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Thin membranes exhibit complex responses to external forces or geometrical constraints. A
familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, resulting from
the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest
and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles.
At small nanoparticle density monolayer graphene adheres to the substrate, detached only in small
regions around the nanoparticles. With increasing nanoparticle density, we observe the formation
of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form
a percolating network through the sample. As the graphene membrane is made thicker, global
delamination from the substrate is observed. The observations can be well understood within
a continuum elastic model and have important implications for strain-engineering the electronic
properties of graphene.

I. INTRODUCTION

Thin films supported on substrates are of technological
importance and are commonplace in biological systems
such as cell walls and hard skins on soft plant and animal
tissues. As the thickness t of a slab of material is reduced,
it becomes more susceptible to out-of-plane deformation
(bending) compared to in-plane deformation (stretching),
resulting in morphological transitions. For example, thin
films deposited on soft compliant substrates display wrin-
kling patterns under compressive stress [1], and mem-
branes resting on fluids wrinkle by capillary forces [2].
This wrinkling is a ubiquitous phenomenon found in sys-
tems ranging from human skin to draping fabric [3–5] and
has also been exploited to fabricate flexible electronic de-
vices [6, 7].

Due to the inextensible but bendable nature of the
sp2 carbon bond, graphene’s effective mechanical thick-
ness teff = (12κ/E2D)1/2 is less than 1 Å [8], where κ ≈
1 eV [9] is the bending rigidity and E2D ≈ 2.12 × 103

eV/nm2 [10] is the tensile rigidity; this is likely the small-
est mechanical thickness ever achieved for any material.
Graphene has been anticipated to exhibit a rich vari-
ety of wrinkling and delamination behaviors [11–16]. Al-
though graphene adheres conformally to smooth nano-
scale features with high fidelity [17], graphene wrinkling
has been observed under compressive [18] or tensile [19]
stress caused by thermal cycling, and graphene on period-
ically corrugated elastic [20] and metal [21] substrates ex-
hibit transitions from adhesion to delamination. Morpho-
logical features such as wrinkles and conical singularities
may produce non-uniform strain in graphene [22], which
produce both scalar and vector potentials and mimic the
effect of a magnetic field on graphene’s electronic struc-

ture [23]. Recent experimental results suggest these effec-
tive “pseudomagnetic” fields can exceed several hundred
Tesla [24], and graphene devices based on “strain engi-
neering” have been proposed [25, 26]. Understanding the
mechanical response of graphene to non-uniform stress is
thus a critical first step toward strain engineering its elec-
tronic properties.

Here we report a systematic study of the wrinkling
of graphene membranes supported on SiO2 substrates
with randomly placed topographic perturbations, pro-
duced by SiO2 nanoparticles. The wrinkling is probed
as a function of nanoparticle density ρnp and membrane
thickness (using multilayer graphene). At low ρnp, mono-
layer graphene largely conforms to the substrate ex-
cept for small regions around the nanoparticles, where
graphene is detached. Wrinkles (or folds or ridges) form
as ρnp increases, connecting pairs of protrusions. The
observed maximum wrinkle length is predicted quantita-
tively within a simple elastic model. Above a critical den-
sity the wrinkles percolate to form a network spanning
the entire sample. As the thickness of graphene increases,
it stiffens and delaminates instead of wrinkling. Since the
wrinkling acts to remove inhomogeneous in-plane elas-
tic strains through out-of-plane buckling, our results can
be used to place limits on the possible in-plane strain
magnitudes that may be created in graphene to realize
strain-engineered electronic structures [22–26].

II. EXPERIMENTAL DETAILS

Silica-nanoparticle colloidal dispersions (Nissan Chem-
ical America Corp., Snowtex-O) were diluted to various
concentrations of 0.5−3.0 wt% by deionized water (Fisher
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FIG. 1. AFM images (1 × 1 µm2) of graphene on SiO2 nanoparticle/SiO2 substrates for a nanoparticle density of (a) 11, (b)
22, (c) 49, (d) 90, and (e) 170 µm−2, respectively.

