriers are not simply the sum of bond
energies, so that the NNN bonding energy deduced from a
set of such barriers depends on the diffusion path (i.e., on
the local configuration of adatoms). On all the (001) surfaces
that they checked (Ag, Au, Ni, and Pd), except for Cu, the
inclusion of a nonlinear term in the total hopping energy is
much larger than the NNN bond, sometimes by an order of
magnitude. Therefore, Cu is the best material to check for the
effect of NNN interaction strength on the stiffness and then on
the meandering wavelength.

In this section, we show that the effective stiffness exhibits a
similar flux dependence as the meandering wavelength. Since
NNN interactions affect, in particular, the kinetics near step
edges, the effective stiffness should be also affected. Because
the latter is proportional to the instability wavelength in a
power-law fashion, one expects that any change of the former
with NNN interactions will modify the latter one. Indeed,
the effective stiffness is related to the in-plane-autocorrelation
function gy(x) along the step edges at small separation x (see
Fig. 4), which reads [36,37]

gy(x) = 〈[y(x + x ′) − y(x ′)]2〉 ≈ kBT

aβ̃eff
a|x|, (3)

where, again, x is the coordinate running parallel to the
mean step-edge direction and y is the in-plane perpendicular
coordinate. The effective stiffness is then extracted from the
coefficient of |x| in Eq. (3). In Fig. 5, we have plotted the
effective stiffness vs flux for different energetic barriers. It
is found to follow the same trend vs flux as the effective
wavelength (β̃eff ∼ F−p where λeff ∼ F−q), but with a power-
law exponent p nearly twice as large as q.

Furthermore, in our range of flux and for the unstable
regime (i.e., for EES = 0.07 eV, red (with circles) and blue

(with downward-pointing triangles) lines in Fig. 5), the
stiffness decreases fairly rapidly with NNN interaction
strength and vanishes at higher flux, where there is a crossover
from meandering to island instability. This decrease is,
however, much slower for the stable regime (i.e., for EES =
0 eV, black (with squares) and green (with upward-pointing
triangles) lines in Fig. 5); the effective stiffness maintains a
finite value even at higher flux.

Focusing on the unstable regime, where the meandering
instability is observed, one can note that the effective stiffness
exponent is p = (0.95 ± 0.01) ≈ 1 (red data in Fig. 5) at E2 =
0, corresponding to q = (0.45 ± 0.02) ≈ 1/2 (as predicted
in the BZ theory) and p = (0.33 ± 0.01) ≈ 1/3 (blue data
in Fig. 5) at E2 = (1/6)E1, corresponding to q = (0.17 ±
0.01) ≈ 1/6 (as found in the experiment). Thus, in both cases,
one can write, to good approximation, p = 2q.

10-4 10-3 10-2 10-1

0.1

1

10

Tk
a

B

~

F (ML/s)

0.5  0.010.58

0.95 ± 0.01

0.29 ± 0.01

0.33 ± 0.01

FIG. 5. Effective stiffness vs deposition rate F , at T = 280 K for
different energetic barriers EES (in eV) and E2. The three diamond
points are extracted from Ref. [36] and plotted for comparison. The
simulation data (symbols) are fitted (solid line) with linear function
in the log-log plot β̃eff ∼ F −p; the slope p is listed for each fit.
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FIG. 6. Effective wavelength vs effective stiffness at T = 280 K,
and after 20 ML of growth, λeff/�̃ ∼ β̃

1/2
eff .

In the stable regime (EES = 0, no meandering instability),
we compute p = (0.50 ± 0.01), in perfect agreement with a
heuristic deduction5 of the exponent p = 1/2 [black (with
squares) data in Fig. 5] with only NN interactions. Our results
also agree relatively well with Ref. [36], where we have
extracted the exponent p = 0.58. Thus, the effective stiffness
depends not only on the energetics at the step edge, but also
on the deposition rate. Note that at a given deposition rate,
only the amplitude of the effective stiffness depends on the ES
barrier; however, the exponent p (therefore q) depends on the
NNN strength E2.

When the effective wavelength is plotted vs the effective
stiffness (Fig. 6), we found λeff ∼ β̃

(0.49±0.01)
eff , in good agree-

ment with Ref. [38]. This behavior is again reminiscent of the
BZ theory for equilibrium quantities [Eq. (1)].

