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Abstract. In studies of epitaxial growth, analysis of the distribution of the areas of capture
zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often
the best way to extract the critical nucleus size i. For non-random nucleation the normalized
areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD)
Pβ(s) = asβ exp(−bs2), particularly in the central region 0.5 < s < 2 where data are least
noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis,
suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate
orders of magnitude more data than experiments, they permit close examination of the tails
of the distribution, which differ from the simple GWD form. One refinement is based on
a fragmentation model. We also compare island-size distributions. We compare analysis by
island-size distribution and by scaling of island density with flux. Modifications appear for
attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on
amorphous mica, comparing the results of the three analysis techniques and reconciling their
results via a novel model of hot precursors based on rate equations, pointing out the existence
of intermediate scaling regimes between DLA and ALA.

1. Introduction
During the last decade several fine reviews [1, 2, 3, 4] have been published about the early
stages of thin-film growth. In this aggregation regime a major goal is to assess the size of
the smallest stable cluster (denoted i+1, where i is the size of the critical nucleus, the largest
unstable cluster [5, 6, 7, 8]). Three approaches have been taken in this pursuit: 1) rate equation
theory for the scaling, with incident flux F , of island density N ∝ Fαi ; 2) analysis of the
island-size distribution (ISD); and most recently 3) analysis of the capture-zone distribution
(CZD). For ICCGE17 we recently prepared a minireview of these investigations [9], emphasizing
the CZD approach. Here we include some highlights of that paper but with emphasis on a
single experimental system, para-hexaphenyl (6P) on sputter-amorphized mica, showing results
relevant to all three approaches and describing how including the participation of hot precursors
reconciles the scaling data with the CZD and ISD results [10].

2. Capture-Zone Distributions and the Generalized Wigner Distribution
We begin with the most recent approach, the distribution of the areas of capture zones
[3, 11, 12, 13], i.e. Voronoi (proximity) cells constructed from the islands. Cf. Fig. 1a,b. This
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CZD turns out to provide information about i. For the Poisson-Voronoi (PV) case of random

nucleation centers, the CZD is expected to follow a gamma distribution P
(a)
Γ (s) [14, 15],

P
(a)
Γ (s) =

aa

Γ(a)
sa−1e−a s, (1)

where s is the CZ area divided by its average value (so that ⟨s⟩=1).
More generally we have argued [13], drawing from experiences analyzing the terrace-width

distributions of vicinal surfaces [17], that the CZD is better described by the single-parameter
generalized Wigner distribution (GWD):
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where aβ and bβ are dictated by normalization and unit mean, respectively, of Pβ(s). Our
derivation of Pβ(s) from a mean-field Fokker-Planck equation implied that β = i + 1 in two
dimensions (2D) [13].

Extensive simulations exposed inadequacies of this mean-field prediction [18], ultimately
because nucleation occurs preferentially near CZ boundaries rather than uniformly [19, 20],
so that in 2D β = i + 2 (for diffusion-limited aggregation (DLA)) is better. Shi et al. [21]
performed kinetic Monte Carlo calculations of irreversible growth (i = 1) of point islands with
dimensions 1−4, for both square and triangular lattices in 2D and for two different point-island
models. They used values of R = 105 − 1010, where R ≡ D/F , D the diffusion rate and F the
deposition flux, in order to extrapolate to asymptotic behavior. Their fits to CZDs are better
with β = 3 than with β = 2. While the coverage dependence (between 0.1 and 0.4 ML) is
negligible, there is some dependence on R and on which of the two models of point islands is
used. They also find better scaling (with R) of the peak height of the CZD using β = 3, and
comparable results for the two models. Li et al. [19] considered both i = 1 and i = 0 at 0.1 ML,
finding that β = 3 accounts better for their i = 1 CZD curve than β = 2. The GWD describes
the CZD over the values of s for which there is significant data in experiments (0.5 < s < 2) but
has deficiencies in the tails at high and low s [19, 22]. For large s, P (s) may decay exponentially
or like a generalized gamma distribution sβν exp(−const. · sν) (with non-integer ν) rather than
in Gaussian fashion. Thus, their best fit gives ν = 1.5 and βν ≈ 4 (and ν = 1.3 and βν ≈ 3 for
i = 0). However, the relation between β and i should be determined by the central part of the
CZD rather than power-law behavior for s ≪ 1, so that βν and β are expected to differ; i.e., β

Figure 1. (a) Islands of standing para-hexaphenyl (6P) on sputtered mica (001) at 0.19 ML, T = 300K,
F = 0.04 ML/min. (b) Construction of capture zones of (a) by Voronoi tesselation. (c) Resulting CZD
from (b) compared with Pβ(s) for β = 2–7 (i=β−2 for DLA). From [16].
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is essentially an effective exponent. (Furthermore, βν increases to “compensate” decreasing ν.
The non-Gaussian decay stems from the probability ∼sν that a new CZ overlaps an existing CZ
of scaled area s [3, 23]; ν is typically extracted from numerical data.)

