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Interacting steps with finite-range interactions: Analytical approximation and numerical results
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We calculate an analytical expression for the terrace-width distribution P (s) for an interacting step system
with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a
statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with
several numerical simulations and experimental results. We explore the effect of the range of interactions q on
the functional form of the terrace-width distribution and pair correlation functions. For physically plausible
interactions, we find modest changes when next-nearest neighbor interactions are included and generally
negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated
experimental data the characteristic scale-setting terms in assumed potential forms.
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I. INTRODUCTION

The equilibrium properties of steps on surfaces have been
the subject of study for at least half a century [1]. During the last
two decades, interest in steps has burgeoned [2–11], principally
because of the important role they play in epitaxial growth,
surface transport, catalysis, etc. Those properties have great
importance in the construction of nano- and microelectronic
devices.

Steps can be created during sample preparation, such as by
cutting a material at a miscut angle with respect to a closely
packed plane. In the case of molecular-beam epitaxy (MBE),
the steps act as sinks because they are the most favorable place
for attachment, allowing some control of the morphology of the
surface during growth and creating specified uniaxial defects
rather than random growth of domains that progressively
degrade uniformity.

Advances in experimental techniques have allowed the
quantitative measurement of some statistical properties of
these stepped surfaces [7]. One of the most important equi-
librium statistical properties is the terrace-width distribution
(TWD), P (s). Here s = S/〈S〉 is the scaled width, with 〈S〉
the average of S. The TWD has relevant information about the
interaction potential between steps [12–15]; the TWD narrows
as step-step repulsions increase.

Recent connections between theory and experiments have
often relied on the generalized Wigner surmise (GWS) [16,17]:

P�(s) = a�s
�e−b�s2

, (1)

where b� = [�( �+2
2 )/�( �+1

2 )]2 and a� =2b
(�+1)/2
� /�( �+1

2 ) are
normalization constants which ensure 〈sn〉=1 for n = 0,1.
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In particular, for the typical case where stress dipoles at
steps lead them to interact through a potential V (S) = A/S2,
it has been shown that there is a connection between A and the
exponent � of the GWS for the special cases � = 1, 2, and 4:
Explicitly we have that the dimensionless repulsion strength

Ã ≡ β̃ A β2 = �

2

(�

2
− 1

)
, (2)

where β̃ is the step stiffness, and β = 1/kBT is the inverse
thermal energy. The remarkable connection provided by
Eq. (2) can be found by mapping the interacting steps system
onto the Calogero-Sutherland model [18,19], in which the
particles interact through a potential Ã/S2. It is clear that
the case � = 2 corresponds to noninteracting steps (A = 0),
� < 2 to attractive steps (A < 0), and � > 2 to repulsive
steps (A > 0). The Calogero-Sutherland model can be solved
analytically (the Hamiltonian is integrable) for the special
cases of Ã = −1/4, 0, 2, and Eq. (1) provides an excellent
approximation to the spacings between adjacent particles
[5,6,20]. While the justification of Eq. (2) is not so firmly
established for arbitrary values of Ã, the GWS has nonetheless
proved to be an excellent tool to describe theory, experimental,
and numerical results [21–26].

One of the simplest models to describe fluctuations on
steps is the terrace-step-kink model (TSK) [2,9,10,27,28]. In
this model, the only excitations taken into account are the
kinks along the steps. In particular, vacancies and adatoms
on terraces are neglected. These simplifications restrict the
applicability of the TSK model to low temperatures (relative
to the roughening temperature of the terraces). There are
more sophisticated approaches [29–31] based on kinetic
Monte Carlo simulations [32] of solid-on-solid (SOS) models
[33] which take into account more thermal excitations, but
they require more computational resources. Moreover, the
simplicity of the TSK results in better statistics for P (s) than
the SOS models in the low-temperature limit.
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Our main objective is to calculate the TWD for arbitrary
interaction potentials in the case of finite-range interactions,
i.e., when each step interacts with a number 2 q of its neighbors
through a potential V (S). In addition to the intrinsic interest
of this calculation, the question is very important for doing
Monte Carlo simulations to test predictions of models like
Calogero-Sutherland, which assume that all steps interact.
When step-step interactions are included in simulations,
invariably only nearest-neighbor interactions are included
[25,26,34–36]. Including second or third neighbor interactions
in the simulations algorithm would be cumbersome but
feasible. However, doing so invites questions of whether such
longer-range interactions are screened by intervening steps or
have their “bare” form.

