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the MIT license:
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files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, 
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The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE.
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I. Initialization (MO Diagram Functions)

The primary function of interest is the MOSpectrum  function, defined last in this section.  All other
functions shown here support the MOSpectrum function and are either called directly from it, or are to
be used to populate data before calling the MOSpectrum function (see section II for usage below).

Set the working directory to be the location of this Mathematica notebook.

SetDirectory@NotebookDirectory@DD;

� Function: Projections

result = Projections[dir]
This function parses the PROCAR file from the specified folder and returns an array containing the projections
of each KS state onto the orbitals of each atom in the system.  These are the KS functions projected onto the

projector functions: < Ψ
�

m pia
�

> as presented in the text.

Parameters
dir: the folder, relative to the working directory, in which the PROCAR file can be found.

Returns
result is an array containing the projections from PROCAR. The 1st index is the k - point index and the 2nd
index references:
  (index value = 1) the coordinates of the given k - point, 
  (index value = 2) an array containing all of the projections for that k - point. 
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result = Projections[dir]
This function parses the PROCAR file from the specified folder and returns an array containing the projections
of each KS state onto the orbitals of each atom in the system.  These are the KS functions projected onto the

projector functions: < Ψ
�

m pia
�

> as presented in the text.

Parameters
dir: the folder, relative to the working directory, in which the PROCAR file can be found.

Returns
result is an array containing the projections from PROCAR. The 1st index is the k - point index and the 2nd
index references:
  (index value = 1) the coordinates of the given k - point, 
  (index value = 2) an array containing all of the projections for that k - point. 

Projections@dir0_D := Module@
8

dir = dir0,

data,

vals, start, end,

numK, kVecs,

numBands,

numAtoms,

bandLength,

bandData,

bandStart, bandEnd,

energy, proj, add<,

H* read the PROCAR file into the list named "data": *L
data = Import@dir <> "�PROCAR", "Table"D;

H* determine number of k-points, number of bands, and number of ions *L
vals = StringJoin@Table@ToString@sD, 8s, dataP2T<DD;

start = StringPosition@vals, "ðofk-points:"DP1, 2T + 1;

end = StringPosition@vals, "ðofbands:"DP1, 1T - 1;

numK = ToExpression@ StringTake@vals, 8start, end<D D;

Print@"K-points: ", numKD;

kVecs = Table@80, 0, 0<, 8numK<D;

start = StringPosition@vals, "bands:"DP1, 2T + 1;

end = StringPosition@vals, "ðofions:"DP1, 1T - 1;

numBands = ToExpression@ StringTake@vals, 8start, end<D D;

start = StringPosition@vals, "ðofions:"DP1, 2T + 1;

end = StringLength@valsD;

numAtoms = ToExpression@ StringTake@vals, 8start, end<D D;

bandLength = 4 + 3 * numAtoms;

Print@"Number of bands: ", numBandsD;

H* If there is only 1 atom in the system, the amount of blank-

space changes by 1 line, so we account for this with the variable, add *L
add = 1;

If@numAtoms � 1, add = 0D;

H* parse the file for all of the band data and k-point data *L
bandData = Table@
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bandStart =

6 + HbandLength + 1 + addL Hband - 1L + HHbandLength + 1 + addL HnumBandsL + 3L Hk - 1L;

bandEnd = bandStart + bandLength;

If@band � 1, kVecsPkT = dataPbandStart - 2, 84, 5, 6<TD;

energy = dataPbandStart, 5T;

proj = Partition@dataPRange@bandStart + numAtoms + 4 + add, bandEndDT, 2D;

proj = Table@pP1, iT + ä pP2, iT, 8p, proj<, 8i, 2, Length@pP2TD<D;

8energy, proj<
,

8k, numK<,

8band, numBands<
D;

H* insert the k-

point coords for each kpoint in the band structure for convenience *L
bandData = Table@8kVecsPkT, bandDataPkT<, 8k, Length@bandDataD<D;

Return@bandDataD;

D;

� Function: OrbitalOverlap

result = OrbitalOverlap[ orbitalProjections1, orbitalProjections2, indexes1, indexes2 ]
This function returns a matrix (a 2D array) of the overlaps of the wavefunctions from systems 1 and 2.  Ele-
ments are of the form: < Ψ1 ¦ Ψ2 > as introduced in equation 1 of the text.

Parameters
orbitalProjections1: array of projections associated with a single k-point from system 1 as returned from the
Projections function (see the usage section II below for an example of how to get the desired array of projec-
tions from the result of the Projections function).
orbitalProjections1: array of projections from system 2.
indexes1: list of atom indexes from system 1 that remain unchanged upon substitution to system 2.
indexes2: list of atom indexes from system 2 that remain unchanged upon substitution to system 1.

Returns
result is a 2D array whose row indexes are the KS orbital indexes from system 1, and whose column indexes
are the KS orbital indexes from system 2.
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OrbitalOverlap@orbitalProjections01_,

orbitalProjections02_, indexes01_, indexes02_D := ModuleB
8orbitalProjections1 = orbitalProjections01, orbitalProjections2 =

orbitalProjections02, indexes1 = indexes01, indexes2 = indexes02<,

ReturnB
TableB

â
a=1

Length@indexes1D
â
i=1

Length@ΨPindexes1PaTTD
ΨPindexes1PaT, iT

ΦPindexes2PaT, iT
,

8Ψ, orbitalProjections1PAll, 2T<,

8Φ, orbitalProjections2PAll, 2T<
F

F;

F;

� Function: MOMatrix

result = MOMatrix[ overlap ]
This function creates the MO matrix (2D array) of equation 2 from the text.

Parameters
overlap: orbital overlap 2D array created by the OrbitalOverlap function above.

Returns
result is a 2D array whose row indexes are the KS orbital indexes from system 1, and whose column indexes
are the KS orbital indexes from system 2 (where systems 1 and 2 were defined in the use of the OrbitalOverlap
function).
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MOMatrix@overlap0_D := ModuleA
8

overlap = overlap0, overlapSquared

<,

overlapSquared = TableA
Abs@overlapPi, jTD2

,

8i, Length@overlapD<,

8j, Length@overlapP1TD<
E;

Return@
Table@

overlapSquaredPi, jT �
Max@8Max@overlapSquaredPi, AllTD, Max@overlapSquaredPAll, jTD<D

,

8i, Length@overlapD<,

8j, Length@overlapP1TD<
D

D;

E;

� Function: cFunction

cFunction[ x, y, z ]
This is an example color function used to determine the color of line segments in an MO diagram.

Parameters
x: x-coordinate (between 0 and 1) representing the energy (normalized to between 0 and 1) of the orbital at
which a line segment either begins or ends.
y: y-coordinate.  0 if located at the bottom system (system 2), 1 if located at the top system (system 1).
z: magnitude of overlap between the orbital of system 1 and system 2 (normalized to be between 0 and 1).

Global Parameters
cutoff: the global variable cutoff is set externally since it is also used in the MOSpectrum below.

Returns
color based on x,y,z input.

cFunction = FunctionB
8x, y, z<,

colorVal = HueBx,
z - cutoff

H1 - cutoffL , 1F;

If@z � 0, colorVal = WhiteD;

colorVal

F;

� Function: MOSpectrum

result = MOSpectrum[ system1Projections, system2Projections, indexes1, indexes2, colorFunction ]
This  function  creates the Graphics  object  used  to  display MO diagram connections  between orbitals  from
system1 and orbitals from system2, as seen in the MO diagrams from the text.  Input is mostly the same as the
OrbitalOverlap function defined above because this function calls the OrbitalOverlap function.

Parameters
system1Projections: array of projections associated with a single k-point from system 1 as returned from the
Projections function (see the usage section II below for an example of how to get the desired array of projec-
tions from the result of the Projections function).
system2Projections: array of projections from system 2.
indexes1: list of atom indexes from system 1 that remain unchanged upon substitution to system 2.
indexes2: list of atom indexes from system 2 that remain unchanged upon substitution to system 1.
colorFunction: any standard Mathematica 3-variable color function, such as cFunction defined above.

Global Parameters
cutoff: the global variable cutoff is set externally (initialized below to .1) since it is generally also used in the
colorFunction.

Returns
result is a Mathematica Graphics object containing line segments to be displayed as the connections between
states of an MO diagram.  While internally the energies are scaled to lie between 0 and 1, the return value
result is rescaled to lie in the original energy range of the input systems.
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result = MOSpectrum[ system1Projections, system2Projections, indexes1, indexes2, colorFunction ]
This  function  creates the Graphics  object  used  to  display MO diagram connections  between orbitals  from
system1 and orbitals from system2, as seen in the MO diagrams from the text.  Input is mostly the same as the
OrbitalOverlap function defined above because this function calls the OrbitalOverlap function.