Most recently Oliveira and Aarão Reis [22] reported extensive simulations in 2D for point and
extended (fractal and square) islands, with i= 1 and 2, for R = 106−1010. Rather than using s as
their independent (scaling) variable, they choose u = (x−⟨x⟩)/σx → (s−1)[(β+1)/(2bβ)−1]−1/2,
where x is the number of lattice sites within a CZ, and σx is the standard deviation; the final
expression for u is its form for the GWD. This scaling procedure improves data collapse (for
different values of R) by reducing the corrections to scaling for small x, where the continuum
model underlying the derivation of Eq. (2) becomes inaccurate. However, this scaling obscures
the variation of the curves with changing values of i (and so β) in the central region [9] (but
brings out differences in the tails in their log-linear plots). For point islands with i = 1, β = 2
and 3 both give “good fits” in the central (peak) region, with β = 3 also adequate for small s
and neither doing well for large s; for i = 2, β = 3 fits well the center and large-s tail. For fractal
and for square islands, β = i + 1 gives a good fit for four values of R, while β = i + 2, though
not mentioned [22]a, is also satisfactory [22]d. Typically there is Gaussian decay for large s.

While the numerical studies leave some open questions, the preponderance of evidence points
to β ≈ i+2, which we can retrieve by refining our derivation [24]: Noting that within a circular
zone of radius r0, the adatom density n(r) ∝ r20 − r2, so that the integral over CZ area of
[n(r)]i+1 ∝ r2i+4

0 ⇒ P (s) ∝ si+2. Furthermore, experimental data well described by Pβ(s) can

also be fit with P
(a≈2β+1)
Γ (s) [25], progressively better for larger exponents [9].

In a refined analysis based on a widely-applicable fragmentation model (FM) [12], we
characterized systems in terms of two physically-rooted exponents, γ and δ [20], by taking (a) the
probability to nucleate, in a cell of size s, ∝ sγP (s), ultimately, implying P (s)∼exp(−const.sγ)
for s≫1; and (b) the probability that a new center lies at a position r, relative to the center of
a preexisting cell, ∝ |r|δ, assuming circular isotropy for simplicity. The simplest case is the PV
problem, for which γ = 1 and δ = 0, with the second probability r-independent but ∝ s−1 [20].

A harder but still tractable example is a point-island model, with irreversible attachment, in
which capture zones are approximated as circular [20]. The isotropic solution of the appropriate
steady-state diffusion equation gives an adatom density n(ρ) that increases from 0 at the interior
island edge to a smooth maximum at the outer edge. Thence we deduce that γ = 3 (more
generally γ = i+2), which, with δ = 0, accounts adequately for numerical data for P (s), but
less well for island density and the radial nearest-neighbor island probability distribution. This
deficiency can be remedied by taking δ = 1 near the center and δ = 0 near the edge [20]. In the
FM the above-noted result ν=1.5 [19] implies γ=1.5, with δ ≈ 1.2 near the center and δ = 0
near the edge [20]. Furthermore, the above mean-field-based argument for γ=3 overestimates
γ, which extensive simulations show to be close to 2 rather than 3 at low coverages and large R.

For s ≪ 1, P (s) is expected to behave like a power law in s, but the precise relation between
this exponent and i has not yet been determined, although for i = 1 good agreement with
simulations has been found for the (actual rather than effective) exponent β = 4 [19, 20, 22].
In this regime P (s) depends on the concentration of centers and ultimately, in the FM model,
on δ [20]. The skewness of the GWD also agrees well with numerical data in simulations [22].
However, earlier efforts to fit experimental data by just extracting the first few moments of the
distribution were unsatisfactory [26]. Alternatively, one can allow two different values of γ: 2
for small s and 1 for large s. While such a “two-regime model” is not essential in 2D, it is in
1D. For the detailed analyses and controversies in the 1D case, see [12, 19, 20, 21, 22, 27, 28].

