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Analyzing Capture Zone Distributions (CZD) in Growth: Theory and Applications
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We have argued that the capture-zone distribution (CZD) in submonolayer growth can be well
described by the generalized Wigner distribution (GWD) P (s) = asβ exp(−bs2), where s is the CZ
area divided by its average value. This approach offers arguably the best method to find the critical
nucleus size i, since β ≈ i + 2. Various analytical and numerical investigations, which we discuss,
show that the simple GWD expression is inadequate in the tails of the distribution, it does account
well for the central regime 0.5 < s < 2, where the data is sufficiently large to be reliably accessible
experimentally. We summarize and catalog the many experiments in which this method has been
applied.

I. PRELUDE

It is well established that a key goal to understanding
the growth process is to find (in the early, aggregation
regime) the size of the smallest stable cluster (denoted
i+1, where i is the size of the critical nucleus, the largest
unstable cluster [1–3]). While there are a few methods
used traditionally to do so, more recent work has shown
that it is particularly fruitful to consider the distribution
of the area of capture zones [4–7], i.e. Voronoi (proxim-
ity) cells constructed from the island centers. Cf. Fig. 1.
In particular, we shall see that this analysis provides in-
formation about the critical nucleus size i, i.e. the size of
the largest island unstable to decay (so that the size of
the smallest cluster that is assumed not to decay is i+1),
a crucial ingredient in models of growth processes. For
random nucleation centers, i.e. Poisson-Voronoi (PV) di-
agrams, the capture-zone distribution (CZD) is expected
to follow a gamma distribution (ΓD) [8, 9],

P
(α)
Γ (s) =

αα

Γ(α)
sα−1e−αs. (1)

More generally we have argued [7], drawing from ex-
periences analyzing the terrace-width distributions of
vicinal surfaces [10], that the CZD is better described
by the single-parameter generalized Wigner distribution
(GWD):

Pβ(s) = aβs
β exp(−bβs

2), (2)

where s is the CZ area divided by its average value (so
that 〈s〉 = 1); aβ and bβ are constants [11] that assure
normalization and unit mean, respectively, of P (s). The
derivation is based on a Fokker-Planck approach rooted
in an overdamped Langevin analysis of cell size in which
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FIG. 1. An example (10 µm× 10µm) AFM image of commer-
cial pentacene. The island centers and Voronoi polygons are
indicated by black dots and lines, respectively. From Ref. [17].

an external pressure from other cells hinders a cell from
growing much larger than average while an entropic force
impedes it from getting much smaller. The entropic term
is rooted in the mean-field assumption that the island nu-
cleation rate is proportional to ni+1, the product of the
number n of adatoms and the density of critical nuclei
(∝ ni) [12], leading to the prediction that β = i + 1 in
two dimensions (2D) [and higher]. In 2D, which is the ex-
perimentally relevant case and so the focus of this short
paper, this approximation turns out to be inadequate
since nucleation occurs preferentially near CZ boundaries
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rather than uniformly [13, 14]. (It does work better in
1D, but that case requires—and permits—a more com-
plicated analysis [5, 15, 16]; v.i.) As discussed in the
following, more sophisticated analysis in 2D points to
β = i+2 as better, consistent with most large-scale sim-
ulations and experiments.

II. REFINED ANALYSIS AND SIMULATIONS

The need to go beyond our mean field Fokker-Planck
analysis (and its key finding of β = i + 1) [7] were
made evident by extensive simulations by Amar’s [18]
and Evans’s [13] groups. The former carried out kinetic
Monte Carlo calculations of irreversible growth (i = 1)
of point islands with dimensions 1 − 4, for both square
and triangular lattices in 2D and for two different point-
island models. In order to compute asymptotic behavior,
they treat values of R = 105 − 1010, where R ≡ D/F ,
D the diffusion rate and F the deposition flux. They
find better fits to CZDs with β = 3 than with β = 2.
The dependence on coverage (between 0.1 and 0.4 ML)
is negligible, but there is some dependence on R and on
which of the two models of point islands is used. They
also find better scaling (with R) of the peak height of
the CZD using β = 3, and comparable results for the
two models. Comparisons with some earlier calculations
on extensive islands show similarities and differences, re-
quiring further study to understand. Li et al. [13] con-
sidered both i = 1 and i = 0 at 0.1 ML. As shown in
Fig. 2, β = 3 accounts better for their i = 1 CZD curve
than β = 2. While the GWD describes the CZD in the
regime in which there is significant data in experiments
(0.5< s < 2), it has shortcomings in the tails at both high
and low s [13, 19]. For large s, P (s) may decay exponen-
tially or like sβν exp(−As−ν) (with non-integer ν and A
some constant) rather than in Gaussian fashion. Thus,
in their short Comment, Li et al. [13] plot the data in
Fig. 2 on a log-log scale and get the best fit with ν = 1.5
and βν ≈ 4 (and ν = 1.3 and βν ≈ 3 for i = 0); however,
the relation between β and i should be determined by
the central part of the CZD rather than power-law be-
havior for s ≪ 1, so that βν and β are expected to differ.
(Moreover, when fitting a particular curve, βν increases
to “compensate” decreasing ν.) Their full report on this
study is not yet published.
Most recently Oliveira and Aarão Reis [19] reported ex-