Another important issue is what happens if the step interac-
tions are not of the generic inverse-square form, in particular
if they decay more slowly, often leading to instabilities. In
accounting for the idiosyncratic step network on Au(110) and
Pt(110), Carlon and van Beijeren find what amounts to an S−1

repulsion [37]. Stress domains lead to logarithmic interactions,
notably in the case of terraces with alternating mutually
perpendicular domains on vicinal Si(100) surfaces [38,39].

To proceed, we map the step system onto a one-dimensional
(1D) classical system of interacting particles. One advantage
of this approach is that it is always possible to find analytically
(in Laplace space) the spacing-distribution functions for
these 1D classical systems. In particular, the nearest-neighbor
distribution (TWD) is easy to obtain. Additionally, it allows
one to determine how relevant are the interactions beyond
the nearest neighbors in the functional form of the TWD.
The applicability of our model is tested with several Monte
Carlo simulations and some experimental results. This paper
is organized as follows. In Sec. II we describe the terrace-step-
kink (TSK) model for interacting steps; in Sec. III we develop
an analytical model for the TWD for the cases q = 1 and
q = 2. In this section, the case of arbitrary values of q is also
discussed. Finally in Sec. IV we provide some conclusions.

II. TERRACE-STEP-KINK MODEL

Since overhangs are prohibited in the TSK model, the
position of the ith step can be described by a function
xi(yn) where we have used “Maryland notation” [5], in
which ŷ is the “timelike” direction along the step. Then, the
indices satisfy i ∈ [1,N ], with N the number of steps, and
n ∈ [1,Ly] with Ly the length of the lattice in ŷ direction.
The fermionic nontouching condition imposes the additional
restriction xi(yn) < xi+1(yn) for all i and n. For the sake of
simplicity, in our model the lattice constant is set to unity.
We also impose periodic boundary conditions in both x and y

directions.
In the TSK model, the Hamiltonian of a system of

interacting steps can be written as [40]

H =
Ly∑

yn=1

⎡
⎣ N∑

i=1

εk ξi +
N∑

i=1

i+q∑
j=i+1

V (ζi,j )

⎤
⎦ , (3)

where ξi(yn+1,yn) = |xi(yn+1) − xi(yn)|, ζi,j (yn) = |xi(yn) −
xj (yn)|, εk is the energy required to form a unit-length kink, and
V (ζ ) is the interaction potential between steps. As mentioned

previously, q is the range of interaction. For q = 1, we have
nearest-neighbor interactions while for q = (N − 1)/2 each
step interacts with all its neighbors (full-range interactions).

The most studied case corresponds to V (ζ ) = 0, which is
usually called noninteracting steps. However, we emphasize
that even in this case the steps represented by Eq. (3) interact
entropically due the nontouching condition, taking the well-
defined thermodynamic form when

ycoll =
[ 〈S〉

2 b(T )

]2

< Ly with b2(T ) = 2

2 + eβ εk
. (4)

For Ly smaller than ycoll the steps fluctuate independently
of each other [41]. The case of noninteracting steps is well
described by the free-fermion analogy. In this picture, the steps
are modeled as world lines of free spinless fermions [10]. This
analogy leads to the use of the Wigner surmise with � = 2 to
describe P (s) [10].