Scientific, Water HPLC Grade). The diluted suspensions
were sonicated for 30 min in a water bath to break ag-
glomerations before spin-coating the nanoparticles onto
a substrate. Spin-coating was performed on Si substrates
with a 300 nm-thick oxide layer at 4000 rpm for 30 sec-
onds. The density of nanoparticles on substrates ranged
from 2 µm−2 to 258 µm−2, depending on the concentra-
tions of the nanoparticle dispersions. After spin-coating,
the samples were completely dried on a hotplate at ∼
150 ◦C for 2 hours. Graphene flakes were mechanically
exfoliated from Kish graphite onto SiO2 substrates cov-
ered with the silica nanoparticles (mean diameter 7.4 ±
2.2 nm; Ref. 27). Thicknesses of graphene films were
identified with an optical microscope, atomic force mi-
croscopy (AFM), and/or Raman spectroscopy. The sizes
of graphene sheets were typically more than 10 µm ×
10 µm, which were much larger than an estimated dis-
tance between nanoparticles of ∼ 700 nm at the small-
est nanoparticle density of 2 µm−2. Thus, we rule out
the possibility of finite size effects in the following analy-
ses. The samples were introduced into a vacuum chamber
with a base pressure of ∼ 10−7 Torr and annealed at ∼
500 ◦C for ∼ 5 hours in order to remove any adhesive tape
residue and to achieve equilibrium structures. After the
annealing procedure, we observed surfaces of graphene
flakes of various thicknesses in air using AFM in tapping
mode with silicon cantilevers with a nominal tip radius
of < 10 nm (Olympus, OMCL-AC160TS).

III. RESULTS AND DISCUSSION

A. Wrinkling of monolayer graphene

Figure 1 shows typical AFM images of monolayer
graphene supported on nanoparticles for various densities
ρnp. At ρnp = 11 µm−2 (Fig. 1a), graphene adheres con-
formally to the substrate, as noted previously [17, 28–30],
with predominantly isolated protrusions at the nanopar-
ticle locations. At ρnp = 22 µm−2 (Fig. 1b), some
nanoparticle-induced protrusions are linked by wrinkles
(we use the term “wrinkle” in accordance with the lit-
erature on graphene). Additional wrinkles with one free
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FIG. 2. Schematics of (a) a wrinkle formed between two
nanoparticles with diameters d and (b) the wrinkle profile
along the transverse direction as represented by shaded area
in (a).

termination are also observed. The wrinkles between pro-
trusions sag. If the protrusions have comparable heights
as we assume below for simplicity, the wrinkle sags in
the middle, while if the height difference is large, the
wrinkle sags asymmetrically toward the protrusion of
smaller height. With further increase in nanoparticle
density, the wrinkles connecting the protrusions prolif-
erate (Fig. 1c), and ultimately a wrinkle network spans
the sample (Figs. 1d and e). These observations indicate
the presence of a critical distance Xc between nanopar-
ticles, below which wrinkling is induced.

We now analyze the critical nanoparticle separation
Xc. The ridge running along the wrinkle between two
nanoparticles with diameters d separated by X follows a
catenary-like profile with a deflection ζ(x) as shown in
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Fig. 2a. Additionally, as represented in Fig. 2b, the pro-
file of the ridge along the transverse (y) direction can be
characterized with the dihedral angle θ and the curvature
radius C0(x)−1. The contour of the wrinkle results from
the balance between elasticity and adhesion. A wrinkle of
length X much larger than its average width Wavg costs
adhesion energy ∼ ΓXWavg, where Γ is the graphene-
SiO2 adhesion energy per area. The deflection of elastic
sheets between two protrusions creates a stretching strain
ε ∼ (ζ0/Wavg)2 along the crease of the ridge in a region of
width ∼ ζ0 [31], where ζ0 ≡ ζ(0) is the maximum deflec-
tion. Balancing the stretching energy ∼ E2DXζ0ε

2 with
the adhesion energy, and assuming that Wavg ∼ d, one

finds that ζ0 ∼ X4/5d1/5(Γ/E2D)1/5. Precluding wrin-
kles with deflections larger than d, one finds a maximum
wrinkle Xc ∼ d(E2D/Γ)1/4.

We next present a detailed elastic analysis of the wrin-
kle shape including bending energy, which provides an
expression for the full deflection profile ζ(x) and recov-
ers the scaling law for Xc. Assuming the opening angle
θ is independent of x as validated in Ref. 31, we find
the width of the deformed region w(x) = (π− θ)C0(x)−1

and the deflection ζ(x) = [1/ sin(θ/2)−1]C0(x)−1 within
the effective one-dimensional model. Furthermore, we as-
sume that the stretching strain in the y direction is irrel-
evant according to Ref. 31. Then, the stretching strain
is also given in one dimension (in the x direction) by
εx = [1 + (∂xζ)2]1/2− 1 ≈ (∂xζ)2/2. We find the stretch-
ing energy Es and the bending energy Eb:

Es =
E2D

2

∫
dxw(x)ε2x (1)

Eb =
κ

2

∫
dxw(x)C0(x)2. (2)

The adhesion energy cost is proportional to the area of
the substrate uncovered by the membrane:

EΓ = Γ

∫
dxW, (3)

where W is the base of the wrinkle profile as illustrated
in Fig. 2b. In addition, we take into account bending and
adhesion at the foot of the wrinkle, which cost bending
energy Eb′ and adhesion energy EΓ′ (see Appendix A for
details), but these turn out to be negligible.