tensive simulations in 2D for point and extended (fractal
and square) islands, with i = 1 and 2, for R = 106−1010.
Rather than using s as their independent (scaling) vari-
able, they choose u = (x − 〈x〉)/σx → (s − 1)/[(β +
1)/(2bβ) − 1]1/2, where x is the number of lattice sites
within a CZ, and σx is the standard deviation; the fi-
nal expression is for the GWD. This scaling procedure
improves data collapse (for different values of R) by re-
ducing the corrections to scaling for small x, where the
continuum model underlying the derivation of Eq. (2) be-
comes inaccurate; on the other hand, this scaling hinders
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FIG. 2. Plots of Li, Han, and Evans’s numerical data [red
dots] [13] for the CZD for i = 1 and P2(s) [dotted, blue line],
P3(s) [solid, green line], and P4(s) [dash-dotted, blue line],
showing that β = i + 2 = 3 does provide the best fit. Also

included is P
(7)
Γ (s) [dashed, purple line]. From Ref. [20].

differentiating between values of i (and so, by inference,
β) in the central region in linear plots (but highlights dif-
ferences in the tails in log-linear plots). For point islands
with i = 1, both β = 2 and 3 give ”good fits” in the cen-
tral (peak) region, with β = 3 also adequate for small s
and neither doing well for large s; for i = 2, β = 3 gives a
good fit of the center and large-s tail. For fractal and for
square islands, there is good data for the various values
of R, and β = i + 1 gives a good fit in all 4 cases, while
β = i + 2 is not mentioned. Typically there is Gaussian
decay for large s.

While the numerical studies leave some open questions,
the preponderance of evidence points to β ≈ i+2, which
we can retrieve by refining our derivation [20]: Noting
that within a circular zone of radius R, the adatom den-
sity n(r) ∝ R2 − r2, so that the integral over CZ area of
[n(r)]i+1 ∝ R2i+4 ⇒ P (s) ∝ si+2. Figure 2 also shows
that a gamma distribution might also be used to describe
the numerical data, in this case with α = 7. (Indeed, Li
et al. [13] noted that the data lies between this curve and
P3(s).) More generally, experimental data well described
by the GWD with particular value of β can also be fit

with P
(α)
Γ (s), α ≈ 2β + 1 [21]. (This approximation be-

comes progressively better for larger exponents [narrower
distributions]: for β > 7, 2β+1 underestimates α by un-
der 1%; for β > 3 by < 2%; but for β=1 by ∼ 7%.)
However, the ΓD has no intrinsic connection with the
critical nucleus size.

In a more detailed analysis based on a fragmentation
model (FM) [5], we characterized systems in terms of
two physically-rooted exponents, γ and δ [14]: (1) We
took the probability to nucleate in a cell of size s to
be proportional to sγP (s). Ultimately, this implies that
P (s) ∼ exp(−As−γ) (with A some constant) for s ≫ 1.
(2) We took the probability that a new center lies at a
position r relative to the center of a preexisting cell is pro-
portional to |r|δ, assuming circular isotropy for simplic-
ity. The simplest case is the PV problem, for which γ = 1
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FIG. 3. Capture zone distribution in 2D with i = 1. The
GWS describes correctly the behavior of P (s) for intermediate
values of s. The maximum entropy method gives an excellent
approximation for P (s) even for large and small values of s,
as seen in the replotting in the inset on a log-log scale. See
text. From Ref. [15]

.

and δ = 0, with the second probability r-independent but
∝ s−1 [14].