Parameters
system1Projections: array of projections associated with a single k-point from system 1 as returned from the
Projections function (see the usage section II below for an example of how to get the desired array of projec-
tions from the result of the Projections function).
system2Projections: array of projections from system 2.
indexes1: list of atom indexes from system 1 that remain unchanged upon substitution to system 2.
indexes2: list of atom indexes from system 2 that remain unchanged upon substitution to system 1.
colorFunction: any standard Mathematica 3-variable color function, such as cFunction defined above.

Global Parameters
cutoff: the global variable cutoff is set externally (initialized below to .1) since it is generally also used in the
colorFunction.

Returns
result is a Mathematica Graphics object containing line segments to be displayed as the connections between
states of an MO diagram.  While internally the energies are scaled to lie between 0 and 1, the return value
result is rescaled to lie in the original energy range of the input systems.

cutoff = .2;

Options@MOSpectrumD = 8eF1 ® 0, eF2 ® 0<;

MOSpectrum@system1Projections0_, system2Projections0_,

indexes01_, indexes02_, colorFunction0_, OptionsPattern@DD := ModuleB
8

system1Projections = system1Projections0,

system2Projections = system2Projections0,

indexes1 = indexes01, indexes2 = indexes02,

overlap, moMatrix,

eMax, eMin, De, e1, e2, x1, x2, val, map,

colorFunction = colorFunction0, spec,

eF1Shift, eF2Shift

<,

eF1Shift = OptionValue@eF1D;

eF2Shift = OptionValue@eF2D;

overlap =

OrbitalOverlap@system1Projections, system2Projections, indexes1, indexes2D;

moMatrix = MOMatrix@overlapD;

system1ProjectionsPAll, 1T -= eF1Shift;

system2ProjectionsPAll, 1T -= eF2Shift;

eMax = Max@ Join@system1ProjectionsPAll, 1T, system2ProjectionsPAll, 1TD D;

eMin = Min@ Join@system1ProjectionsPAll, 1T, system2ProjectionsPAll, 1TD D;

De = eMax - eMin;

map = TableB
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map = TableB
e1 = system1ProjectionsPe1Idx, 1T;

e2 = system2ProjectionsPe2Idx, 1T;

x1 =
e1 - eMin

De
;

x2 =
e2 - eMin

De
;

val = 8
moMatrixPe1Idx, e2IdxT,

Line@88x1, 1<, 8x2, 0<<, VertexColors ® 8colorFunction@x1, 1,

moMatrixPe1Idx, e2IdxTD, colorFunction@x2, 0, moMatrixPe1Idx, e2IdxTD<D
<;

If@valP1T < cutoff, val = 80, 8<<D;

val

,

8e1Idx, Length@system1ProjectionsD<,

8e2Idx, Length@system2ProjectionsD<
F;

map = Flatten@map, 1D;

map = Sort@map, ð1P1T < ð2P1T &D;

spec = Graphics@Flatten@mapPAll, 2TDD;

Return@ Graphics@
Translate@Scale@specP1T, 8De, 1<, 80, 0<D, 8eMin, 0<D

D D;

F;

II. Initialization (MO Energy Partitioning Functions)

The primary functions of interest are the OrbitalEnergyContributions function and the ListWriteVASP-
Bonds function, defined first and second in this section, respectively.  All other functions shown here
support  these functions and are either called directly from them or other supporting functions (see
section IV for usage below).

� Function: OrbitalEnergyContributions

result = OrbitalEnergyContributions[ dirSystems, dirVac, sysIndexes, vacIndexes, eigenValsRanges ]
This  function  generates  a  list  of  energies,  each energy corresponding  to  one  of  the  vacuum system MOs

already calculated in dirVac.  These energies are the terms denoted as DEA®B
e,Ε-eff

 in Eq. S4.

Parameters
dirSystems: array of directory names where each interpolated adsorption system has undergone SCF calcula-
tions as well as the force calculations of ListWriteVASPBonds.  These interpolated systems also include the
ground state system and the transition state system as the first and last element, respectively - and each interpo-
lation is listed in order.
dirVac: directory name where the calculated vacuum system can be found.
sysIndexes: list of atom indexes from any of the adsorption systems (it is assumed that each adsorption system
has the same set of indexes) that remain unchanged upon substitution into the vacuum system. 
vacIndexes: list of atom indexes the vacuum system that remain unchanged upon substitution into any one of
the adsorption systems. 
eigenValsRanges: ordered pairs of energy ranges (slices) that forces have been calculated for.   These pairs
must be the same as were used for ListWriteVASPBonds below.

Returns
result is a list of energies corresponding to each of the vacuum system MOs.
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result = OrbitalEnergyContributions[ dirSystems, dirVac, sysIndexes, vacIndexes, eigenValsRanges ]
This  function  generates  a  list  of  energies,  each energy corresponding  to  one  of  the  vacuum system MOs

already calculated in dirVac.  These energies are the terms denoted as DEA®B
e,Ε-eff

 in Eq. S4.

Parameters
dirSystems: array of directory names where each interpolated adsorption system has undergone SCF calcula-
tions as well as the force calculations of ListWriteVASPBonds.  These interpolated systems also include the
ground state system and the transition state system as the first and last element, respectively - and each interpo-
lation is listed in order.
dirVac: directory name where the calculated vacuum system can be found.
sysIndexes: list of atom indexes from any of the adsorption systems (it is assumed that each adsorption system
has the same set of indexes) that remain unchanged upon substitution into the vacuum system. 
vacIndexes: list of atom indexes the vacuum system that remain unchanged upon substitution into any one of
the adsorption systems. 
eigenValsRanges: ordered pairs of energy ranges (slices) that forces have been calculated for.   These pairs
must be the same as were used for ListWriteVASPBonds below.

Returns
result is a list of energies corresponding to each of the vacuum system MOs.

OrbitalEnergyContributions@dirSystems0_, dirVac0_,

sysIndexes0_, vacIndexes0_, eigenValsRanges0_D := ModuleB
8

dirSystems = dirSystems0, dirVac = dirVac0, eigenValsRanges = eigenValsRanges0,

sysIndexes = sysIndexes0, vacIndexes = vacIndexes0,

vacProjections, overlapSys, forceData, allDR, eigenValsMol, eigenValsSys,

atoms1, atoms2, ΕList, ΑList, val, dEe, F1, F2, dR, DEe, DEeTotal

<,

vacProjections = Projections@dirVacDP1, 2T;

overlapSys = Table@
OrbitalOverlap@ vacProjections,

Projections@dirSystemsPnTDP1, 2T, vacIndexes, sysIndexes D
,

8n, Length@dirSystemsD<
D;

H* read in the calculated forces

for each energy range of each adsorption system *L
forceData = Table@

GetBondData@d,

Range@Length@eigenValsRangesDD, EigenValueRanges ® eigenValsRangesD,

8d, dirSystems<
D;

H* based on the atomic coordinates of each adsorption system

Heach being a system that is an interpolation of atomic coordinates

between the ground state system and the transition state systemL,

determine the displacement, dR, for each atom in moving from

one interpolated position to the next *L
allDR = Table@

8atoms1, cell< = ReadCONTCAR@dirSystemsPiTD;

8atoms2, cell2< = ReadCONTCAR@dirSystemsPi + 1TD;

atoms2PAll, 81, 2, 3<T - atoms1PAll, 81, 2, 3<T
,

8i, Length@dirSystemsD - 1<
D;

H* KS Eigenvalues of the molecule in vacuum *L
;
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eigenValsMol = GetEigenValues@dirVacD - GetFermiEnergy@dirVacD;

H* KS Eigenvalues for each interpolated adsorption

system Heach set of eigenvalues is an element of this list,

one element per interpolated systemL *L
eigenValsSys = Table@

GetEigenValues@dirD - GetFermiEnergy@dirD,

8dir, dirSystems<
D;

H* ΕList creates pairings between each consecutive set of interpolated

systems Hcall a given pair sys1 and sys2, for exampleL. Then,

for each energy range Heach slice of energies to be grouped togetherL,

this list specifies which eigenvalue indexes of sys1 correspond to a given

energy slice and which indexes of sys2 correspond to the same slice. *L
H* Note that the sizes of the energy slices are chosen by the input

eigenValsRanges, and therefore can be set to be as small as needed -

section IV shows an example of setting eigenValsRanges. *L
ΕList = Table@

Select@
Range@ Length@eigenValsSysPc + addTD D,

eigenValsRangesPE, 1T £ eigenValsSysPc + add, ðT < eigenValsRangesPE, 2T &

D
,

8E, Length@eigenValsRangesD<,

8c, Length@dirSystemsD - 1<,

8add, 80, 1<<
D;

H* each range of KS eigenvalues in the adsorption system can be thought of as

being derived from a set of precursor states in the vacuum system -

so in this sense, a given adsorption system energy range belongs

to a given precursor state with some weight Α1 and to some other

precursor state with weight Α2, etc. ΑList is the listing of

those weights for each energy slice in each adsorption system. *L
ΑList = TableA

IfALength@ΕListPE, c, add + 1TD > 0,

val = MeanA overlapSysPc + add, e, ΕListPE, c, add + 1TT2 E,

val = 0

E;

val

,

8e, Length@eigenValsMolD<,

8E, Length@eigenValsRangesD<,

8c, Length@dirSystemsD - 1<,

8add, 80, 1<<
E;