At equilibrium, we expect δEtot/δζ = 0, where Etot =
Es +Eb +EΓ +Eb′ +EΓ′ , leading to a differential equa-
tion for deflection ζ. By solving the differential equation
under two boundary conditions ζ(±X/2) = 0, we find
the deflection on both sides of the center of the wrinkle
(see Appendix A):

ζ±(x) =

(
27κ

4E2D

)1/6[
1

sin(θ/2)
−1

]1/3(
X

2
∓x
)2/3

. (4)
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FIG. 3. (a) Profile of the wrinkle along the white dotted
line in the AFM image shown in the inset. The scale bar
in the inset is 50 nm. The solid red lines are theoretical
expectations. (b) The maximum deflection ζ0 as a function of
the wrinkle length. The error bar indicates the uncertainty of
ζ0 due to the height difference between the protrusions. We
choose wrinkles formed between protrusions where the height
differences are less than 10 %. The area shaded in red is the
theoretical prediction for scaling of ζ0 with X for Γ = 0.6−2.8
eV/nm2. The inset is a typical AFM image of the wrinkles
formed between the two protrusions. The scale bar is 20 nm.

In Fig. 3a, we show the line profile along a wrinkle formed
between two protrusions. The observed deflection is well
fitted by the theoretical prediction ζ±(x) ∼ (X/2∓x)2/3

with a prefactor of 0.32 nm1/3. Then, using d = 7.4 ±
2.2 nm, E2D = 2.12 × 103 eV/nm2 [10], κ = 1 eV [9],
and Γ = 0.6 − 2.8 eV/nm2 [17, 28, 32], we minimize
the total energy Etot numerically with respect to θ for
given X. Using Eq. 4, we find the maximum deflection
ζ0 ≡ ζ(0) as a function of X as illustrated in Fig. 3b. The
maximum deflection ζ0 monotonically increases with X,
in good agreement with the observations. The theoretical
model for a deflection is based on the assumption that a
wrinkle is formed between two sharp peaks. The finite
sizes of the protrusions may be a cause of decrease of
the deflection below the theoretically expected range in
Fig. 3b. Furthermore. we attribute the most likely source
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FIG. 4. The density of wrinkles ρw and the mean num-
ber of wrinkles per protrusion ρw/ρnp (inset) as functions
of nanoparticle density ρnp. Each arrow corresponds to the
AFM images shown in Figs. 1a-e. The solid red lines are fits
described in text.

of uncertainty to the observed dispersion in nanoparticle
sizes.

Since a wrinkle is geometrically suppressed if ζ(0) > d,
the maximum length of the wrinkle is determined by a
condition that ζ(0) = d. From Eq. 4, we find the maxi-
mum length Xc = 104− 65 nm along with θ = 35◦ − 14◦

for the adhesion energy Γ = 0.6 − 2.8 eV/nm2, respec-
tively, in rough agreement with the observed maximum
wrinkle length of ∼ 200 nm [27]. Neglecting the contribu-
tions of Eb′ and EΓ′ , Xc slightly decreases to 96−62 nm.
The discrepancy between the theoretical predictions and
the observations is likely due to the fluctuations in the
nanoparticle sizes d, which strongly influence the wrinkle
length Xc (Xc increases in proportion to d). In Appendix
B, we discuss the link between the detailed elastic model
and the scaling analysis.

B. Random wrinkling model

Figure 4 shows the density of wrinkles ρw as a function
of the nanoparticle density ρnp and the number of wrin-
kles per protrusion ρw/ρnp as a function of ρnp (inset).
We find ρw is almost zero below ρnp ≈ 25 µm−2 (arrow
b) and then begins to increase rather linearly with ρnp
above ρnp ≈ 50 µm−2 (arrow c). We now analyze the be-
havior of the wrinkle density ρw versus the nanoparticle
density ρnp within a simple model.

We first consider nanoparticles placed at random on
the substrate [27]. Then wrinkles are placed with a
probability Ωw between neighboring nanoparticles sep-
arated by less than a cutoff length Xc. The probability
Ωw is expected to encompass not only the true prob-
ability to make a wrinkle between nanoparticles, but
also all the information about wrinkle-orientation cor-
relations, selecting only a fraction of all possible wrin-

kles. Since nanoparticles with more than three con-
nected wrinkles are scarcely observed [27], we set three
as the maximum number of wrinkles. Employing the
probability density for a nanoparticle to have the i-th
nearest nanoparticle (i = 1, 2, and 3) at a distance r,

pi(r) = 2 (πρnp)
i+1

r2i+1exp
(
−πρnpr2

)
/i! [33], we find

the density of wrinkles;

ρw =
ρnpΩw

2

3∑
i=1

∫ Xc

0

dr pi(r)

=
ρnpΩw

2

[
−πX2

c ρnp

(
2 +

1

2
πX2

c ρnp

)
e−πρnpX

2
c

+ 3
(

1− e−πρnpX
2
c

)]
. (5)