As an analytically tractable example, we considered a
point-island model with irreversible attachment in which
zones are approximated as circular [14]. The isotropic
solution of the appropriate steady-state diffusion equa-
tion gives an adatom density that increases from 0 at the
interior island edge to a smooth maximum at the outer
edge. This leads to the deduction that γ = 3, which, with
δ = 0, accounts adequately for numerical data for P (s),
but less well for island density and the radial nearest-
neighbor island probability distribution. This deficiency
can be remedied by taking δ = 1 near the center and
δ = 0 near the edge [14].

For s ≪ 1, P (s) is expected to behave like a power
law in s, but the precise relation between this exponent
and i has not yet been determined, though, for i = 1
good agreement with simulations have been found for
β = 4 [13, 14, 19]. In this regime P (s) depends on the
concentration of centers and ultimately, in the FMmodel,
on δ [14]. The skewness of the GWD also agrees well
with numerical data in simulations [19]. However, trying
to fit experimental data by just extracting the first few
moments of the distribution were unsatisfactory [22].

Alternatively, we considered a maximum-entropy ap-
proach, noting that the first moment is unity by con-
struction and the second moment, proportional to the
product of island and monomer density, is also constant
in the aggregation regime since latter cancels the for-
mer’s θ1/3 behavior [23], where θ is the coverage. Thus,

we obtained

PMEM(s) ≈ Asβ e−B s2−C s, (3)

where A, B, and C are constants [15]. As shown in Fig. 3,
the MEM expression accounts excellently for the numer-
ical data for i = 1 for two different values of R, the
ratio of the diffusion constant to the deposition rate. In
PMEM(s) we set β = 4 consistent with the numerical re-
sults in Ref. [13]. In Table I we compare the quality of
fits to these expressions. (See also Ref. [19].)

ΓD GWD-0 GWD-1 GΓE GΓD MEM

103 χ2(all) 3.010 1.660 1.726 0.402 0.334 0.518

103 χ2(sig) 1.722 0.826 0.873 0.381 0.287 0.294

ν 1 2 2 1.5 1.585 NA

β 6.277 3 3.065 4 3.860 4

TABLE I. Values for the χ2(all) and χ2(sig) for four different
analytical models of data for i = 1. The values of χ2 are
computed for the entire range of s (all) and for just the range
over which the data is significantly large (sig), viz. 0.5 <
s < 2. For the first column, the gamma distribution (ΓD)
β is alpha of Eq. (1). GWD-0 has no free parameters, with
β = i+2 = 3, while GWD-1 lets β vary to improve the fit. In
the column GΓE the values of ν and β are fixed at the values
in Ref. [13], while in GΓD (generalized gamma distribution)
they are allowed to vary. MEM uses Eq. (3), with A, B, and
C fitted. Adapted from Ref. [15]

Another approach would be to allow two different val-
ues of γ: 2 for small s and 1 for large s, mindful of the
earlier result that γ ≈ (4 + s)/(2 + s) [24]. While such
a ”two-regime model” is not essential here, it is in the
1D case (where the γ values are 4 and 3) [14]. More
generally, there are several complications (e.g. the need
for an integro-differential equation in the fragmentation
analysis [15]) and more detailed analyses possible in 1D,
leading to some controversies [5, 13–16, 18, 19] beyond
the scope—and length limit—of this paper.
Two alternative approaches have long been used to

gauge the critical nucleus size from experiment. One is
to measure the island size distribution (ISD) [6, 23, 25]
and then to fit it with the scaling formula (at least for i
= 1,2,3 and in 2D) [26],

fi(u) = Ciu
i exp(−iaiu

1/ai),
Γ[(i + 2)ai]

Γ[(i + 1)ai]
= (iai)

ai ,

(4)
with u the island size divided by its mean and Ci a
normalization constant; Eq. (4) was deduced empiri-
cally from the expectations that (in the limit of large
R) fi ∼ ui for small u, cut off exponentially for large
u, and peak at u = 1 (in marked contrast to the GWD,
especially for small β). While ISD cannot be expected
to mimic the CZD in general [6, 27], Fanfoni et al. very
recently presented some kinetic Monte Carlo (KMC) cal-
culations on a simple model of quantum dot growth that
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point to a similarity between ISD and CZD at lower
temperatures, when evolution of islands is dominated
by atom motion along the periphery rather than attach-
ment/detachment [28]. (However, they favor the ΓD in
their fits.) See Ref. [19] for recent results on the high-end
tails.
Second, based on rate equation theory, it has long been

known [1, 2] that at constant, relatively low temperature
T , the density N of [stable] islands (particularly the max-
imum density) satisfies the scaling relation [2, 29]