H* numerically approximate the integral of Eq. S4 using the trapezoidal rule. *L
dEe = TableB

;

;
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F1 = forceDataPc, ETPAll, 88, 9, 10<T;

F2 = forceDataPc + 1, ETPAll, 88, 9, 10<T;

dR = allDRPcT;

â
i=1

Length@F1D
ΑListPe, E, c, 1T * F1PiT + ΑListPe, E, c, 2T * F2PiT

2
.dRPiT

,

8e, Length@eigenValsMolD<,

8E, Length@eigenValsRangesD<,

8c, Length@dirSystemsD - 1<
F;

DEe = Table@
Total@dEePe, All, cTD,

8e, Length@eigenValsMolD<,

8c, Length@dirSystemsD - 1<
D;

DEeTotal = Re@Table@Total@DEePx, AllTD, 8x, Length@DEeD<D D;

Return@DEeTotalD;

F;

� Function: ListWriteVASPBonds

The following  two variables, scriptHeader  and  scriptHeader24 ,  define possible  headers one might want to
include in the script  for calculating orbital  forces,  if  running VASP in a PBS style environment (i.e. these
would be part of the script submitted with a qsub command).

scriptHeader = "ð!�bin�sh \n" <>

"ðPBS-l walltime=900:00:00 \n" <>

"ðPBS-l nodes=1:ppn=8:proc8 \n\n" <>

"cd $PBS_O_WORKDIR \n\n\n";

scriptHeader24 = "ð!�bin�sh \n" <>

"ðPBS-l walltime=900:00:00 \n" <>

"ðPBS-l nodes=1:ppn=24:proc24 \n\n" <>

"cd $PBS_O_WORKDIR \n\n\n";

ListWriteVASPBonds[ dir, eigenValsRanges ]
This function sets up the calculation of the electrostatic forces due to the KS orbitals (actually small consecu-
tive ranges of KS orbitals) of the system specified in the directory, dir.  Note that the sizes of the energy slices
are chosen by the input eigenValsRanges, and therefore can be set to be as small as needed - section IV shows
an example of setting eigenValsRanges.

Parameters
dir: directory in which the VASP input files are specified for a given configuration, as well as results from an
SCF run.
eigenValsRanges: ordered pairs of energy ranges (slices) that forces must be calculated for.

Results
After being run, ListWriteVASPBonds generates a set of subdirectories, one for each energy range specified by
eigenValsRanges  in which the forces will be calculated (via VASP).  Additionally, a script is generated that
will appropriately set up and run each VASP job in each of the subdirectories when executed.
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ListWriteVASPBonds[ dir, eigenValsRanges ]
This function sets up the calculation of the electrostatic forces due to the KS orbitals (actually small consecu-
tive ranges of KS orbitals) of the system specified in the directory, dir.  Note that the sizes of the energy slices
are chosen by the input eigenValsRanges, and therefore can be set to be as small as needed - section IV shows
an example of setting eigenValsRanges.

Parameters
dir: directory in which the VASP input files are specified for a given configuration, as well as results from an
SCF run.
eigenValsRanges: ordered pairs of energy ranges (slices) that forces must be calculated for.

Results
After being run, ListWriteVASPBonds generates a set of subdirectories, one for each energy range specified by
eigenValsRanges  in which the forces will be calculated (via VASP).  Additionally, a script is generated that
will appropriately set up and run each VASP job in each of the subdirectories when executed.

Clear@ListWriteVASPBondsD;

Options@ListWriteVASPBondsD =

8ScriptHeader ® scriptHeader, VScript ® "mpirun -np 8 gvasp5",

Occupations ® 8<, Extension ® "", WriteCharge ® False<;

ListWriteVASPBonds@dir0_, listEnergy0_, OptionsPattern@DD := Module@
8script, dirName, dir = dir0, listEnergy = listEnergy0, sysName = "Bond determination",

vScript, occ, eF, atoms, cell, ext, eMin, writeCharge, header<,

writeCharge = OptionValue@WriteChargeD;

vScript = OptionValue@VScriptD;

ext = OptionValue@ExtensionD;

occ = OptionValue@OccupationsD;

If@Length@occD � 0, occ = Table@0, 8Length@listEnergyD<DD;

header = OptionValue@ScriptHeaderD;

H* The given listEnergies are with respect to Ef=0,

but the java code wants Ef at whatever VASP came up with *L
eF = GetFermiEnergy@dirD;

listEnergy += eF;

H* put a copy of the java code into

the directory where the data to be processed is located *L
CopyDirectory@"waveBond", dir <> "�waveBond"D;

script = header;

8atoms, cell< = ReadCONTCAR@dirD;

H* we want to know the forces on each ion due only to the nuclei *L
eMin = GetEigenValues@dirDP1T - 2; H* so we will populate the wavecar for the

bondZero directory with all 0 occupations ranging from the minimum eigenvalue -

2 eV HeMinL to the fermi energy + 2 eV HeF + 2L *L
script = script <>

"cd " <> "bondZero\n" <>

"cp ..�WAVECAR WAVECAR\n" <>

"cp ..�POTCAR POTCAR\n" <>

"cp ..�CONTCAR POSCAR\n" <>

"cp ..�KPOINTS KPOINTS\n" <>

"java -cp ..�waveBond main.ProjectWave " <>

ToString@eMinD <> " " <> ToString@eF + 2D <> " " <> ToString@0D <> "\n" <>

"mv WAVECAR.out WAVECAR\n" <>

"date È tee executionOutput \n" <>

vScript <> " È tee -a executionOutput \n" <>

"date È tee -a executionOutput \n" <>

"rm WAVECAR \n" <>

H* remove some of the larger output files to save space *L
"rm CHG \n" <>

<>
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"rm CHGCAR \n" <>

"rm AEC* \n\n" <>

"cd ..�\n" <>

"echo 'bondZero' È tee -a executionOutput \n\n";

H* it would be preferable to include dipole corrections,

however this is not possible Hsee the next commentL - otherwise we would set the

dipole center as follows: dCenter=Inverse@cell¬D.Mean@atomsPAll,81,2,3<TD; *L
WriteINCAR@dir <> "�bondZero", sysName, UseVDW ® True, UseDipoleCorrections ® False ,

UseDipole ® False, H*DipoleGeometricCenter®dCenter,*LH* dipole corrections

to the energy cause vasp to crash Hsegmentation fault!L if the occupations

in the WAVECAR file have been adjusted and MaxElectronicSteps is set to 0,

as is the case here *LMaxIonicSteps ® 1, MaxElectronicSteps ® 0,

OUTCARDir ® dir, GridPrecision ® Accurate, ElectronEnergyCutoff ® 400,

AugmentationCutoff ® 700, UseWaveFunction ® True, WriteCharge ® writeChargeD;

H* It is not clear to what extent, if any,

ommiting dipole corrections will affect the results,

given a WAVECAR file that was previously converged using dipole corrections. *L
Do@

dirName = dir <> "�bond" <> ext <> ToString@iD;

WriteINCAR@dirName, sysName, UseVDW ® True, UseDipoleCorrections ® False,

UseDipole ® False, MaxIonicSteps ® 1, MaxElectronicSteps ® 0,

OUTCARDir ® dir, GridPrecision ® Accurate, ElectronEnergyCutoff ® 400,

AugmentationCutoff ® 700, UseWaveFunction ® True, WriteCharge ® writeChargeD;

If@Length@listEnergyPiTD � 0,

listEnergyPiT = listEnergyPiT 81, 1< + 8-.0001, .0001<D;

script = script <>

"cd " <> "bond" <> ext <> ToString@iD <> "\n" <>

"cp ..�WAVECAR WAVECAR\n" <>

"cp ..�POTCAR POTCAR\n" <>

"cp ..�CONTCAR POSCAR\n" <>

"cp ..�KPOINTS KPOINTS\n" <>

"java -cp ..�waveBond main.ProjectWave " <> ToString@listEnergyPi, 1TD <>

" " <> ToString@listEnergyPi, 2TD <> " " <> ToString@1D <> "\n" <>

"mv WAVECAR.out WAVECAR\n" <>

"date È tee executionOutput \n" <>

vScript <> " È tee -a executionOutput \n" <>

"date È tee -a executionOutput \n" <>

"rm WAVECAR \n" <>

"rm CHG \n" <>

"rm CHGCAR \n" <>

"rm AEC* \n\n" <>

"cd ..�\n" <>

"echo 'bond" <> ext <> ToString@iD <> "' È tee -a executionOutput \n\n";

,

8i, Length@listEnergyD<
D;
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Export@dir <> "�runBonds.sh", script, "Text"D;

D;

� Function: WriteINCAR

result = WriteINCAR[ dir, name ]
This function generates a VASP INCAR file in the directory specified by dir.

Parameters
dir: directory in which to place VASP input files.
name: readable description of the system to be calculated.