Dyson showed [42,43] long ago that the statistical behavior
of a 1D free-fermion system (noninteracting steps) is equiva-
lent to that of a 1D system of classical Brownian particles [44].
Then, in terms of a 1D classical system, the noninteracting
steps can be interpreted as the world lines of a system with N

particles on a ring which interact via a logarithmic potential at
an inverse temperature β = 2. Explicitly the Hamiltonian of
this system is given by

H = −1

2

N∑
i=1

N∑
j=1

ln|zi(t) − zj (t)|, (5)

where zi(t) is the position of the ith particle at time t . If we
interpret the time axis as the y axis of the vicinal surface,
we can represent the steps in the TSK model as the time
evolution of the positions of particles in a 1D classical system
(after making the step-continuum approximation or working
in discrete time). In this equivalent system the interparticle gap
size distribution plays the role of the TWD.

III. ANALYTICAL MODEL

To map the interacting step system onto a classical 1D
system of interacting particles, we consider N particles can
move around a circle with circumference Lx = 〈S〉N , with
〈S〉 the average distance between particles. Periodic boundary
conditions are perforce imposed, that is, zN+j = zj , where zj

is the position of the j th particle. The system is in equilibrium
at an inverse temperature β. Below we use the formalism
proposed in Ref. [45] to calculate the interparticle gap size
distribution P (s) for different ranges of interaction q.

A. Nearest-neighbor interactions q = 1

Now we consider the simplest case where the particles or
steps interact with their nearest neighbors through of an arbi-
trary potential Ṽ (S;A) ≡ V (S), where A is a dimensionless
parameter which determines the strength of the interaction in
such way that A = 0 implies noninteracting steps, viz., A = 0.
In general, the interaction potential between steps V (S; A) and
the one for the classical particle system, Ṽ (S;A), are related
according to

Ṽ (S;A) = f (A)V (S; A), (6)
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where both A = g(A) and f (A) are unknown functions. This
means that there is a scale relation between the two potentials,
i.e., the functional form of the interaction potential is the same
in both cases.

To map the step system onto a 1D classical interacting
particle system, we use the Hamiltonian

H = − 1

2 β

N∑
i=1

N∑
j=1

ln
∣∣ζ 2

i,j

∣∣ +
N∑

i=1

Ṽ (ζi,i+1;A), (7)

where ζi,j ≡ ζi,j (t) = zi(t) − zj (t). The first term in Eq. (7)
models the entropic repulsion between steps while the second
one takes into account the energetic interaction between steps.
We have full-range interactions for the logarithmic potential
but for Ṽ (ζ ;A) we just have nearest-neighbor interactions.
Instead of this potentially difficult scenario and following
Ref. [46] [cf. Eq. (25) therein], we propose the effective
Hamiltonian

Heff = 1

β

N∑
i=1

[
KS2

i − ln
(
S2

i

)] +
N∑

i=1

Ṽ (Si ;A), (8)

where Si = ζi,i+1 and K ≡ K(A) is a function of A which
is determined by the normalization conditions as in Eq. (1).
The advantage of Eq. (8) over Eq. (7) lies in the fact that both
potentials have the same range of interaction (q = 1), allowing
an easier computation of P (s). According to Ref. [46], we can
expect that the TWD given by Eq. (8) for A = 0 reduces to
the GWS with � = 2, as required.

As shown in Appendix B, the TWD for the system described
by Eq. (8) is given by

P (s) = 1

f̃ (c)
s2e−� s2−β v(s;A)−c s, (9)

where c and f̃ (c) are given by the normalization conditions and
υ(s;A) is the step-step interaction potential in dimensionless
form. Consequently, Eq. (9) has just the one free parameter A.

From now on, we will consider interaction potentials which
satisfy Ṽ (S;A) → 0 for S → ∞. Consequently, in this limit
the TWD behaves as

P (s) ≈ 1

f̃ (c)
e−� s2

. (10)

This means that v(s;A) does not change the functional form
of the TWD for large values of s compared with the case of
noninteracting steps (A = 0), which, in turn, is well described
by Eq. (1) with � = 2. This is not an unexpected result because
v(s;A) decays as s → ∞. Thus, we can expect that the
interaction potential only has significant effects on the TWD
for small and intermediate values of s, depending on how fast
the interaction potential goes to zero as s increases.