N ∼ Fχi , χDLA
i = i/(i+ 2) , χALA

i = 2i/(i+ 3)
(5)

where the two relations of χi to i are for diffusion-
limited (DLA) and attachment-limited aggregation
(ALA) regimes [30] in 2D, respectively. There are many
other regimes with signature relations for χi [29, 31].
Also, the values in 3D differ, e.g. being 2i/(2i + 5) for
DLA (with compact islands and with no desorption). In
short, the value of i deduced from χi depends strongly on
the dominant mode of mass transport. In many cases one
can characterize the temperature dependence by writ-
ing N ∼ (F/D)χi , where D has an activated, Arrhenius
form, so that N is expected to decrease rapidly with in-
creasing T [3].

III. EXPERIMENTAL APPLICATIONS

Pentacene on SiO2 [32]: Islands were fractal rather
than compact/circular. The CZD was found to depend
on deposition rate. We could fit the published data well
with the GWD, with β = 9 and 6 for high (1.5 nm/min)
and low (0.15 nm/min) flux, respectively. The ISD for
high flux looked similar to the GWD, but for low flux the
ISD was far broader and much more skewed.
Polar-conjugated molecule Alq3 on passivated

Si(100) [33]: Brinkmann et al. fit their data with ΓD,
quoting α = 10 ± 2. Our fitting the areal data in their
Fig. 6b is best with β = 5, lying between ΓD curves with
α = 10 and 11. Mindful of Eq. (5) they measure χi =
2.00 ± 0.05. While their interpretation that this implies
i = 5, inconsistent with our expectation (at least in 2D).
However, we can argue that the actual scaling regime
differs from their assumption, leading to a compatible
value of i.
Self-assembled Ge/Si(001) nanoislands [34]: Dis-

played CZDs for 0.2, 0.8, and 1.0 ML on the wetting layer
were are described by the GWD. Deduced values of β ev-
ery 0.2 ML rose slowly from about 2.4 at 0.2 ML to 4.68
at 1.0ML. The associated value of i was smaller than
anticipated. Island volume distributions fell from their
initial maximum steadily to vanish before rising again to
attain a smaller maximum.
InAs quantum dots on GaAs(001) [28, 35]: In this

example, nucleation is much faster than growth. The
CZD of the quantum dots at 1.65 ML are well described

by P
(4.1)
Γ , and α increases non-monotonically to 4.6 at

1.85 ML [35]. Fitting the published CZD at 1.65 ML with
the GWD with β = 2 is comparably good, but Fanfoni
[36] reports that the fits with the ΓD are generally bet-
ter and more appropriate because the nucleation sites are
nearly random. However, we achieved an even better fit
using the FM with γ = 1 as for PV, but δ = 1 rather than
0. Fanfoni et al.’s analysis of the dot volume distribution
is inconclusive [35]. Subsequently, Fanfoni et al. [28] an-
alyzed the CZD at 450◦C (1.74 ML, F = 1.92 ML/min)
and 528◦C (1.79 ML, F = 1.68 ML/min), for which α
values of 5.0 and 10.6, respectively, were extracted. In
the former case the volume distribution nearly coincided
with the CZD but in the latter case it was much broader
and more skewed. Guided by the above-mentioned KMC
simulations, they conclude that different mass-transport
mechanisms dominate in the two regimes: periphery dif-
fusion (consistent with PV) and attachment-detachment,
respectively.

Metallic Ga droplets on GaAs(001) [37]: Fits of
data at 2.9 ML to the GWD give β = 6.9, 7.7, 8.6 for T
= 185, 190, 200◦C, corresponding to i = 5±1, 6±1, 7±1,
consistent with values of i for metals on semiconductors.
For smaller coverage 2.7 ML at 185◦C, i = 4± 1, consis-
tent (within error bars) with coverage-insensitive behav-
ior. For larger coverage (3.7 ML), ripening thwarts the
analysis.

Para-hexaphenyl (6P) films on amorphous mica
[38, 39]: For 0.19 ML, T = 300K, and F = 0.04 ML/min
on freshly cleaved mica, the needle-like islands have a
CZD that is well (and best) fit with β = 5; the resulting
i = 3 is confirmed analysis of N(F ) data with Eq. (5)
with χi = i/(i+2), yielding i = 2.5± 0.5. For such small
i they conclude that the 6P molecules must be lying on
the surface, rather than standing up. Different behavior
is found at low T , attributable to different kinetics [38].
Subsequent work on sputtered mica [39] showed that the
6P molecules stand up, suggesting a higher i. While no
CZD analysis is given, values of χi in both the diffusion-
and the attachment-limited regimes give i = 7±2. (i = 6
could correspond to a centered hexagon of standing rods
[cf. Vienna sausage] as the smallest stable cluster.)