3. Island Size Distributions and Scaling of Island Number vs. Flux
Two alternative approaches have long been used to gauge the critical nucleus size from
experiment. One is to measure the island size distribution (ISD) [3, 29, 30] and then to fit
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it with the Amar-Family scaling formula (at least for i = 1,2,3 and in 2D) [31],

fi(u) = Ciu
ie−iaiu

1/ai,
Γ[(i+ 2)ai]

Γ[(i+ 1)ai]
= (iai)

ai ; f(u) =
R→∞

f(0) exp

[∫ u

0
dy

2z − 1− C ′
tot(y)

Ctot(y)− zy

]
,

(3)
with u now the island size divided by its mean and Ci a normalization constant; Amar et al.
deduced fi(u) empirically from the expectations that (in the limit of large R) fi goes like ui for
small u, cuts off exponentially for large u, and peaks at u = 1 (unlike the GWD, which peaks
at u < 1, especially noticeable for small β). With scaling assumptions for capture numbers and
neglect of deposition dependence, Bartelt and Evans [3, 23, 32] obtained the R → ∞ limit, where
Ctot is a linear combination of scaled capture numbers and capture zones and z is the slope of
a log-log plot of mean island size vs. F (e.g., z = 2/3 for point islands). In principle, then, the
ISD can be obtained from a rate-equation approach if one has information about the capture
numbers [1, 32]; they can be measured from simulations since calculating them is intractable.

While the ISD does not generally mimic the CZD [3, 33], kinetic Monte Carlo (KMC)
calculations by Fanfoni et al. on a simple model of quantum dot growth reveal a similarity
between ISD and CZD at lower temperature T , when evolution of islands is dominated by atom
motion along the periphery rather than attachment/detachment [34]. (However, they favor the

P
(a)
Γ (s) over Pβ(s) in their fits.) See [22] for recent results on the high-end tails.
The second approach, based on rate equation theory, involves the scaling of the density N

of [stable] islands (particularly the maximum density) with F : it is long known [5, 6] that at
constant, relatively low T , there is the scaling relation [6, 35]

N ∼ Fαi exp (Ei/[(i+ 2)kBT ]), αDLA
i = i/(i+ 2) , αALA

i = 2i/(i+ 3) (4)

where Ei is the cohesion energy of a cluster of size i. The two relations of αi to i are DLA and
attachment-limited aggregation (ALA) regimes [36] in 2D, respectively. There are many other
regimes with signature relations for αi [35, 37, 10]. Also, the values in 3D differ, e.g. being
2i/(2i + 5) for DLA (with compact islands and with no desorption). In short, the value of i
deduced from αi depends strongly on the dominant mode of mass transport. In many cases
one can characterize the T dependence by writing N ∼ (F/D)αi , where D has an activated,
Arrhenius form; then the “activation energy” is enhanced by a term proportional to the diffusion
barrier. Thus, N is expected to decrease rapidly with increasing T [8]. While a great deal
of information can be gleaned from this characteristic energy, or its effective generalization
d lnN/d(1/kBT ), space precludes a detailed discussion here; readers should consult [6, 7, 8, 10].

4. Experimental Applications: Para-hexaphenyl on Sputter-Amorphized Mica
In [9] we provided capsule descriptions of the many experimental applications of CZD analysis;
here we simply give a list: pentacene on SiO2 [38], pentacene with controlled pentacenequinone
impurities [39], polar-conjugated molecule Alq3 on passivated Si(100) [40], self-assembled
Ge/Si(001) nanoislands [41], InAs quantum dots on GaAs(001) [34, 42], metallic Ga droplets on
GaAs(001) [43], C60 on UTO [25], 6P on Ir(111), 6P on SiO2 [44], and 6P films on amorphous
mica [16, 45, 46, 47, 48]. Here we concentrate on the last in this list, to which all three approaches
have been applied. Note that interest in rod-like 6P is spurred in part by its use in blue-light-
emitting diodes [49], nano-optic devices [50], etc. We show that all three methods give values of
i that are reasonably consistent with one other, notwithstanding some reported values.

The sample image in Fig. 1a is of islands of 6P for 0.19 ML, T = 300K, and F = 0.04
ML/min on freshly cleaved muscovite mica (001), sputter-modified to ensure the 6P are all
standing, thereby precluding a competing wetting layer [16]. The Voronoi tesselation of such
images, as in Fig. 1b, is used to tally the CZD. Fig. 1c then shows that the CZD is well (and
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best) fit with β = 5, leading to i = 3 (within the assumption of DLA). Fig. 2a depicts the
ISD for these islands again at T = 300K but with half the flux. Based on a least-squares fit to
Eq. (3), the result is again i = 3±1. Subsequently this group [46] found that this ISD is for
large and rather dendritic islands; they report i = 2, but given the modest amount of data, this
is viewed as consistent with the earlier value. (There are also smaller, compact islands with a
smaller critical nucleus size, i = 1.) Third, Winkler’s group’s analysis of N(F ) data at 300K
with Eq. (4) with αi = i/(i+2) yielding i = 2.5±0.5 [16]. For such small i they conclude that the
6P molecules must be lying on the surface, rather than standing up. Assuming DLA and ALA
Different behavior is found at low T , attributable to different kinetics [16]. Subsequent work
on sputtered mica [45] showed that the 6P molecules stand up, suggesting a higher i. While no
CZD analysis is given, values of αi in both the DLA and the ALA regimes give i = 7±2 [51].