Selected Options (® default values)
UseVDW ® False: whether or not to use the vdW-DF functional. 
MaxIonicSteps  ® 400: maximum number of steps that VASP is allowed to move atoms in search of a mini-
mum energy geometric configuration.
MaxElectronicSteps  ®  200:  maximum number  of  electronic (SCF)  steps  that  VASP is  allowed to  take in
search of a minimum electronic energy configuration.
OUTCARDir ® ".": folder in which an OUTCAR from a previous run of this system can be found.
UseWaveFunction  ®  False:  whether or not  to use the WAVECAR file from a previous  run to choose the
starting wavefunction.

CG = 2;

RMMDIIS = 1;

DFPT = 7;

Ions = 2;

VariableCell = 3;

Gaussian = 0;

TetrahedronMethod = -5;

Accurate = "ACCURATE";

OptB88 = 1;

RevPBE = 2;

OptB86b = 3;

Clear@WriteINCARD;

Options@WriteINCARD = 8
UsePreviousRunPositions ® True,

ForceCutoff ® .03,

ElectronEnergyCutoff ® 400,

AugmentationCutoff ® 700,

MaxElectronicSteps ® 200,

MinElectronicSteps ® 8<,

MaxIonicSteps ® 400,

RelaxationMethod ® CG,

RelaxingObjects ® Ions,

WriteCharge ® False,

UseWaveFunction ® False,

WriteWaveFunction ® True,

CourseGrid ® 8<,

FineGrid ® 8<,

,
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PreviousFiles ® 8<,

EnergyInterval ® 8<,

WriteDOS ® False,

OUTCARDir ® ".",

UseDipoleCorrections ® False,

UseDipole ® False,

DipoleGeometricCenter ® 80, 0, 0<,

WriteLocalPotential ® False,

WriteLocalHartreePotential ® False,

Smearing ® 8<,

SmearingWidth ® .2,

GridPrecision ® 8<,

ElasticImages ® 0,

ProcessorsPerBand ® 1,

UseVDW ® False,

VDWExchange ® OptB86b,

UseDFTD ® False,

Symmetry ® 8<,

Bands ® 8<
<;

WriteINCAR@dir0_, name0_, OptionsPattern@DD := Module@
8dir = dir0, name = name0, out, forceCutoff, ionEnergyCutoff,

electronEnergyCutoff, augmentationCutoff, maxElectronicSteps, maxIonicSteps,

relaxationMethod, relaxingObjects, writeCharge, useWaveFunction,

writeWaveFunction, courseGrid, fineGrid, nbands, prevFiles, energyInterval,

getDOS, outcarDir, useDipoleCorrections, useDipole, writeLocalPotential,

smearing, smearingWidth, gridPrecision, elasticImages, procsPerBand, vdW,

writeLocalHartreePotential, dCenter, sym, atoms, cell, numPoints, bands,

minElectronicSteps, useDFTD, vdWExchange, usePreviousRunPositions<,

usePreviousRunPositions = OptionValue@UsePreviousRunPositionsD;

bands = OptionValue@BandsD;

forceCutoff = OptionValue@ForceCutoffD;

electronEnergyCutoff = OptionValue@ElectronEnergyCutoffD;

augmentationCutoff = OptionValue@AugmentationCutoffD;

maxElectronicSteps = OptionValue@MaxElectronicStepsD;

minElectronicSteps = OptionValue@MinElectronicStepsD;

maxIonicSteps = OptionValue@MaxIonicStepsD;

relaxationMethod = OptionValue@RelaxationMethodD;

relaxingObjects = OptionValue@RelaxingObjectsD;

writeCharge = OptionValue@WriteChargeD;

useWaveFunction = OptionValue@UseWaveFunctionD;

writeWaveFunction = OptionValue@WriteWaveFunctionD;

courseGrid = OptionValue@CourseGridD;

fineGrid = OptionValue@FineGridD;

prevFiles = OptionValue@PreviousFilesD;

energyInterval = OptionValue@EnergyIntervalD;

getDOS = OptionValue@WriteDOSD;

outcarDir = OptionValue@OUTCARDirD;

useDipoleCorrections = OptionValue@UseDipoleCorrectionsD;

useDipole = OptionValue@UseDipoleD;

;
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dCenter = OptionValue@DipoleGeometricCenterD;

writeLocalPotential = OptionValue@WriteLocalPotentialD;

writeLocalHartreePotential = OptionValue@WriteLocalHartreePotentialD;

smearing = OptionValue@SmearingD;

smearingWidth = OptionValue@SmearingWidthD;

gridPrecision = OptionValue@GridPrecisionD;

elasticImages = OptionValue@ElasticImagesD;

procsPerBand = OptionValue@ProcessorsPerBandD;

vdW = OptionValue@UseVDWD;

useDFTD = OptionValue@UseDFTDD;

sym = OptionValue@SymmetryD;

vdWExchange = OptionValue@VDWExchangeD;

If@outcarDir � ".", outcarDir = dirD;

If@HLength@energyIntervalD � 2L ê HLength@bandsD > 0L,

useWaveFunction = True;

writeCharge = True;

writeWaveFunction = False;

D;

If@useWaveFunction, nbands = GetNBands@outcarDirDD;

H* if the specified directory does not exist, then create it*L
If@DirectoryQ@dirD � False,

CreateDirectory@dirD;

D;

SetDirectory@dirD;

If@StringQ@prevFilesD,

CopyFile@"INCAR", "INCAR." <> prevFilesD;

CopyFile@"OUTCAR", "OUTCAR." <> prevFilesD;

CopyFile@"POSCAR", "POSCAR." <> prevFilesD;

CopyFile@"CONTCAR", "CONTCAR." <> prevFilesD;

CopyFile@"OSZICAR", "OSZICAR." <> prevFilesD;

If@usePreviousRunPositions,

DeleteFile@"POSCAR"D;

CopyFile@"CONTCAR", "POSCAR"D;

D;

D;

out = OpenWrite@"INCAR"D;

WriteString@out, "SYSTEM=" <> name <> "\n\n"D;

If@useWaveFunction,

WriteString@out, "ISTART=1\n"D;

WriteString@out, "ICHARG=0\n"D;

,

WriteString@out, "ISTART=0\n"D;

D;

If@maxIonicSteps > 0,

D;
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WriteString@out, "EDIFFG=-" <> ToString@forceCutoffD <> "\n\n"DD;

WriteString@out, "NPAR=" <> ToString@procsPerBandD <> "\n\n"D;

WriteString@out, "ENCUT=" <> ToString@electronEnergyCutoffD <> "\n"D;

WriteString@out, "ENAUG=" <> ToString@augmentationCutoffD <> "\n\n"D;

WriteString@out, "LREAL=Auto\n"D;

H* If using this function to generate an

INCAR file for calculations before the ListWriteVASPBonds step

He.g. converging the wavefunction for each interp systemL,

then dipole corrections are available,

though this is no longer the case when ListWriteVASPBonds is run. *L
If@useDipoleCorrections,

WriteString@out, "IDIPOL=3\n\n"D;

D;

If@useDipole,

WriteString@out, "LDIPOL=.TRUE.\n"D;

WriteString@out, "DIPOL=" <> ToString@dCenterP1TD <> " " <>

ToString@dCenterP2TD <> " " <> ToString@dCenterP3TD <> "\n\n"D;

D;

If@writeWaveFunction,

WriteString@out, "LWAVE=.TRUE.\n"D,

WriteString@out, "LWAVE=.FALSE.\n"D;

D;

If@writeLocalPotential ì Ø writeLocalHartreePotential,

WriteString@out, "LVTOT=.TRUE.\n"D
D;

If@writeLocalHartreePotential,

WriteString@out, "LVHAR=.TRUE.\n"D
D;

If@HLength@energyIntervalD � 2L ê HLength@bandsD > 0L,

WriteString@out, "LPARD=.TRUE.\n"D
D;

If@writeCharge,

WriteString@out, "LCHARG=.TRUE.\n"D;

If@Length@energyIntervalD ¹ 2,

WriteString@out, "LAECHG=.TRUE.\n\n"D
D,

WriteString@out, "LCHARG=.FALSE.\n\n"D;

D;

If@Length@energyIntervalD � 2,

WriteString@out, "EINT= " <>

ToString@energyIntervalP1TD <> " " <> ToString@energyIntervalP2TD <> "\n"D;

;
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WriteString@out, "NBMOD=-3\n\n"D;

,

If@Length@bandsD > 0,

WriteString@out,

"IBAND= " <> StringJoin@Table@ToString@bD <> " ", 8b, bands<DD <> "\n"D;

D;

D;

If@courseGrid ¹ 8<,

WriteString@out, "NGX=" <> ToString@courseGridP1TD <> "\n"D;

WriteString@out, "NGY=" <> ToString@courseGridP2TD <> "\n"D;

WriteString@out, "NGZ=" <> ToString@courseGridP3TD <> "\n\n"D;

D;