6P on Ir(111) [40]: The various analytic expressions
do not describe the CZD data as well as other examples.
The best fit by the GWD is for β = 1.6, but the s < 0.5
data looks more like β = 3, and there are several points
with unexpectedly high values for s . 1.

Small admixtures of pentacenequinone (PnQ)
with pentacene on ultrathin SiO2 (UTO) [17]:
While the above theoretical analyses assume deposition
of single-species, study of CZD continues to provide infor-
mation when there are impurities. As the fraction of PnQ
was increased at constant coverage (0.3 ML), the value of
β dropped from 6.7 below 1% to 5.0 above 1%, indicative
of the poorer packing possible when PnQ was present.
For thick 50 ML films, this sudden change around 1% is
reflected in a sudden decrease grain size and a consequent
decrease in linear mobility.

C60 on UTO [21]: The somewhat limited CZD data
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were fit comparably well with GWD and ΓD. The de-
duced values of β had an inverted semicircular form be-
tween 298K and 483K, beginning and ending around 2.2
and peaking around 2.9 near 373K. Over this range N
changed remarkably little, increasing slightly, then dip-
ping a bit, in sharp contrast to the behavior expected
in the comments after Eq. (5). Up to 3/4 of the atoms
are monomers, but they are mostly immobile. The most
likely explanation of this is that surface defects act like
impurities, confounding the simple scaling behavior.

IV. FURTHER APPLICATIONS

In trying to understand unusual features in homoepi-
taxial growth on vicinal Cu(001), we concluded that a
co-deposited impurity offered the best explanation [41].
Over a dozen possible elements were considered in a
model involving two characteristic energies (lateral bond
and diffusion barrier). The elements fell into 4 classes,
only one of which corresponded to the data. In the course
of these KMC simulations, we found different island mor-
phologies in the 4 classes. We generated CZDs for the
various cases at coverages from 0.1 to 0.7 in steps of 0.1
[41]. The extracted values of β likewise tended to divide
into such classes, and for all but one class, β increased
with coverage, consistent with the experiments on Ge on
Si(001) [34]. The behavior of the exceptional class can be
attributed to its repulsive nearest-neighbor interaction.
Finally, we have applied GZD analysis to various so-

cial phenomena. Examining the distribution of metro
stations in central Paris, we find that the Voronoi dis-

tribution can be described by P
(α=8)
Γ , or better with the

FM with γ = 2 and δ = 1.5, indicative of an effective
repulsion, greater than that between islands, consistent
with the undesirability of having stations too close to
each other [14]. Two decades ago it was observed that
the secondary administrative divisions of France, the ar-

rondissements (districts), had properties of random cellu-
lar structures [42]. Each has a chief town (corresponding
to a county seat in the USA). We constructed the distri-
bution of the areas of these districts and also the areas of
the Voronoi cells based on the chief towns. These two dis-

tributions follow the same curve, which is well described

by P
(α≈4.4)
Γ , or the GWD with β ≈ 1.7, or the FM with

γ = 1 and δ = 0.5 [14, 43]. Account for the pair correla-
tion function, etc., of the chief towns requires inclusion of
a hard-core circle, which turns out to optimally be 40% of
the mean radius [14]. Furthermore, the GWD describes
the area distributions of most other secondary adminis-
trative units, e.g. counties in the southeast USA (β ≈ 2)
and Polish powiaty (β = 1.8± 0.3), as well as third-level
rural gminy (β = 2.0± 0.4) [43].

Lastly we note that even the markings of giraffes have
recently been considered from the perspective of random
deposition but finite-thickness walls between Voronoi
cells [44].

V. CLOSING SUMMARY COMMENTS

We have shown that the GWD provides an excellent
accounting of CZDs in the region where the data in ex-
periments is most reliable. While the fits with the ΓD
(or even a Gaussian, for large β) may also offer an ad-
equate accounting, only the GWD offers a fundamental
connection to the critical nucleus size: β ≈ i + 2. Fur-
ther improvements in the theory, notably the fragmen-
tation model, allow more detailed examination of tails
and of other statistical functions. The approach applies
to a much broader range of problems than just crystal
growth.
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[14] Diego Luis González, T. L. Einstein, Phys. Rev. E 84
(2011) 051135.
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