For pentacene on sputter-amorphized mica at 300 K, there is similar dogleg behavior in the
plot of lnN vs. lnF , with α = 0.8 ± 0.1 and α = 1.3 ± 0.1[48]. Using Eq. (4) they deduce
i = 5 ± 1. For the CZD they found β = 5.0 ± 0.5 and β = 4.0 ± 0.5 for F = 0.08 and 1.37
ML/min., respectively, at 300K. They deduce αβ ≈ i globally, with the noteworthy corollary
βALA=(i+3)/2.

5. Hot Precursor Model
Very recently three of us presented a model, formulated in terms of rate equations, that treats the
modification of island nucleation by “hot precursors,” i.e., deposited molecules which propagate
ballistically for some distance before thermalizing or joining an island [10]. A key dimensionless
parameter is z ≡ τh/τh→N , the ratio of the thermalization time to the hot-precursor survival
time before capture by an island. For z ≪ 1 and z ≫ 1, i.e. fast and slow thermalization, we
recover, respectively, DLA and a novel hot monomer aggregation (HMA) regime with α the same
as for ALA. However, the crossover between these regimes is not a smooth monotonic crossover.
Two other dimensionless terms come into play, the ratio Rn of hot to thermalized monomers and
a ballistic scale RB related to the distance hot monomers travel to the spacing between islands).
(A third ratio, expressing whether ballistic or thermalized channels dominate decay, also plays

Figure 2. ISD for 6P islands vs. normalized
area s, after deposition of three different
coverages (Θ = 0.22, 0.32, and 0.60ML) at
300K with F = 0.02 ML/min, measured with
ex situ AFM at room temperature. The island
density is scaled by ⟨s⟩2/Θ. The least-squares
best fit using Eq. (3) yields i=3±1. From Fig.
2 of [16] A similar plot with less data in Fig.
10a of [46] for 0.147 ML at 400K reports i=2.

Figure 3. Island density vs. deposition rate in
the aggregation regime for 6P on sputter-modified
mica (001) [45] at T = 150K (black, square dots),
200K (red, round dots), 300K (blue, star dots), and
400K (green, triangular dots), with i = 4 and several
other dimensionless best-fit parameters given in [10].
Inset: αeff (curves) and values of d lnN/d lnF from the
experimental data (dots). Adapted from Fig. 3 of [10]
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a role if we consider the effective activation energy.) In plots of the effective α ≡ d lnN/d lnF
vs. z, one finds the expected flat regions for small (DLA) and large (HMA/ALA) z but the
expected non-monotonic crossover with extended plateaus corresponding to extreme values of
Rn and RB. (See Fig. 1 of [10].) Likewise, there are such plateaus for the effective activation
energy. As a test of this model, we used the solution of the rate-equation formulation to fit
simultaneously data for four temperatures, as shown in Fig. 3, with the result i=4 ± 1 rather
than i= 7 ± 2. While the data at small z does correspond to DLA, that at high z is not ALA
but rather the case of small z and Rn but large RB, for which α= i/2 rather than 2i/(i+3).

6. Conclusions
We have discussed the three methods to investigate the critical nucleus size in submonolayer
growth. For the case of 6P on amorphous mica, we found that scaling of island density gives
results consistent with CZD analysis, once hot precursors are properly taken into account,
showing the importance of that mechanism. We have shown that the GWD provides an
excellent accounting of CZDs in the region where the data in experiments is most reliable.

While the fits with P
(a)
Γ (s) (or even a Gaussian, for large β) may also be adequate, only

the GWD offers a fundamental connection β ≈ i + 2. Further improvements in the theory,
notably the fragmentation model, allow more detailed examination of tails and of other statistical
functions. We have also applied CZD analysis to data from homoepitaxial growth on vicinal
Cu(001), finding that codeposited impurities offer the most likely explanation of the data [52].
The approach applies to a much broader range of problems than just crystal growth: we have
characterized the distribution of Metro stations in central Paris [20] and of the areas of secondary
administrative units (counties in the USA, arrondissements in France, etc.) [20, 53].
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[10] Morales-Cifuentes J R, Einstein T L and Pimpinelli A 2014 Phys. Rev. Lett. 113 246101; arXiv 1411.6575
[11] Mulheran P A and Blackman J A 1995 Philos. Mag. Lett. 72 55; 1996 Phys. Rev. B 53 10261
[12] Blackman J A and P. A. Mulheran P A 1996 Phys. Rev. B 54 11681
[13] Pimpinelli A and Einstein T L 2007 Phys. Rev. Lett. 99 226102
[14] Kiang T 1966 Z. Astrophysik 64 433
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