If@fineGrid ¹ 8<,

WriteString@out, "NGXF=" <> ToString@fineGridP1TD <> "\n"D;

WriteString@out, "NGYF=" <> ToString@fineGridP2TD <> "\n"D;

WriteString@out, "NGZF=" <> ToString@fineGridP3TD <> "\n\n"D;

D;

If@getDOS,

WriteString@out, "LORBIT=12\n\n"D;

D;

If@relaxationMethod � DFPT,

WriteString@out, "LEPSILON= .TRUE.\n"D;

WriteString@out, "NWRITE= 3\n"D;

maxIonicSteps = 1;

D;

WriteString@out, "NELM=" <> ToString@maxElectronicStepsD <> "\n"D;

WriteString@out, "NSW=" <> ToString@maxIonicStepsD <> "\n"D;

WriteString@out, "IBRION=" <> ToString@relaxationMethodD <> "\n\n"D;

WriteString@out, "ISIF=" <> ToString@relaxingObjectsD <> "\n"D;

WriteString@out, "SIGMA=" <> ToString@smearingWidthD <> "\n"D;

If@NumberQ@minElectronicStepsD � True,

WriteString@out, "NELMIN=" <> ToString@minElectronicStepsD <> "\n"DD;

If@NumberQ@symD � True, WriteString@out, "ISYM=" <> ToString@symD <> "\n"DD;

If@ ListQ@smearingD � False,

WriteString@out, "ISMEAR=" <> ToString@smearingD <> "\n"D;

D;

If@ ListQ@gridPrecisionD � False,

WriteString@out, "PREC=" <> ToString@gridPrecisionD <> "\n"D;

D;

If@elasticImages > 0,

WriteString@out, "IMAGES=" <> ToString@elasticImagesD <> "\n"D;

D;
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If@vdW � True,

WriteString@out, "\n"D;

WriteString@out, "LUSE_VDW= .TRUE. \n"D;

WriteString@out, "AGGAC=0.0000 \n"D;

If@vdWExchange � OptB88,

WriteString@out, "GGA=BO \n"D;

WriteString@out, "PARAM1=0.1833333333 \n"D;

WriteString@out, "PARAM2=0.2200000000 \n\n"D;

,

If@vdWExchange � RevPBE,

WriteString@out, "GGA=RE \n"D;

,

If@vdWExchange � OptB86b,

WriteString@out, "GGA=MK \n"D;

WriteString@out, "PARAM1=0.1234 \n"D;

WriteString@out, "PARAM2=1.0000 \n\n"D;

,

Print@"Unknown vdW Exchange chosen"D;

D;

D;

D;

If@FileExistsQ@"vdW�vdw_kernel.bindat"D � False,

SetDirectory@NotebookDirectory@D D;

CopyFile@"vdW�vdw_kernel.bindat", dir <> "�vdw_kernel.bindat"D;

,

Print@"Warning: vdw_kernal.bindat not found in folder \"vdW\", please download

the vdw_kernal file for VASP and place it in the \"vdW\" folder."D;

D;

,

If@useDFTD � True,

WriteString@out, "\n"D;

WriteString@out, "LVDW= .TRUE. \n"D;

D;

D;

Close@outD;

D;

� Function: GetNBands

result = GetNBands[ dir ]
This function returns the number of bands used in a previous VASP calculation performed in the directory, dir.

Parameters
dir: directory in which VASP output files reside - specifically, where OUTCAR can be found.

Returns
result is the number of bands.
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GetNBands@dir0_D := Module@
8dir = dir0, data, val<,

data = ReadOUTCAR@dirD;

val = 8<;

Do@
If@StringQ@sD ì StringMatchQ@s, "NBANDS*"D,

val = dataPiT;

D
,

8i, Length@dataD<,

8s, dataPiT<
D;

Last@valD
D;

� Function: ReadOUTCAR

result = ReadOUTCAR[ dir ]
This function reads in the OUTCAR file located in directory dir and formats the data into a table.

Parameters
dir: folder where the OUTCAR file is stored.

Returns
result is the content of the OUTCAR file in table form.

Clear@ReadOUTCARD;

Options@ReadOUTCARD = 8FileName ® "OUTCAR"<;

ReadOUTCAR@name0_, OptionsPattern@DD := Module@
8name = name0, fName<,

fName = OptionValue@FileNameD;

Import@name <> "�" <> fName, "Table"D
D;

� Function: GetBondData

result = GetBondData[ dir ]
This function reads in the forces from all of the files generated by the ListWriteVASPBonds function and its
associated script.  The forces are processed according to the description in the supplementary material in order
to determine the effective forces that each orbital contribute to the total forces.

Parameters
dir: parent directory in which each of the "bond" sub-directories can be found (as generated by ListWriteVASP-
Bonds).
nums: indexes of the "bond" subdirectories from which to extract force data (typically this would be all of the
indexes).

Returns
result  is a list  for which each element is a set of atomic data.  A given set of atomic data is a list  whose
elements are of  the form {x,y,z,"C","T","T","T"Fx,Fy,Fz} where x,y,z are the atom coordinates,  "C" is the
atomic symbol (here Carbon, but could be any other such as "H", "O", etc., the next three slots are T/F for
whether the atom was allowed to move during ionic steps, and Fx,Fy,Fz are the three Cartesian components of
the force vector that defines the force imparted on the given atom by a particular grouping of KS orbitals.
Each  element  of  result  corresponds  to  the  particular  grouping  of  KS  orbitals  that  ListWriteVASPBonds
assigned to a given "bond" sub-folder.
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result = GetBondData[ dir ]
This function reads in the forces from all of the files generated by the ListWriteVASPBonds function and its
associated script.  The forces are processed according to the description in the supplementary material in order
to determine the effective forces that each orbital contribute to the total forces.

Parameters
dir: parent directory in which each of the "bond" sub-directories can be found (as generated by ListWriteVASP-
Bonds).
nums: indexes of the "bond" subdirectories from which to extract force data (typically this would be all of the
indexes).

Returns
result  is a list  for which each element is a set of atomic data.  A given set of atomic data is a list  whose
elements are of  the form {x,y,z,"C","T","T","T"Fx,Fy,Fz} where x,y,z are the atom coordinates,  "C" is the
atomic symbol (here Carbon, but could be any other such as "H", "O", etc., the next three slots are T/F for
whether the atom was allowed to move during ionic steps, and Fx,Fy,Fz are the three Cartesian components of
the force vector that defines the force imparted on the given atom by a particular grouping of KS orbitals.
Each  element  of  result  corresponds  to  the  particular  grouping  of  KS  orbitals  that  ListWriteVASPBonds
assigned to a given "bond" sub-folder.

Notes about this function: It is assumed that VASP has been run on each system to calculate the forces on each
ion by reading in a WAVECAR file and performing 0 electronic (scf) steps and 1 ionic (the forces on atoms are
calculated) steps.  These resultant forces then comprise the force due to the ions + that due to the electrons.  To
get the electronic force only, then, the forces from the ions must be subtracted off.   Finally, to get the "effective"
forces,  the  ionic  forces  must  be added  back in,  but  scaled by the  occupation  fraction  of  a  given  range (see
supplement).

Clear@GetBondDataD;

Options@GetBondDataD = 8Extension ® "", EigenValueRanges ® 8<<;

GetBondData@dir0_, nums0_, OptionsPattern@DD := ModuleB
8dir = dir0, data, atoms, result = 8<, nums = nums0, scale, i, extension, atomsZero,

dataZero, eigenValueRanges, eigenValues, nElecTotal, nElec, f, effectiveForces<,

extension = OptionValue@ExtensionD;

eigenValueRanges = OptionValue@EigenValueRangesD;

H* bondZero should contain data from setting all occupations to zero so that

the resultant forces are just those of the nuclei *L
dataZero = ReadForceOUTCAR@dir <> "�bondZero"D;

atomsZero = dataZeroP1T;

If@Length@eigenValueRangesD � 0,

H* if no ranges have been specified,

then choose ranges that should have only one band per partition -

this assumes no 2 eigenvalues are within .0001 of each other. *L
eigenValueRanges = DeleteDuplicates@

Table@e * 81, 1< + 8-.0001, .0001<, 8e, eigenValues<D D
D;

H* determine occupation fractions, f, for each energy range *L
eigenValues = GetEigenValues@dirD - GetFermiEnergy@dirD;

nElecTotal = NumElectronsOUTCAR@dirD � 2.;

nElec =

Table@Length@Select@eigenValues, rP1T £ ð £ rP2T &DD, 8r, eigenValueRanges<D;

f =
nElec

nElecTotal
;

Print@"Total number of bands in full range: ", nElecTotalD;

Print@"Bands in each range: ", nElecD;

Do@
data = ReadForceOUTCAR@dir <> "�bond" <> extension <> ToString@iDD;

atoms = dataP1T;

H* to get the force just from the electronic density,

*L
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we subtract off the force due to the ions. *L
H* the x,y,z coordinates of each force vector are at indexes 8,9,10 *L
atomsPAll, 88, 9, 10<T -= atomsZeroPAll, 88, 9, 10<T;

H* add the effective forces from the nuclei *L
effectiveForces = atomsZeroPAll, 88, 9, 10<T * fPiT;

atomsPAll, 88, 9, 10<T += effectiveForces;

result = Append@result, atomsD;

,

8i, nums<
D;

Return@resultD;

F;

� Function: GetEigenValues

result = GetEigenValues[ dir ]
This function returns the list of EigenValues that VASP has calculated for the system in the directory dir.