The factor of 1/2 in ρw compensates for the double-
counting of each wrinkle (i.e. from the particles at each
end). In the small nanoparticle density limit ρnp � X−2

c ,
the density of wrinkles is ρw = (1/2)ΩwπX

2
c ρ

2
np, while in

the large density limit ρnp � X−2
c , each nanoparticle has

at least three neighboring nanoparticles within distance
Xc, leading to ρw = (3/2)Ωwρnp. The red solid lines
in Fig. 4 are fits to Eq. 5 with Ωw = 0.54 and Xc = 120
nm. The cutoff length is consistent with the observations.
Furthermore, the agreement with Xc predicted from the
above elastic analysis is good. The model indicates a sig-
nificant increase of the wrinkle density for the nanopar-
ticle density larger than (πXc)

−2, but also suggests that
ρw does not exhibit any singularity, i.e. wrinkling is a
crossover phenomenon rather than a sharp transition.

C. Percolation transition in the wrinkle network

With increasing ρnp, the connectivity of the wrinkle
network increases, and we find a percolation transition
at a threshold density ρc (of order X−2

c ) at which the
wrinkle network spans the system, as shown in the inset
of Fig. 5a. The expansion of the network via wrinkling
is a purely two-dimensional (2D) phenomenon. Thus, we
analyze this behavior using 2D percolation theory [34]: In
Fig. 5a, we plot the probability P that a given protrusion
belongs to the percolating cluster spanning a region of
size L×L, where L ranges from 1 to 3 µm. Also plotted
is the prediction from 2D percolation theory: P ∼ (ρnp−
ρc)

β for ρnp ≥ ρc with ρc = 87.5 µm−2 as determined
below and the “magnetization” exponent β = 5/36 [34],
which reproduces the observations well. In Fig. 5b, we
show the probability Π that a cluster connects opposite
sides of a region of size L× L (L = 0.5, 1, 2, and 3 µm).
For an infinite system, Π = 1 for ρnp ≥ ρc, while Π = 0
for ρnp < ρc [34]. Indeed Π displays a sharp transition
around ρnp = 87.5 µm−2 for L = 3 µm, indicating ρc is
in that vicinity.

Next, we probe the width ∆ of the transition region,
which is expected to scale as L−1/ν , where ν = 4/3 is
the correlation-length exponent [34]. We define ∆ as the
difference in density for Π = 0.9 and Π = 0.1 in Fig. 5b.
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FIG. 5. (a) P as a function of nanoparticle density for L = 1, 2, and 3 µm. The inset is an AFM image (1 × 1 µm2) of graphene
on the SiO2 nanoparticles with a density of 57 µm2, showing the percolating cluster highlighted by the dashed curve. (b) Π as
a function of the density of nanoparticles for L = 0.5, 1, 2, and 3 µm. Points for L = 0.5, 1 and 2 µm represent averages in a
bin of 10 µm−2. The inset is a plot of log ∆ as a function of logL; the red line indicates a best-fit power exponent of −1.0. (c)
The mean finite cluster size S as a function of the density of nanoparticles (points represent averages in a bin of 2 µm−2). The
red dashed line is the theoretical expectation (described in text).

The inset of Fig. 5b shows that the data are well-fitted
with ν = 1.0± 0.3, consistent with the theoretical expec-
tation.

Finally, we plot in Fig. 5c the mean size S of the clus-
ters (excluding the percolation cluster) as a function of
ρnp with the theoretical prediction S ∼ |ρnp − ρc|−γ ,
where γ = 43/18 is the “susceptibility” exponent [34].
Some Monte Carlo simulations predict a much larger
prefactor for ρnp ≤ ρc (e.g., a critical amplitude ratio
of 50 ± 26 for a continuum model [35]), in reasonable
agreement with the observed ratio of ∼ 30.

Thus, all measurements strongly support the existence
of a 2D percolation transition at a critical nanoparticle
density ρc ≈ 87.5 µm−2. Since the only length scale is
Xc, we obtain a universal number (i.e. independent of
model parameters such as Γ, E2D, or d) characterizing
the wrinkle percolation transition: ρcX

2
c ≈ 0.9. In con-

trast, simple continuum percolation of penetrable discs
of diameter Xc leads to ρcX

2
c ≈ 2.9 [35]. This difference

is a consequence of the unique structure of the wrinkle
network (e.g., not more than three wrinkles merging at
a given nanoparticle [27]).

D. Delamination of graphene multilayers

Finally, we investigate morphological transitions
which occur in multilayer graphene, using the same
nanoparticle-templated substrates. The capability of
multiple layers of graphene to mechanically screen an as-
perity recalls the use of multiple mattresses in an attempt
to hide the presence of a pea in the fairy tale “Princess
and the Pea”. Figures 6a-f show typical AFM images of
mono- and multi- layer graphene supported on nanopar-
ticles of density 160± 24 µm−2. The thicker graphene is
partially suspended over the nanoparticles, as schemat-

ically shown in the insets of Figs. 6d and 6f, with the
delaminated area increasing with layer number n.