For small values of s, the functional form of the TWD
depends strongly on v(s;A). For example, consider the
general interaction potential v(s;A) = A s−γ . For s 	 1, this
particular potential leads to

P (s) ≈ 1

f̃ (c)
e−β A s−γ

, (11)

which is clearly different from the behavior P (s) ≈ a�s
�

predicted by the GWS. However, for sufficiently large values

FIG. 1. (Color online) TWD for different values of A with
v(s;A) = A s−2 and nearest-neighbor interactions q = 1. In all
figures we include the values of A used in the numerical simulation
instead of the ones of A. The relation between both constants is given
implicitly by Eq. (6).

of γ the effect of the v(s;A) becomes important just for
small values of s. This justifies the use of the GWS to fit
the TWD for rapidly decreasing potentials and explains why
it gives excellent results for v(s;A) = A s−γ with γ = 2 and
(unphysically) 3; see, for example, Ref. [17].

As mentioned before, Eq. (9) has just one free parameter.
Nonetheless, it describes quite well the data obtained from the
numerical simulation of the TSK model for different potentials.
The case of v(s;A) = A s−2 is shown in Fig. 1 for different
values of A. The agreement between numerical and analytical
results given by Eq. (9) is excellent [47].

In general, the function A = g(A) cannot be determined
easily from analytical calculations. However, we find that the

empirical relation A
1
η = ν ln(χA + 1) fits well the numerical

relation between A and A found from the numerical data, as
shown in Fig. 2.

FIG. 2. Relation between A and A for the potential v(s;A) =
A s−2 and nearest-neighbor interactions q = 1. The continuum

line is given by A
1
η = ν ln(χA + 1) with ν ≈ 1.05, η ≈ 0.87 and

χ ≈ 0.19 (meV nm2)−1 while the dots represent the numerical data.
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FIG. 3. (Color online) The interaction given by Eq. (12) may
generate more than one maximum in the TWD.

Now, we consider a more general interaction between steps.
We adopt the potential

v(s;A,B) = A
s2

+ B cos(ω s + φ)

s3/2
, (12)

which is characteristic of vicinal surfaces with both elastic
repulsion and surface-state mediated electronic interactions
[17,48–52]. In this expression, A and B are determined by
the elastic repulsion and by the coupling to the surface state,
respectively; ω is proportional to the Fermi wave vector; and
φ is a phase shift; for more information see Refs. [17,48,49].

One interesting feature of this potential is the appearance of
more than one maximum in the TWD. This scenario appears,
for example, in kinetic Monte Carlo simulations of solid-on-
solid models where step bunching is present [53] as well as in
experiments. From Eq. (9), it is clear that the critical points of
P (s) are given by

2

s
− 2 � s − c − β

dv(s;A)

ds
= 0. (13)

The function h(s) = 2/s − 2 � s − c decreases monotonically,
because � > 0. In the particular case of v(s;A) = A s−γ , the
function β dv(s;A)

ds
increases monotonically, allowing just one

maximum in the TWD. However, for the potential given by
Eq. (12), β dv(s;A)

ds
exhibits oscillatory behavior, which can lead

to more than one maximum in the TWD. A sketch of this
discussion is shown in Fig. 3, where there are three critical
points (two maxima and one minimum); for the potential
v(s;A) = A s−γ , there is just one critical point (maximum).
As shown in Fig. 4, Eq. (9) also gives excellent results for this
potential.