Parameters
dir: the directory in which the EIGENVAL file can be found.

Returns
result is a list of each eigenvalue in eV.

GetEigenValues@dir0_D := Module@
8dir = dir0<,

Select@Drop@Import@dir <> "�EIGENVAL", "Table"D, 8D, Length@ðD � 2 &DPAll, 2T
D;

� Function: GetFermiEnergy

result = GetFermiEnergy[ dir ]
This function returns the calculated Fermi energy from a VASP calculation.

Parameters
dir: directory where OUTCAR can be found.

Returns
result the Fermi Energy in eV.

GetFermiEnergy@dir0_D := Module@8dir = dir0<,

Last@FermiEnergiesOUTCAR@dirDDP1T
D;

� Function: GetFermiEnergiesOUTCAR

result = GetFermiEnergiesOUTCAR[ dir ]
This function returns the list of the Fermi energy at each step during a VASP calculation.  The final Fermi
energy is the correct one for the relaxed system.

Parameters
dir: directory where OUTCAR can be found.

Returns
result the list of Fermi energies in eV.
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result = GetFermiEnergiesOUTCAR[ dir ]
This function returns the list of the Fermi energy at each step during a VASP calculation.  The final Fermi
energy is the correct one for the relaxed system.

Parameters
dir: directory where OUTCAR can be found.

Returns
result the list of Fermi energies in eV.

Clear@FermiEnergiesOUTCARD;

Options@FermiEnergiesOUTCARD = 8FileName ® "OUTCAR", Data ® 8<<;

FermiEnergiesOUTCAR@name0_, OptionsPattern@DD := Module@
8name = name0, fileName, data, line, energies<,

fileName = OptionValue@FileNameD;

data = OptionValue@DataD;

If@data � 8<,

data = Import@name <> "�" <> fileName, "Table"D;

D;

energies = 8<;

Do@
If@StringQ@sD ì StringMatchQ@s, "E-fermi"D,

energies = Append@ energies, Select@ Flatten@dataPiTD, StringQ@ðD � False & D D;

D;

,

8i, Length@dataD<,

8s, dataPiT<
D;

energies

D;

� Function: NumElectronsOUTCAR

result = NumElectronsOUTCAR[ dir ]
This function returns the number of electrons used in the VASP calculation.

Parameters
dir: the directory in which OUTCAR can be found.

Returns
result the number of electrons used in the calculation.
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Clear@NumElectronsOUTCARD;

Options@NumElectronsOUTCARD = 8FileName ® "OUTCAR"<;

NumElectronsOUTCAR@name0_, OptionsPattern@DD := Module@
8name = name0, fileName, data, line, nums<,

fileName = OptionValue@FileNameD;

data = Import@name <> "�" <> fileName, "Table"D;

nums = 8<;

Do@
If@StringQ@sD ì StringMatchQ@s, "NELECT"D,

nums = Append@ nums, Select@ Flatten@dataPiTD, StringQ@ðD � False & D D;

D;

,

8i, Length@dataD<,

8s, dataPiT<
D;

Flatten@numsDP1T
D;

� Function: ReadForceOUTCAR

result = ReadForceOUTCAR[ dir ]
This function reads all of the forces on each atom at each ionic step of a VASP calculation from the OUTCAR
file.

Parameters
dir: the directory where OUTCAR can be found.

Returns
result is a list of force data for each ionic step of a VASP calculation.  A single element of the list is a collec-
tion of each atom's data in the form {x,y,z,"C","T","T","T"Fx,Fy,Fz} where x,y,z are the atom coordinates, "C"
is the atomic symbol (here Carbon, but could be any other such as "H", "O", etc., the next three slots are T/F
for whether the atom was allowed to move during ionic steps, and Fx,Fy,Fz are the three Cartesian components
of the force vector that defines the total force imparted on the given atom.
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Clear@ReadForceOUTCARD;

Options@ReadForceOUTCARD = 8FileName ® "OUTCAR"<;

ReadForceOUTCAR@name0_, OptionsPattern@DD := Module@
8name = name0, data, start, end,

fName, posTable, types, names, nums, l, posData, super<,

fName = OptionValue@FileNameD;

8posData, super< = ReadCONTCAR@name, FileName ® "POSCAR"D; H* should be POSCAR *L
data = Import@name <> "�" <> fName, "Table"D;

start = 8<;

end = 8<;

Do@
If@StringQ@sD ì StringMatchQ@s, "HeV�AngstL"D, start = Append@start, i + 2DD;

If@StringQ@sD ì StringMatchQ@s, "drift:"D, end = Append@end, i - 2DD;

,

8i, Length@dataD<,

8s, dataPiT<
D;

If@Length@startD � 0, Return@8<DD;

If@endP1T < startP1T, end = Drop@end, 1DD;

H* VASP 5.2 formatting is a little different than earlier versions *L
posTable =

Table@dataPRange@startPiT, endPiTDT, 8i, Min@Length@startD, Length@endDD<D;

Do@
posTablePi, jT = Insert@posTablePi, jT, posDataPj, 4T, 4D;

posTablePi, jT = Insert@posTablePi, jT, posDataPj, 5T, 5D;

posTablePi, jT = Insert@posTablePi, jT, posDataPj, 6T, 6D;

posTablePi, jT = Insert@posTablePi, jT, posDataPj, 7T, 7D;

,

8i, Length@posTableD<,

8j, Length@posTablePiTD<
D;

posTable

D;

� Function: ReadCONTCAR

result = ReadCONTCAR[ dir ]
This function reads in the geometric data from a CONTCAR or POSCAR file (including the atomic coordi-
nates, as well as the super-cell defined as a 3x3 matrix).

Parameters
dir: the directory where the CONTCAR/POSCAR file can be found.

Returns
result  is  a list  of  2 elements:  {atoms, cell}.  cell is  the 3x3 supercell  matrix, while atoms is  a list  whose
elements are of  the form: {x,y,z,"C","T","T","T"} where x,y,z are the atom coordinates,  "C" is  the atomic
symbol (here Carbon, but could be any other such as "H", "O", etc., the next three slots are T/F for whether the
atom was allowed to move during ionic steps.
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result = ReadCONTCAR[ dir ]
This function reads in the geometric data from a CONTCAR or POSCAR file (including the atomic coordi-
nates, as well as the super-cell defined as a 3x3 matrix).

Parameters
dir: the directory where the CONTCAR/POSCAR file can be found.

Returns
result  is  a list  of  2 elements:  {atoms, cell}.  cell is  the 3x3 supercell  matrix, while atoms is  a list  whose
elements are of  the form: {x,y,z,"C","T","T","T"} where x,y,z are the atom coordinates,  "C" is  the atomic
symbol (here Carbon, but could be any other such as "H", "O", etc., the next three slots are T/F for whether the
atom was allowed to move during ionic steps.

Clear@ReadCONTCARD;

Options@ReadCONTCARD = 8FileName ® "CONTCAR", Types ® 8<<;

ReadCONTCAR@name0_, OptionsPattern@DD := Module@
8name = name0, posData, scale, a, pos,

cart, fName, types, nums, names, types0, l, char, add, val<,

fName = OptionValue@FileNameD;

types0 = OptionValue@TypesD;

posData = Import@name <> "�" <> fName, "Table"D;

scale = posDataP2, 1T;

a = posDataP83, 4, 5<TPAll, 81, 2, 3<T;

add = 0;

If@StringQ@posDataP6, 1TD,

nums = posDataP7T;

types0 = posDataP6T;

add = 1

,

nums = posDataP6T;

D;

l = Position@nums, "!"D;

If@Length@lD > 0,

nums = numsPRange@lP1, 1T - 1DT;

D;

pos = Select@Drop@posData, 7 + addD,

HHLength@ðD � 6L ê HLength@ðD � 3LL ì HØ MemberQ@ð, "!"DL &D;

pos = posPRange@Total@numsDDT;

pos = Table@
val = p;

If@Length@pD � 3, val = Join@val, 8"T", "T", "T"<DD;

val,

8p, pos<
D;

If@
char = Characters@posDataP8 + add, 1TDP1T;

Hchar � "c"L ê Hchar � "C"L,

cart = Table@scale * p, 8p, posPAll, 81, 2, 3<T<D,

cart = Table@scale * a¬.p, 8p, pos@@All, 81, 2, 3<DD<D;

D;
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posPAll, 81, 2, 3<T = cart;

If@types0 � 8<,

types = GetAtomTypesFromPOTCAR@nameD;

names = Flatten@Table@Table@typesPiT, 8numsPiT<D, 8i, Length@numsD<DD;

,

names = Flatten@Table@Table@types0PiT, 8numsPiT<D, 8i, Length@numsD<DD;

D;

Return@8Table@Insert@posPiT, namesPiT, 4D, 8i, Length@posD<D, scale * a<D;

D;

� Function: GetAtomTypesFromPOTCAR

result = GetAtomTypesFromPOTCAR[ dir ]
This function determines which atoms were used in a calculation based on the atoms defined in the POTCAR
file.