The phase image in Fig. 7 demonstrates that the
suspended graphene is indeed supported by isolated
nanoparticles; the mechanical response of the graphene to
the AFM tip allows the detection of the hidden nanopar-
ticle “peas” under the flat graphene “mattress”. The
phase image records the varying phase angle of the (os-
cillating) AFM cantilever as it interacts with an inhomo-
geneous sample surface. The phase angle increases with
increasing local sample stiffness [36]. Figure 7 shows that
the phase image of 4-layer graphene discriminates be-
tween rigid supported regions (larger phase) and flexible
suspended regions (smaller phase). The high, flat regions
in the topograph show small, roughly circular regions
of large phase indicating the locations of the nanoparti-
cles (arrows) which support the surrounding suspended
graphene (small phase).

Figure 6g shows the areal fraction φ of graphene in
contact with the substrate and the characteristic length
l of the delaminated regions, as functions of n. As n
increases, a first transition occurs around n = 10, where l
increases rapidly (Fig. 6d; partial delamination); second,
φ decreases and becomes negligibly small above n ∼ 15
(Fig. 6f; complete delamination).

Surface-roughness–induced delamination of graphene
has recently been studied theoretically [11, 13, 15] and
experimentally [20, 21, 37]. Models assume the elastic
energy is dominated either by bending [11] or stretch-
ing [15]. Here we consider each regime, and assume that
the adhesion energy between SiO2 and n-layer graphene
Γn is independent of n for n > 1 and has the value 1.9
eV/nm2 [32]. In the bending-dominated model [11], un-
binding is controlled by a single dimensionless parameter
α = (2Γn/κn)1/4/[2π(ρnpd)1/2], where κn is the bending
rigidity of n-layer graphene for n > 1. Without inter-
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layer sliding [38], continuum plate elasticity [39] gives
κn = Et3n3/[12(1 − ν2

g )], where t = 0.335 nm is the in-
terlayer spacing, E ≈ 0.96 TPa is the Young’s modulus,
and νg ≈ 0.165 is Poisson’s ratio of monolayer graphene
[10]. The threshold for partial unbinding is predicted at

0.8 ≤ α ≤ 1.3, or 3 ≤ n ≤ 6, with complete unbinding
at 0.55 ≤ α ≤ 0.75, corresponding to 7 ≤ n ≤ 10 [11].
Thus, the bending-dominated model underestimates the
critical value of n for unbinding, indicating that it overes-
timates the bending elastic energy. The one-dimensional
character of the bending model limits its ability to make
quantitative predictions. Furthermore, given the small
radii of curvature in our experiment, the bending energy
might well be reduced by partial interlayer sliding. Per-
fect sliding would give κn = nκ, leading to an unbinding
threshold for n a hundredfold larger; hence, interlayer
sliding is extremely effective in relieving bending stress.

We then develop a stretching-dominated model, us-
ing Schwerin’s solution for a membrane pushed by a
point force [40]. The solution gives the diameter of the
detachment zone in n-layer graphene around a protru-
sion: 2R ≈ d(4nE2D/3Γn)1/4 (Refs. 15 and 41; see also
Appendix C), where nE2D is the tensile rigidity of n-
layer graphene. Then, we notice that the detached area
around each protrusion is πR2 and, furthermore, we as-
sume that the detached areas produced by the wrinkles
are negligible. Therefore, the typical length of the de-
laminated regions l is estimated to be 2R. The adhered
area fraction φ is equivalent to the probability to have
no nanoparticle in a domain of an area of πR2, leading
to φ = exp(−πR2ρnp) (see Appendix D for details). As
shown in Fig. 6g, these predictions reproduce well the
observed thickness dependence of φ and l below n ≈ 10,
indicating that the stretching-dominated model for iso-
lated protrusions accurately describes the small-n limit
where ρnp � l−2. However, l increases and φ decreases
much more rapidly than these predictions for n > 10,
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indicating collective effects become important. In order
to understand the collective delamination in the high-
nanoparticle-density regime ρnp > l−2, we may need to
solve full elastic membrane equations, i.e., the Föppl-von
Kármán equations [39] allowing for multiple nanoparti-
cles.

IV. PSEUDOMAGNETIC FIELDS IN
WRINKLED GRAPHENE

Finally, while a complete treatment is beyond the
scope of this paper, we briefly discuss the potential im-
pact of wrinkles on the electronic properties of graphene.
Strain in graphene produces a vector potential in the
electronic Hamiltonian, with strain gradients resulting in
effective magnetic fields [23]. Such pseudomagnetic fields
generated by strain gradients have been proposed as the
basis of engineering graphene’s electronic properties [24–
26].