Another important advantage of this formalism is that, from
Eq. (9), it is possible to determine the interaction potential
v(s;A) from numerical or experimental data for the TWD. In
fact, Eq. (9) can be written in the form

β v(s;A) = −ln

[
f̃ (c) P (s)

s2 e−� s2

]
− c s. (14)

By using Eq. (14) it is possible to extract v(s;A) directly
from P (s). Nevertheless, as was pointed out in Ref. [17] this
is not a trivial matter even if good quality data are available.
As a first example we consider the numerical data given in
Fig. 2 of Ref. [17] for the potential V (S) ∝ S−3. These data

FIG. 4. (Color online) TWD for different values of B = αA
with v(s;A,B) = A

s2 + B cos(ω s+φ)
s3/2 and nearest-neighbor interactions

q = 1.

are represented by small squares in Fig. 5. In order to calculate
v(s;A), we proceed as follows. First, we assume a functional
form for the interaction potential. For this particular example,
we use v(s;A) = A s−γ where A and γ are parameters to
be determined. Second, we select a value of γ and then we
perform the fit of Eq. (9) to the data. At the end of this step, we
have the parameters A and γ , which define the preestablished
form of the interaction potential. The third and final step is to
calculate v(s;A) from Eq. (14) in order to check consistency
with the preestablished form v(s;A) of the potential. In Fig. 5
the results of fits for γ = 1 to 4 are shown. All of them describe
the TWD well; in fact, the lines are almost indistinguishable
except in the region s � 0.3. However, as we can see in the
inset of Fig. 5(b), the results for v(s;A) are consistent for small
values of s only in the case γ = 3 [54]. In Ref. [17] a different
approach was used to calculate the same potential leading to
the erroneous result γ = 2, while the formalism presented here
gives the correct value γ = 3.

As an additional example we calculate the potential from
the data reported in Fig. 2 of Ref. [15]. As shown in Fig. 6, both
P (s) and v(s;A), are well described assuming v(s;A) ∝ s−2.

Sometimes the results of the experiments are given through
the pair correlation function g(r) instead of the TWD [14].
By definition g(r) is the probability of finding another step a
specified distance away, regardless of how many steps might
lie between them. In the case of a 1D free fermion system,
i.e., for noninteracting steps (A = 0), g(r) can be calculated
easily [10,55–57]:

g(r) = 1 −
[

sin(π r)

π r

]2

. (15)

Unfortunately, the case of interacting steps v(s;A) �= 0
provides a more difficult scenario where g(r) cannot be
calculated explicitly in tractable form [58,59]. However, the
formalism used to describe the TWD can be extended to find
an approximation for g(r): let p(n)(s) be the probability density
that the normalized distance between two steps is s under the
condition that between them there are n additional steps; see
Appendix A. This immediately implies that the TWD is given
by P (s) ≡ p(0)(s). Additionally, from p(n)(s) it is possible to

052405-4



INTERACTING STEPS WITH FINITE-RANGE . . . PHYSICAL REVIEW E 87, 052405 (2013)

FIG. 5. (Color online) Determination of the interaction potential from numerical data from Fig. 2 of Ref. [17] for V (S) ∝ S−3. (a) All
values of γ describe the TWD well. (b) The interaction potential for large values of s is well described in all cases. However, just γ = 3 gives
the appropriate fits for the numerical data for P (s) and v(s;A) for the entire range of s.

recover g(r) through

g(r) =
∞∑

n=0

p(n)(s). (16)

We can expect that a good approximation for p(n)(s) gives a
good description of g(r). As usual the case A = 0 is the easiest.

Abul-Magd [60] showed that, for a 1D free fermion system,
p(n)(s) can be approximated by Eq. (1) taking

�n = n2 + 4 n + 2. (17)

This approximation assumes that the p(n)(s) for any n can be
written in the form given by Eq. (1) with a suitable choice
for �n. We can use the same kind of approximation to extend
Eq. (9) for arbitrary n to

p(n)(s) = 1

f̃ (cn)
s�ne−�n s2−β v(s;An)−cn s, (18)

with �n given by Eq. (17). In this way for A = 0 we recover
the case of noninteracting steps and for n = 0 we arrive to the
TWD given by Eq. (9). In Fig. 7(a) are shown the results given
by Eqs. (16), (17), and (18) for the case of interacting steps