Parameters
dir: the directory in which the POTCAR file can be found.

Returns
result is a list of atom names, e.g. {"C","H","O","Cu"} indicating which elements were used in a calculation.

GetAtomTypesFromPOTCAR@dir0_D := Module@
8dir = dir0, data, types, start, end, fileName<,

fileName = dir <> "�POTCAR";

data = Import@fileNameD;

types = 8<;

Do@
If@StringQ@dD � True,

If@StringFreeQ@d, "VRHFIN"D � False,

start = StringPosition@d, "="DP1, 1T;

end = StringPosition@d, ":"DP1, 1T;

types = Append@types, StringTake@d, 8start + 1, end - 1<DD;

D
D,

8d, data@@All, 1DD<
D;

Return@typesD;

D;
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III. Example Usage (MO Diagram Functions)
� The first example shows how to generate the line segments of an MO diagram:

The folders relative to the working directory in which the PROCAR files for the systems A and AQ are (or
should be) placed:

system1Dir = "vaspData�moDiagram�oAnth";

system2Dir = "vaspData�moDiagram�AQ";

The parsed projections will be in the form of an array whose 1st index is the k-point index and whose 2nd
index references either:
  (1) the coordinates of the given k-point,  or 
  (2) an array containing all of the projections for that k-point. 
  
  This code assumes gamma-point only, so we want the first k-point (the only one), and the array of projections
for that k-point, so the indexes should be : [[1, 2]]

system1Projections = Projections@system1DirDP1, 2T;

system2Projections = Projections@system2DirDP1, 2T;

K-points: 1

Number of bands: 46

K-points: 1

Number of bands: 51

The C and H atoms common to both species (the unsubstituted atoms) are indexed by the numbers 1 - 22 for
both systems.  These indexes correspond to the order in which they were specified in the POSCAR file (note
that Mathematica starts counting at 1, rather than 0):

indexesAQ = Range@1, 22D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22<

indexesAnth = Range@1, 22D;

In order to get energy levels to line up so that the Fermi energies of both system are at zero, we will need to
extract the Fermi energies of each system using the GetFermiEnergy function defined in section II:

eF1Val = GetFermiEnergy@system1DirD
-4.604

eF2Val = GetFermiEnergy@system2DirD
-5.6628

Now we can generate the desired MOSpectrum Graphics object using the results obtained so far:
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g = MOSpectrum@system1Projections, system2Projections,

indexesAnth, indexesAQ, cFunction, eF1 ® eF1Val, eF2 ® eF2ValD;

Show@g, Frame ® True, AspectRatio ® .1D

-15 -10 -5 0 5

0.0
0.5
1.0

For comparison to Fig. 2 from the main text (reproduced below), we can rotate 90°:

ShowA
GraphicsARotateAgP1T, 90 °, 80, 0<EE,

Frame ® True, AspectRatio ® 8, PlotRange ® 88-1, 0<, 8-4, 4<<
E

-1.0-0.8-0.6-0.4-0.20.0
-4

-2

0

2

4

Fig. 2 from the main text.  The links between states of A and those of AQ highlighted in the yellow box are
reproduced by the code of this section.
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Fig. 2 from the main text.  The links between states of A and those of AQ highlighted in the yellow box are
reproduced by the code of this section.

� The second example shows the workings of the OrbitalOverlap function and the MOMatrix 
function, both of which are used internally by the MOSpectrum function demonstrated 
above.  This example requires the projections and indexes from above to be initialized.

To minimize output,  we only show 5x5 matrices for  OrbitalOverlap and MOMatrix even though these are
actually be 46x51 matrices. 

overlap =

OrbitalOverlap@system1Projections, system2Projections, indexesAnth, indexesAQD;

MatrixForm@overlapPRange@5D, Range@5DTD
13.4089+ 0. ä -9.51153 + 0. ä 29.6046+ 0. ä -0.423118 + 0. ä 0.251316+ 0. ä

-0.076657 + 0. ä 0.101887+ 0. ä 0.5296+ 0. ä 31.564+ 0. ä -0.027709 + 0. ä

6.06863+ 0. ä -4.43607 + 0. ä -5.97343 + 0. ä 0.129853+ 0. ä 24.9738+ 0. ä

7.34758+ 0. ä 10.4482+ 0. ä -0.113276 + 0. ä -0.056087 + 0. ä 0.225384+ 0. ä

-0.032541 + 0. ä 0.04444+ 0. ä 0.061337+ 0. ä 0.085326+ 0. ä 0.016328+ 0. ä

Note the "diagonal" nature of the MOMatrix below.  Since it is not a square matrix, the "diagonal" does not
begin at indexes 1,1 in this case but rather at indexes 1,3.
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mo = MOMatrix@overlapD;

MatrixForm@moPRange@5D, Range@5DTD
0.205149 0.103225 1. 0.000179696 0.0000720647

5.89818 ´ 10-6 0.0000104196 0.000281521 1. 7.70649 ´ 10-7

0.0590489 0.031552 0.0407127 0.0000169246 1.

0.107389 0.217148 0.0000146406 3.15747 ´ 10-6 0.0000814473

1.80582 ´ 10-6 3.3679 ´ 10-6 4.29267 ´ 10-6 7.30764 ´ 10-6 4.27461 ´ 10-7

At higher energies, there is a departure from diagonality (resulting from hybridization), particularly in the 4th
column below (note the on-diagonal element of magnitude 0.7 and an off-diagonal element of magnitude 0.8
for example).

mo = MOMatrix@overlapD;

MatrixForm@moPRange@30, 34D, Range@33, 37DTD
0.000246144 0.000156222 0.0020451 0.832145 1.7067 ´ 10-6

1. 0.196598 0.000495225 0.000819615 0.000325338

1.75302 ´ 10-6 0.00268792 1. 0.00405599 0.00519209

0.0000475643 0.000717413 0.00127212 0.702769 1.2895 ´ 10-7

0.0242762 0.149922 0.000240563 0.0000212039 2.23179 ´ 10-7

IV. Example Usage (MO Energy Partitioning Functions)
� The first example of this section shows how to set up the calculation of the forces imparted 

by each KS orbital energy range of the adsorption system:

The following example assumes that the folders relative to the working directory in which the ground state
structure (interp0) and the transition state structure (interp8) along with each intermediate interpolated struc-
ture (interp1 - interp7) have already been created and SCF calculations have been performed (with WAVE-
CAR and PROCAR files  already generated, as well as the typical VASP output  files  such as CONTCAR,
EIGENVAL, and OUTCAR).  Note that in the following only interp0 and interp1 configurations  are provided
in the interest  of limiting total  file size  - these are sufficient  to see how the calculations  work,  but are not
sufficient  to reproduce the results  of the study - one could however fill in the missing data by running VASP
calculations  for the transition  state configuration  and all interpolated  states  in between.   Also listed is the
directory with the calculated results  from the molecule in vacuum (the same as system2Dir in the example
from section III).

dirSystems = 8"vaspData�moDiagram�AQ�interp0", "vaspData�moDiagram�AQ�interp1"<;

dirVac = "vaspData�moDiagram�AQ";

Ideally the forces due to each individual KS orbital for each adsorption system would be calculated; however,
if resources are limited we can focus on narrow energy ranges of KS orbitals as specified here:
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dE = 5 � 100.;

eigenValsRanges = Table@8e, e + dE<, 8e, -5, 0, dE<D
98-5., -4.95<, 8-4.95, -4.9<, 8-4.9, -4.85<, 8-4.85, -4.8<, 8-4.8, -4.75<,

8-4.75, -4.7<, 8-4.7, -4.65<, 8-4.65, -4.6<, 8-4.6, -4.55<, 8-4.55, -4.5<,

8-4.5, -4.45<, 8-4.45, -4.4<, 8-4.4, -4.35<, 8-4.35, -4.3<, 8-4.3, -4.25<,

8-4.25, -4.2<, 8-4.2, -4.15<, 8-4.15, -4.1<, 8-4.1, -4.05<, 8-4.05, -4.<, 8-4., -3.95<,