We first evaluate the pseudomagnetic field generated
by strain in the absence of wrinkling, corresponding to
the case of small thickness or small nanoparticle density.
In this case the elastic behavior of graphene on nanoparti-
cles is predominantly determined by stretching, resulting
in significant strain. The radial strain εr and the circum-

ferential strain εϕ both scale as ∼
(
Γd2/E2D

)1/3
r−2/3

at 0 < r < R, although the radial strain is more than
5 times as large as the circumferential strain (see Ap-
pendix C and Ref. 42). The gauge fields induced by
the axisymmetric strain can be written as (Ar, Aϕ) ≈
(Φ0β/a)(εr − εϕ)(cos 3ϕ, sin 3ϕ), where Φ0 = 10−15 Wb
is the flux quantum, β ≈ 2 is the change in the hopping
amplitude between the neighboring atomic sites due to
the lattice deformation [43], a = 0.142 nm is the lattice
constant, and ϕ is the azimuthal angle with ϕ = 0 in the
zig-zag direction [25]. Then, the strain-induced pseudo-
magnetic field is given by Beff = ∂ϕAr/r−∂rAϕ−Aϕ/r.
Thus, we find Beff ∼ (Φ0β/a)

(
Γd2/E2D

)1/3
r−5/3 sin 3ϕ.

The strain in graphene on an isolated nanoparticle in-
duces three-fold symmetric pseudomagnetic field profiles
with maximum fields along the arm-chair directions. The
pseudomagnetic field pattern is similar to a recent exper-
iment [44], in which suspended graphene was deformed
by a sharp tip and pseudomagnetic fields were found to
confine electrons to quantum dots with charging energies
and level spacings both of order 10 meV. The divergence
of the strain at r = 0 is cut off by the finite radius of
the nanoparticles; thus, we may expect that maximum
pseudomagnetic field appears at a radius comparable to
the nanoparticle radius. We therefore estimate that the
maximum pseudomagnetic field Beff is of order 300 T for
d = 7.4 nm and r = d/2, significantly greater than in
Ref. 44, suggesting that the impact on electronic proper-
ties may be even more profound.

Next we evaluate strain and strain-induced pseudo-
magnetic fields in a wrinkle. Strain along a wrinkle is
given by εx ≈ (∂xζ)2. Then, using Eq. 4, we find

the strain distribution εx ∼ (κ/E2D)1/3(X/2 ∓ x)−2/3.
The pseudomagnetic field is estimated to be Beff ≈
Φ0βεx/(aW ) [15, 23], where W is the typical wrinkle
width. In the strong adhesion limit d(Γ/κ)1/2 � 1, the
wrinkle width W can be estimated to be ∼ (κ/2Γ)1/2 ≈ 1
nm (see Appendix B). Thus, we find in the middle of a
wrinkle the pseudomagnetic field has a broad minimum
on the order of 10 T for X = 100 nm. 10 T is a large
magnetic field compared to the disorder strength 1/µ ∼ 1
T in typical graphene samples (µ being the electron mo-
bility) and corresponds to an energy difference between
0th and 1st Landau levels of ∼ 1300 K. Hence, we expect
pseudomagnetic field effects due to wrinkles in graphene
to be significant.

The pseudomagnetic field near particles in the wrin-
kled case will generally be more complicated, depending
on the number of wrinkles terminating on the particle
and their direction with respect to each other and the
lattice. However, qualitatively we expect that since wrin-
kling reduces the in-plane strain around the nanoparti-
cles, the pseudomagnetic field is also reduced. Recent
molecular dynamics simulation results [45] relevant to
experiments by Tomori et al. [46] and our experiments
of graphene on nanoparticles have indeed revealed that
when nano-scale pillars supporting graphene are located
far away from each other, graphene is detached only
around the pillars and three-fold symmetric pseudomag-
netic fields are induced around each pillar, while with
decreasing distance between the pillars, graphene delam-
inates in regions between the pillars, resulting in com-
plicated pseudomagnetic field profiles. Our observations
of wrinkling and delamination combined with theoreti-
cal analysis based on a continuum elastic model can be
used to place limits on strain distributions and, thus,
on pseudomagnetic field maxima realizable in monolayer
graphene through adhesion to patterned surfaces.