FIG. 6. (Color online) Determination of the interaction poten-
tial from experimental data. Excellent agreement is found with
v(s;A) ∝ s−2.

with v(s;A) = A/s2. Figure 7(b) shows the same results for
the potential given by Eq. (12). The agreement is excellent in
both cases. As expected, large values of A give better-defined
peaks in g(r) than in the case of noninteracting steps given by
Eq. (15). We also check the quality of the fit for each p(n)(s)
with n � 1, finding excellent agreement with the numerical
results. These fits are not included in the text.

B. Next-nearest-neighbor interactions q = 2

In the previous section we discussed the applicability of
Eq. (9) for arbitrary potentials and nearest-neighbor interac-
tions q = 1. If we include next-nearest-neighbor interactions,
the effective Hamiltonian of the system takes the form

Heff = 1

β

N∑
i=1

[
KS2

i − ln
(
S2

i

)]

+
N∑

i=1

[Ṽ (Si ;A) + Ṽ (Si + Si+1;A)]. (19)

Then, the partition function for this system can be written as

Z(Lx) =
∫ ∞

0
dS1 · · ·

∫ ∞

0
dSNδ(�)

N∏
j=1

f (Sj )h(Sj + Sj+1),

(20)

where f (s) is given by Eq. (B2) and

h(S) = e−β Ṽ (S;A). (21)

Again, following Bogomolny et al. [45], the TWD can be
written as

P (s) = Lx

N

[
φ0

(
c,

s Lx

N

)]2

, (22)

where φ0(t,S) is the eigenfunction associated with the largest
eigenvalue, λ0, of the following homogeneous Fredholm
integral equation:∫ ∞

0
dS ′K(S,S ′)φj (t,S ′) = λjφj (t,S), (23)
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FIG. 7. (Color online) Pair correlation function g(r) for interacting steps with (a) v(s;A) = A/s2 and (b) v(s;A) given by Eq. (12). The
dashed line corresponds to Eq. (15), which gives g(r) for A = 0.

where the symmetric kernel, K(S,S ′), has the form

K(S,S ′) =
√

f (S)e− t S
2 h(S + S ′)e− t S′

2

√
f (S ′). (24)

As in Eq. (B5), c is the solution of an algebraic equation

0 = Lx

N
+ 1

λ0(t)

dλ0(t)

dt

∣∣∣∣
t=c

. (25)

In general, Eq. (23) is difficult to solve analytically. However,
it can be solved numerically as a standard eigenvalue problem
[61]. To clarify this point, we note that Eq. (23) can be written
approximately as

δ

M∑
k=1

WkK(Sl,S
′
k)φj (S ′

k) = λjφj (Sl) (26)

with δ = S ′
k+1 − S ′

k the constant interval between pivotal
points and Wk a weighting coefficient. The original integration
domain [0,∞) is approximated by [δ,M δ]. Equation (26)
represents a set of algebraic equations given explicitly by

h KWφj = λjφj , (27)

where φT
j = (φj (h δ),φj (2h δ), . . . ,φj (M δ)), K(Sl,S

′
k) =

K(l δ,k δ) and W is a diagonal matrix with elements
W1,W2, . . . ,WM . Naturally, the vector φj gives the values of
the function φj (S) at positions S = l δ with l = 1,2, . . . ,M .

In order to test the quality of the solutions given by
Eq. (27), we perform a comparison with numerical data from
the simulation of the TSK model, displayed in Fig. 8. As in
the case of q = 1, the agreement is excellent.