8-3.95, -3.9<, 8-3.9, -3.85<, 8-3.85, -3.8<, 8-3.8, -3.75<, 8-3.75, -3.7<,

8-3.7, -3.65<, 8-3.65, -3.6<, 8-3.6, -3.55<, 8-3.55, -3.5<, 8-3.5, -3.45<,

8-3.45, -3.4<, 8-3.4, -3.35<, 8-3.35, -3.3<, 8-3.3, -3.25<, 8-3.25, -3.2<,

8-3.2, -3.15<, 8-3.15, -3.1<, 8-3.1, -3.05<, 8-3.05, -3.<, 8-3., -2.95<,

8-2.95, -2.9<, 8-2.9, -2.85<, 8-2.85, -2.8<, 8-2.8, -2.75<, 8-2.75, -2.7<,

8-2.7, -2.65<, 8-2.65, -2.6<, 8-2.6, -2.55<, 8-2.55, -2.5<, 8-2.5, -2.45<,

8-2.45, -2.4<, 8-2.4, -2.35<, 8-2.35, -2.3<, 8-2.3, -2.25<, 8-2.25, -2.2<,

8-2.2, -2.15<, 8-2.15, -2.1<, 8-2.1, -2.05<, 8-2.05, -2.<, 8-2., -1.95<,

8-1.95, -1.9<, 8-1.9, -1.85<, 8-1.85, -1.8<, 8-1.8, -1.75<, 8-1.75, -1.7<,

8-1.7, -1.65<, 8-1.65, -1.6<, 8-1.6, -1.55<, 8-1.55, -1.5<, 8-1.5, -1.45<,

8-1.45, -1.4<, 8-1.4, -1.35<, 8-1.35, -1.3<, 8-1.3, -1.25<, 8-1.25, -1.2<,

8-1.2, -1.15<, 8-1.15, -1.1<, 8-1.1, -1.05<, 8-1.05, -1.<, 8-1., -0.95<,

8-0.95, -0.9<, 8-0.9, -0.85<, 8-0.85, -0.8<, 8-0.8, -0.75<, 8-0.75, -0.7<,

8-0.7, -0.65<, 8-0.65, -0.6<, 8-0.6, -0.55<, 8-0.55, -0.5<, 8-0.5, -0.45<,

8-0.45, -0.4<, 8-0.4, -0.35<, 8-0.35, -0.3<, 8-0.3, -0.25<, 8-0.25, -0.2<,

8-0.2, -0.15<, 8-0.15, -0.1<, 8-0.1, -0.05<, 9-0.05, 1.80411 ´ 10-16=, 80., 0.05<=

The following is an example header for the script that will be generated in order to calculate the forces from
each KS orbital.  This is typical of a script that would be run in a Portable Batch System (PBS) environment
(such as e.g. OpenPBS) - if vasp is being run on a cluster, it likely needs such a script:

Print@scriptHeaderD
ð!�bin�sh

ðPBS-l walltime=900:00:00

ðPBS-l nodes=1:ppn=8:proc8

cd $PBS_O_WORKDIR

This code loops through each interpolated adsorption system folder and generates the script as well as VASP
input files necessary to calculate the forces for each energy interval specified in eigenValsRanges above.  The
option VScript specifies  the actual command that should  be called by the script in order to run VASP.  If
VASP is being run on a cluster in a PBS style system, the preferred command is likely something like the one
shown below.  On a single computer not running OpenPBS or the like, one would specify ScriptHeader->""
and VScript->"vasp" where "vasp" is the name of the VASP executable on the computer being run (gvasp5 in
the example below).  Finally note that if some of the files being generated already exist, Mathematica  will
complain about overwriting them, but these warnings can be ignored.
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Do@
ListWriteVASPBonds@dir, eigenValsRanges,

ScriptHeader ® scriptHeader, VScript ® "mpirun -np 8 gvasp5"D
,

8dir, dirSystems<
D;

Note, since WAVECAR files have not been provided, there is no need to run the following on the exam-
ple folders that have been provided - the results of such calculations are aleady provided as OUTCAR
files.  The runBonds.sh script requires the WAVECAR files to have already been generated for each
interp folder from a previous VASP SCF run.
Having generated the scripts above, one would typically execute the generated script "runBonds.sh" in each of
the  interp folders specified above in dirSystems.  For example, on a unix-like system using PBS one might
type (where the ">" indicates a prompt and should not be typed):

> cd vaspData/moDiagram/AQ/interp0 
> qsub runBonds.sh

or in the absence of PBS:

> cd vaspData/moDiagram/AQ/interp0 
> bash runBonds.sh

One would do this for each of the adsorption system interpolations (interp0 through interp8, for example).  

The runBonds.sh  script found in a given interp folder generates a sub-folder  for each of the energy ranges
specified by eigenValsRanges, labeled bond1 through bondN, where N is the number of ranges specified.  It
then copies the WAVECAR file into each of those sub-folders,  and modifies the occupations in each of the
sub-folder  WAVECAR files  to  only  have  the  KS  orbitals  within  the  chosen  energy  range  occupied  (the
WAVECAR file  in  bond1  would  only  have  KS  orbitals  from  the  first  energy range  of  eigenValsRanges
occupied, for example).  This is done by the script when it executes the ProjectWave java code (found in the
waveBond folder).  It also generates a sub-folder called bondZero in which all of the occupations have been
set to zero (for determining the forces that each of the atoms with valence electrons removed imparts on each
of the other ions).

It should be noted that this is a somewhat round-about way to get the forces associated with each KS orbital of
a given adsorption system.  This is because VASP does not directly output the forces due to each KS orbital so
it is necessary to "turn all orbitals off except for those of interest" - an alternative approach would be to modify
the VASP code (or one's favorite DFT code) directly to output this information.

� The second example of this section shows how to calculate the barrier energy contribution 
from each vacuum system MO:

Note that the variables: dirSystems, dirVac, and eigenValsRanges above must be defined (i.e. those Mathemat-
ica cells must be executed) for the following code to work.

Next, we specify the indexes of the C,H, and O atoms (as described in section III above, these correspond to
the same order of atoms as specified in the POSCAR file) of both the vacuum system as well as the interpo-
lated adsorption systems.  In this case, for both the vacuum system and the adsorption systems, these indexes
are the first 24:
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Next, we specify the indexes of the C,H, and O atoms (as described in section III above, these correspond to
the same order of atoms as specified in the POSCAR file) of both the vacuum system as well as the interpo-
lated adsorption systems.  In this case, for both the vacuum system and the adsorption systems, these indexes
are the first 24:

vacIndexes = Range@24D;

sysIndexes = Range@24D;

Now that everything is set up and all VASP calculations have been performed, we can calculate the energetic
contribution from each of the vacuum system orbitals - be warned, this block of code can take a fairly long
time to execute depending on how many interpolated systems are included:

DEeTotal = OrbitalEnergyContributions@
dirSystems, dirVac, sysIndexes, vacIndexes, eigenValsRangesD;

K-points: 1

Number of bands: 51

K-points: 1

Number of bands: 1629

K-points: 1

Number of bands: 1629

Total number of bands in full range: 1358.

Bands in each range:

85, 4, 4, 10, 5, 8, 10, 8, 11, 10, 4, 11, 8, 18, 12, 11, 16, 13, 12, 7, 12, 14, 9, 11, 14, 13,

15, 12, 23, 8, 15, 20, 17, 18, 12, 18, 26, 22, 32, 26, 23, 17, 19, 20, 26, 23, 25, 18,

15, 16, 21, 21, 15, 19, 25, 20, 22, 15, 19, 25, 24, 20, 25, 31, 30, 34, 37, 23, 11, 8,

7, 6, 3, 4, 1, 3, 3, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 3, 3, 1, 3, 4, 2, 1, 2<
Total number of bands in full range: 1358.

Bands in each range:

85, 3, 5, 10, 5, 8, 10, 8, 11, 10, 4, 11, 8, 18, 12, 11, 16, 13, 12, 7, 12, 14, 9, 11, 14, 13,

15, 13, 22, 8, 15, 20, 17, 18, 12, 18, 26, 22, 31, 27, 24, 16, 19, 20, 26, 23, 25, 17,

15, 17, 21, 21, 16, 18, 25, 20, 22, 15, 19, 25, 24, 20, 25, 31, 30, 34, 37, 23, 11, 8,

7, 6, 3, 4, 1, 3, 3, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 3, 3, 1, 3, 4, 2, 1, 2<

The energetic contribution to the barrier by each vacuum system MO can now be plotted (note that only 2 of
the interpolated  adsorption  systems were used  in  this  example, so  this  does  not  constitute  the full  barrier
calculation):

ListPlot@ DEeTotal, Joined ® True, PlotRange ® Full,

AxesLabel ® 8"MO Index", "Partial Barrier Contribution"< D

10 20 30 40 50
MO Index

-0.5

0.5

1.0

Partial Barrier Contribution

In principle one could rotate the graph above by 90° and re-label the MO indexes to be HOMO, LUMO, etc. to
reproduce the graph below (from Fig. 6a of the main text), however the graph above is incomplete since only
interp0 and interp1 (out of 8) have been used.
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In principle one could rotate the graph above by 90° and re-label the MO indexes to be HOMO, LUMO, etc. to
reproduce the graph below (from Fig. 6a of the main text), however the graph above is incomplete since only
interp0 and interp1 (out of 8) have been used.
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