V. CONCLUSIONS

In conclusion, combining experiments with monolayer
and multilayer graphene, we have obtained a global
picture of the structural evolution of graphene mem-
branes on surfaces of varying roughness. With increas-
ing nanoparticle density (or graphene thickness), this
evolution proceeds in five stages: conformal adhesion,
wrinkling, wrinkle percolation, partial delamination, and
complete delamination. The results can be used to place
upper limits on the magnitude of pseudomagnetic fields
generated in graphene by adhesion to patterned surfaces.
Finally, the wrinkling and delamination are not specific
to graphene; they should be a general feature of soft
membranes adhered to rough surfaces, with implications
for systems ranging from cell walls to fabrics.
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Appendix A: Detailed geometric model for the
wrinkle shape

The stretching energy Es, the bending energy Eb, and
the adhesion energy EΓ given by Eqs. 1-3 are reduced to

Es =
E2D

2

∫
dxw(x)ε2x

=
E2D

8
(π − θ)

[
1

sin(θ/2)
− 1

]−1 ∫
dx ζ(∂xζ)4

(A1)

Eb =
κ

2

∫
dxw(x)C0(x)2

=
κ

2
(π − θ)

[
1

sin(θ/2)
− 1

] ∫
dx ζ−1 (A2)

EΓ = Γ

∫
dxW = 2ΓXd tan(θ/2). (A3)

The combination between the bending and the adhe-
sion at the foot of the wrinkle forces an equilibrium cur-
vature at the contact line, Ceq = (2Γ/κ)1/2 [47]. Then,
assuming a simple geometry where a constant curvature
region matches the constant slope region as shown in
Fig. 2b, we find the bending energy Eb′ and the adhe-
sion energy EΓ′ of the curved zone:

Eb′ = 2
κ

2

∫
dx

∫
dyC2

eq = X

(
Γκ

2

)1/2

(π − θ) (A4)

EΓ′ = 2ΓXC−1
eq tanβ = X(2Γκ)1/2 tan

(
π − θ

4

)
,

(A5)
where 2β is the angle of the curved region as shown in
Fig. 2b.

Minimization of the total energy Etot = Es + Eb +
EΓ + Eb′ + EΓ′ with respect to ζ leads to the following
differential equation:

ζ2
[
3(∂xζ)4+12ζ(∂xζ)2∂xxζ

]
+

4κ

E2D

[
1

sin(θ/2)
−1

]2

=0

(A6)

with the two boundary conditions ζ(±X/2) = 0. We an-
ticipate ζ to be symmetric with respect to x, so that ∂xζ
should vanish at x = 0. However, Eq. A6 indicates that
if ∂xζ vanishes at x = 0, either ζ or ∂zzζ should diverge.
Since the solution with diverging ζ is physically incon-
ceivable, we conclude that ∂zzζ should diverge. This in-
dicates a discontinuity of the slope at x = 0. Physically
this singularity would be regularized at small scales ei-
ther by bending along the x direction or by stretching
along the y direction. These contributions are expected
to be small. As a result, we obtain a simple solution on
both sides of the center of the wrinkle as described by
Eq. 4.

Appendix B: Scaling analysis for Xc

Here we show that Xc scales as Xc ∼ d(E2D/Γ)1/4,
analogous to scaling for the diameter detachment zones
surrounding a local protuberance [15]. We design a scal-
ing analysis, neglecting EΓ′ and Eb′ . The total energy is
of the form

Etot = κ5/6E
1/6
2D X

1/3[f1(θ) + Γdκ−5/6E
−1/6
2D X2/3f2(θ)],

(B1)
where

f1(θ) =
4

31/2
(π − θ)

[
1

sin(θ/2)
− 1

]2/3

(B2)

and

f2(θ) = 2 tan
θ

2
. (B3)

The minimization of Eq. B1 with respect to θ leads to

∂θf1(θ) + Γdκ−5/6E
−1/6
2D X2/3∂θf2(θ) = 0 (B4)

and as a consequence

θ = f3(Γdκ−5/6E
−1/6
2D X2/3). (B5)

The critical spacing Xc is given by a condition that
ζ(0) = d. Hence, using Eq. 4, we find

Xc = d3/2 23/2

33/4

(
E2D

κ

)1/4 [
1

sin(θ(Xc)/2)
− 1

]−1/2

= d3/2

(
E2D

κ

)1/4

f4(θ)

= d3/2

(
E2D

κ

)1/4

f4(f3(Γdκ−5/6E
−1/6
2D X2/3)),

(B6)

where

f4(θ) =

[
1

sin(θ/2)
− 1

]−1/2

. (B7)
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One can check by substitution that

Xc = d3/2

(
E2D

κ

)1/4

f5(Γd2/κ) (B8)

with f6(u) = f5(uf6(u)2/3) and f5(u) = f4(f3(u)). We
now define the elastic thickness hel = (κ/E2D)1/2 and the
equilibrium contact curvature Ceq = (2Γ/κ)1/2. Letting
f7(u) = f6(u2/2), we rewrite Xc as