C. Arbitrary range of interactions

Now we consider the case where each step interacts with
an arbitrary number q of its neighbors. In this case P (s) can
be also written in terms of the eigenfunctions φj (S1, . . . ,Sq)
of a complicated integral equation which involves a kernel
with 2(q − 1) variables. The resulting equation for the TWD
requires the solution of q − 1 integrals which increase in
difficulty with q, making it hard to find a numerical solu-
tion. However, as shown in Fig. 9 for v(s;A) = A/s2, our
numerical results show that the differences in the TWD for
the values of q considered are minor. The most significant
differences are found near the maximum of the distribution.
As shown in Fig. 9(b), the largest differences for the TWD
are found between the cases q = 1 and q = 2, while the
differences between the cases q = 2 and q = 3 or q = 3
and full-range interactions are negligible. This is not an
unexpected result because for the physically important rapidly
decreasing potentials such as v(s;A) ∝ s−2, the contribution
of the interactions in the Hamiltonian are dominated by the

FIG. 8. (Color online) (a) TWD for different values of A with v(s;A) = A/s2 with q = 2 and (b) TWD for different values of A and α

with v(s; A,α) = A

s2 + α A cos(6 s)
s3/2 also with q = 2.
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FIG. 9. (Color online) (a) TWD for the potential v(s;A) = A s−2 for different range of interactions and (b) zoom of the TWD near the
maximum. For rapidly decreasing potentials we do not find significant differences in P (s) with increasing q.

nearest-neighbor terms. This justifies the use of our model for
q = 1 or q = 2, even in the cases of full-range interactions.
Nevertheless, we emphasize that this approximation is only
valid for rapidly decreasing potentials. For potentials such as
v(s;A) = −A ln(s) the functional form p(n)(s) for arbitrary n

depends strongly on q [45,62].

IV. CONCLUSIONS

The formalism presented here is quite general and can be
used for a wide range of interaction potentials. We are able to
describe the effect on the TWD given by electronic, elastic and
entropic forces between steps. Additionally, the model allows
one to describe several aspects of interacting step systems. In
particular the quantitative description of P (s), g(r) and v(s;A)
given by our formalism is remarkably good for the numerical
and experimental data considered.

For potentials which decrease rapidly with s, in particular
for the physically most important case s−2, we found that the
effect of the finite range of interactions is not significant and
that the TWD can be described by taking into account just
nearest-step-neighbor interactions. This means, for example,
any discrepancy between findings for the TWD computed with
just nearest-neighbor interactions and analytic predictions for
infinite-range models (especially the GWS) must be attributed
to some other source. Nonetheless, the formalism proposed
by [45] and discussed in this paper gives analytical expressions
for the TWD even for arbitrary values of q.

Determining the interaction range q from the empirical
data of TWD does not seem feasible for interaction potentials
which decay rapidly as s → ∞ (including s−2). The main
reason is that this kind of potential affects P (s) significantly
just for small values of s, and in this limit the experimental data
are too noisy to access the effects of the number of interacting
neighbors. In contrast, long-range potentials such as v(s;A) =
−A ln(s) change the functional form of P (s) even for large
values of s [45,62].
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APPENDIX A: SPACING DISTRIBUTION FUNCTIONS

The joint probability distribution, PN (x1, . . . ,xN ; β), to
find particles 1, 2, . . ., N around positions x1,x2, . . . ,xN ,
respectively, is given by

PN (x1, . . . ,xN ; β) = 1

ZN (L; β)
e−β V(x1,···,xN ), (A1)

where ZN (L; β) is the partition function of the system
and V(x1, . . . ,xN ) = ∑N

i=1

∑i+q

j=i+1 V (|xi − xj |) is the total
interaction energy among the N particles. As the interaction
potential only depends on the differences between the position
of the particles, the change of variables Si = xi − xj gives

PN (S1, . . .,SN ; β) = 1

ZN (L; β)
e−β �, (A2)

with

� =
N∑

m=1

[V (Sm) + V (Sm + Sm+1)

+ · · · + V (Sm + · · · + Sm+q−1)]. (A3)

The periodic boundary conditions impose SN+1 = S1. The
joint probability distribution of n consecutive spacings
Pn (S1, . . . ,Sn; β) can be written as

Pn(S1, . . . ,Sn; β) =
∫

dSn+1 . . . dSN PN (S1, . . . ,SN ; β).