In conclusion, as we increase the strength of NNN in-
teractions, nucleation at steps and consequent discursions
progressively increase (on flat surfaces, the nucleated islands
evolve from compact to fractals), thereby increasing the
number of kinks. Hence, the attachment process of adatoms
into steps is enhanced, leading to a smaller effective stiffness,
as well as a weaker dependence on the deposition rate
(ballistic growth at infinite NNN). To explain the behavior

5Krug et al. [39] demonstrated that, under certain conditions (in
the low-temperature limit 2E1/kBT 	 1 for vicinal surfaces with
small surface slopes u = ∂h/∂x ∼ 0, a regime not easily accessed in
experiment but readily probed in simulations), the mobility and the
stiffness are found to be quadratic and inversely proportional to the
overall surface slope: σ ∼ u2 and β̃ ∼ |u|−1, respectively. Thus, if the
flux dependence of one of these quantities is known, one may deduce,
heuristically, the corresponding approximated dependence of the two
others. For example, for u ∼ F 1/2, one deduces σ ∼ F and β̃ ∼
F −1/2. These behaviors are consistent with the overall behavior of the
effective stiffness and the adatom mobility found in our simulations
with only NN interactions. Note that σ ∼ F is also in agreement with
Ref. [40] (see Fig. 8 for the step velocity; the step mobility is then
almost linear with F in our range of flux.

of the effective stiffness when EES = 0 [i.e., why in Fig. 5
the green (with upward-pointing triangles) curves exhibits
essentially the same behavior as the unstable case [blue (with
downward-pointing triangles) curve] with F], because in that
case there is no instability (and thus no wavelength). We
think that as long as attachment is fast (and the equilibrium
concentration at step edges vanishes), we are simply probing
the fluctuations in the diffusion field at the step edge: Since
the flux of diffusing adatoms reaching the step is essentially
DT ceq/� = F�, the fractional fluctuations of this quantity are
proportional to its square root, and thus to F−1/2, which is
exactly what we measure.

V. CONCLUSION

We have performed extensive kMC simulations to under-
stand how the meandering-instability wavelength, the effective
stiffness, and the effective mobility depend on the deposition
rate F and the NNN interaction strength. We found excellent
agreement with the experimental values of the wavelength on
copper when NNN interactions are taken into account in our
simulations. Our simulations determine the “exact” behavior
of the effective stiffness as functions of the deposition rate and
how it relates to the meandering wavelength in the unstable
regime; both of them show strong decrease with increasing
NNN interaction strength.

In the unstable regime, the effective meandering wavelength
is argued to be a manifestation of the competition between
the effective step stiffness and the adatom mobility, which
are both presumed to depend on the deposition rate. The
stiffness exhibits the F power laws: β̃eff ∼ F−p; leading to
a meandering wavelength λeff ∼ F−q with q ≈ p/2, i.e.,
roughly half of the stiffness exponent. Moreover, q = q(E2),
rather than a constant value q = 1/2 as predicted by linear
stability analysis. As shown above, p (then q) is found to be
related to the kinetics of attachment at step edges: p increases
when the kinetics is fast; likewise we can say p decreases with
the NNN interaction strength. Thus, the stiffness becomes less
dependent on the flux with increasing NNN interaction energy
E2: the exponent p is reduced by a factor close to 3 (from
0.95 to 0.33). Simultaneously, the wavelength becomes less
dependent on the flux, since the exponent q is decreased from
0.45 to 0.17, also reduced by a factor close to 3.

Finally, we emphasize that the obtained instability wave-
length is an alternative form of meandering instability which
we term “roughening-limited” growth, rather than attachment-
detachment-limited growth that governs the BZ instability. For
NN interactions only, the attachment process is balanced by the
detachment process (“the most significant transitions involve
the motion of atoms along terraces and step edges which
result in diffusion of adatoms and edge adatoms” [20,41]);
this smoothing effect allows steps to fluctuate nearly in
phase. However, the inclusion of NNN interactions enhances
step roughening, inhibiting the growth of the meandering
wavelength (impurities probably produce a similar effect).
In conclusion, NNN interactions seem to induce competing
effects between the instability (whose main mechanism is
the Ehrlich-Schwoebel barrier) and the step dynamics (whose
main mechanism is step kinetics and incoming deposition
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rate), leading to the obtained wavelength behavior vs F; i.e., the
exponent q depends now on the strength of NNN interactions.

Good quantitative agreement is found for most of the
experimental results presented in Ref. [5]. However, no formal
analysis exists of how NNN interaction or other mechanisms
(such as impurities) might lead to crossover of the exponent q

from its BZ value. Our simulation results may be fruitful for
developing improved theories of step instabilities. The precise
measurement of adatom mobility is a complicated task. While
a detailed analysis of the surface diffusion problem is certainly

warranted, such an investigation exceeds the scope of this
paper.
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