Xc =
d3/2

h
1/2
el

f7(Ceqd), (B9)

which is the general scaling form of the solution.
We now consider two asymptotic limits; the strong

adhesion limit Ceqd � 1 and the weak adhesion limit
Ceqd� 1. In the strong adhesion limit, the opening an-
gle of the wrinkle θ goes to zero. Then, one has f1(θ) ∼
θ−2/3 and f2(θ) ∼ θ. Hence f3(u) ∼ u−3/5. Since f4(θ) ∼
θ1/2, one has f5(u) = f4(f3(u)) ∼ [f3(u)]1/2 ∼ u−3/10,
and finally f6(u) ∼ u−1/4. Therefore one has:

Xc ∼
d3/2

h
1/2
el

(Ceqd)−1/2 ∼ d(E2D/Γ)1/4 (B10)

and

θ ∼ (Ceqd)−1, (B11)

which also confirms that the small-θ limit corresponds to
the large-Ceqd limit (strong adhesion limit).

Alternatively, setting Θ = π − θ, we redo the above
scaling analysis in the weak adhesion limit Ceqd � 1
with the argument of f1, f2, and f4 being Θ instead of θ.
Then f1(Θ) ∼ Θ7/3, and f2(Θ) ∼ Θ−1, so that f3(u) ∼
u3/10. Also f4(Θ) ∼ Θ−1, leading to f5(u) ∼ u−3/10 and
f6(u) ∼ u−1/4. Consequently, we obtain once again

Xc ∼
d3/2

h
1/2
el

(Ceqd)−1/2 ∼ d(E2D/Γ)1/4 (B12)

and

Θ ∼ (Ceqd)1/2. (B13)

This solution is consistent with the weak adhesion limit
because Θ� 1 implies Ceqd� 1.

Appendix C: Stretching of graphene on a
nanoparticle

The typical extent of the detachment zone of graphene
caused by the presence of a nanoparticle is discussed here.
In the simplest model, we use the power-law solution of
Schwerin [40], in the regime dominated by stretching.
In this regime, the bending rigidity only contributes as

R

d

F

η

z

r

FIG. 8. Schematic of graphene supported on a single nanopar-
ticle. The detachment length is R.

boundary layer effects at the attachment lines [42]. Con-
sequently, the Schwerin solution does not match tangen-
tially to the substrate and the nanoparticle (the match-
ing being forced at a smaller scale controlled by bend-
ing rigidity). Assuming that the nanoparticle diame-
ter d is much smaller than the radius R of the detach-
ment zone (see Fig. 8), we obtain the angle of rota-
tion η(r) = [8F/(9πE2Dr)]

1/3 and the vertical distance
from the substrate Z = [3R2F/(πE2D)]1/3 (see Fig. 8
and Ref. 42), where F is the force on the apex. How-
ever, the above solution does not match the boundary
conditions, and a better approximate numerical solution
is: Z = g(νg)(R

2F/E2D)1/3, where g(νg) = 1.0491 −
0.1462νg−0.15827ν2

g [42]. For graphene, νg = 0.165 [10],

and g(νg) ≈ 1.029 is very close to (3/π)1/3 ≈ 0.984 so
that we can safely use the direct Schwerin solution.

The elastic stretching energy can be calculated from
a gedanken experiment, where the height Z is increased
with constant R:

E(Z) =

∫ Z

0

dzF (z)

=
πE2D

3R2

∫ Z

0

dzz3

=
πE2DZ

4

12R2
. (C1)

Assuming that the apex height is equal to the diameter d
of the nanoparticle, one has Z = d, and the total energy
reads

E(d) =
πE2Dd

4

12R2
+ ΓπR2. (C2)

Minimizing the total energy with respect to R, one finds
2R/d = (4E2D/3Γ)1/4 as suggested in Ref. 15.

Assuming that a pre-existing strain is negligibly small,
one can find radial and circumference components of
strain present in an isolated graphene protrusion at 0 <
r < R:

εr(r) =
1

E2D

(
G

r
cos η +H sin η − νg

dG

dr

)
=

3− νg
4

(
4Γ

9E2D

)1/3(
d

r

)2/3

(C3)
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εϕ(r) =
1

E2D

(
dG

dr
− νg

G

r
cos η − νgH sin η

)
=

1− 3νg
4

(
4Γ

9E2D

)1/3(
d

r

)2/3

, (C4)

where G = F/(2πη) = 9E2Dη
2r/16 is the stress variable

in the radial direction, H = F/(2πr) = 9E2Dη
3/16 is the

vertical sheet stress, and we assume η ≈ 0 at 0 < r < R
[42].

Appendix D: Area probability distribution

The probability Q(A) that a nanoparticle has no
nanoparticles in a domain of area A obeys Q(A+ dA) =

Q(A)−dAρnpQ(A), leading to dQ(A)/dA = −ρnpQ(A).
Using the normalization constraint

lim
A→0

Q(A) = 1, (D1)

we find Q(A) = exp(−ρnpA).
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