(A4)

By definition, the nth spacing distribution function p̂(n)(S) can
be calculated from

p̂(n)(S) =
∫ ∞

0
dS1 · · · dSn+1 δ(η)Pn+1(S1, . . . ,Sn+1; β),

(A5)

with η = S − ∑n+1
i=1 Si . The scaled probability density is

p(n)(s) =
∫ ∞

0
dS1 · · · dSn+1 δ(λ)Pn+1(S1, . . . ,Sn+1; β)

(A6)
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with λ = η/ 〈S〉. Note that Eq. (A6) satisfies the standard
normalization conditions [60]:∫ ∞

0
ds p(n)(s) = 1 and

∫ ∞

0
ds s p(n)(s) = n + 1. (A7)

APPENDIX B: CONFIGURATIONAL
PARTITION FUNCTION

The partition function of the system described by Eq. (8) is
given by

ZN (Lx) =
∫ ∞

0
dS1 · · ·

∫ ∞

0
dSNδ(�)

N∏
i=1

f (Si) (B1)

with � = Lx − ∑N
i=1 Si and

f (Si) = S2
i e−K S2

i −β Ṽ (Si ;A). (B2)

The Laplace transform Z̃N (t) = ∫ ∞
0 dLx e−t Lx ZN (Lx) of

Eq. (B1) can be written as

Z̃N (t) =
[∫ ∞

0
dS e−t Sf (S)

]N

= (f̃ (t))N. (B3)

The inverse of Eq. (B3) can be calculated by using the saddle-
point approximation as shown in the Appendix C:

ZN (Lx) = 1

2 π i

∫ τ+i ∞

τ−i ∞
dt eLx t+N lnf̃ (t) ∼ [

f̃ (c) e
Lx c
N

]N
,

(B4)

where c is given by the solution of the following algebraic
equation:

0 = Lx

N
+ 1

f̃ (c)

df̃ (t)

dt

∣∣∣∣
t=c

. (B5)

In Laplace space, the normalized TWD can be written as [45]

P̃ (t) = 1

f̃ (c)
f̃ (c + t). (B6)

Then, taking the inverse Laplace transform, we find straight-
forwardly

P (s) = 1

f̃ (c)
f (s)e−c s = 1

f̃ (c)
s2e−� s2−β v(s;A)−c s (B7)

with s = S N/Lx (the scaled spacing between particles), K =
�/ 〈S〉2, and υ(s;A) is the step-step interaction potential in di-
mensionless form. For more information see Refs. [45,62,63].
Until now we have not made any assumption about Ṽ (S;A);
Eq. (B7) applies for any potential.

APPENDIX C: SADDLE POINT APPROXIMATION

The integral given in Eq. (B4) can be written as

ZN (Lx) = 1

2 π i

∫ τ+i ∞

τ−i ∞
dt eN F (t), (C1)

where F (t) = � t + lnf̃ (t). Expanding F (t) around t = c

gives

ZN (Lx) = eN F (c)

2 π i

∫ τ+i ∞

τ−i ∞
dt e

N F (2)(c) (t−c)2

2 G(t), (C2)

with G(t) = 1 + N
4!F

(4)(c)(t − c)4 + · · ·. Additionally, F (2)(c)
and F (4)(c) are the second and the fourth derivatives of F (t)
evaluated in t = c, respectively. Recall that c is the solution of
Eq. (B5). The integral with respect to t can be done choosing
τ = c, i.e., along the line parallel to the imaginary axis through
the point c. This procedure gives

ZN (Lx) ≈ eN F (c)

√
1

2 π N F (2)(c)
+ O(N−3/2). (C3)

In the thermodynamic limit N → ∞ we can expect that

ZN (Lx) → eN F (c)
√

1
2 π N F (2)(c) ∼ [f̃ (c) e

Lx c
N ]N where we have

used the definition of F (t) given previously.
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