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Thin membranes exhibit complex responses to external forces or geometrical constraints. A

familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results

from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the

thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nano-

particles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only

in small regions around the nanoparticles. With increasing nanoparticle density, we observe the

formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles

form a percolating network through the sample. As the graphene membrane is made thicker, global

delamination from the substrate is observed. The observations can be well understood within a

continuum-elastic model and have important implications for strain-engineering the electronic

properties of graphene.
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I. INTRODUCTION

Thin films supported on substrates are of technological
importance and are commonplace in biological systems
such as cell walls and hard skins on soft plant and animal
tissues. As the thickness t of a slab of material is reduced, it
becomes more susceptible to out-of-plane deformation
(bending) compared to in-plane deformation (stretching),
resulting in morphological transitions. For example, thin
films deposited on soft compliant substrates display wrin-
kling patterns under compressive stress [1], and mem-
branes resting on fluids wrinkle by capillary forces [2].
This wrinkling is a ubiquitous phenomenon found in sys-
tems ranging from human skin to draping fabric [3–5] and
has also been exploited to fabricate flexible electronic
devices [6,7].

Because of the inextensible but bendable nature of the
sp2 carbon bond, graphene’s effective mechanical thick-

ness teff ¼ ð12�=E2DÞ1=2 is less than 1 Å [8], where � �
1 eV [9] is the bending rigidity and E2D � 2:12�
103 eV=nm2 [10] is the tensile rigidity; this is likely the
smallest mechanical thickness ever achieved for any ma-
terial. Graphene has been anticipated to exhibit a rich
variety of wrinkling and delamination behaviors [11–16].

Although graphene adheres conformally to smooth
nanoscale features with high fidelity [17], graphene wrin-
kling has been observed under compressive [18] or tensile

[19] stress caused by thermal cycling, and graphene on

periodically corrugated elastic [20] and metal [21] sub-

strates exhibits transitions from adhesion to delamination.

Morphological features such as wrinkles and conical sin-

gularities may produce a nonuniform strain in graphene

[22], which produces both scalar and vector potentials and

mimics the effect of a magnetic field on graphene’s elec-

tronic structure [23]. Recent experimental results suggest

these effective ‘‘pseudomagnetic’’ fields can exceed

several hundred tesla [24], and graphene devices based

on ‘‘strain-engineering’’ have been proposed [25,26].

Understanding the mechanical response of graphene to

nonuniform stress is thus a critical first step toward

strain-engineering its electronic properties.
Here we report a systematic study of the wrinkling of

graphene membranes supported on SiO2 substrates with
randomly placed topographic perturbations produced by
SiO2 nanoparticles. The wrinkling is probed as a function
of nanoparticle density �np and membrane thickness (using

multilayer graphene). At low �np, monolayer graphene

largely conforms to the substrate except for small regions
around the nanoparticles, where graphene is detached.
Wrinkles (or folds or ridges) form as �np increases,

connecting pairs of protrusions. The observed maximum
wrinkle length is predicted quantitatively within a
simple elastic model. Above a critical density, the wrinkles
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percolate to form a network spanning the entire sample. As
the thickness of graphene increases, it stiffens and delami-
nates instead of wrinkling. Since the wrinkling acts to
remove inhomogeneous in-plane elastic strains through
out-of-plane buckling, our results can be used to place
limits on the possible in-plane strain magnitudes that
may be created in graphene to realize strain-engineered
electronic structures [22–26].

II. EXPERIMENTAL DETAILS

Silica-nanoparticle colloidal dispersions (Nissan
Chemical America Corp., Snowtex-O) are diluted to
various concentrations of 0.5–3.0 wt% by deionized water
(Fisher Scientific, Water HPLC Grade). The diluted sus-
pensions are sonicated for 30 min in a water bath to
break agglomerations before spin coating the nanopar-
ticles onto a substrate. Spin coating is performed on Si
substrates with a 300-nm-thick oxide layer at 4000 rpm
for 30 sec. The density of nanoparticles on substrates
ranges from 2 to 258 �m�2, depending on the concen-
trations of the nanoparticle dispersions. After spin coat-
ing, the samples are completely dried on a hotplate at
150 �C for 2 h. Graphene flakes are mechanically
exfoliated from Kish graphite onto SiO2 substrates cov-
ered with the silica nanoparticles (mean diameter 7:4�
2:2 nm, Ref. [27]). Thicknesses of graphene films are
identified with an optical microscope, atomic force mi-
croscopy (AFM), and/or Raman spectroscopy. The sizes
of graphene sheets are typically more than 10 �m�
10 �m, which is much larger than an estimated distance
between nanoparticles of approximately 700 nm at
the smallest nanoparticle density of 2 �m�2. Thus, we
rule out the possibility of finite size effects in the follow-
ing analyses. The samples are introduced into a vacuum
chamber with a base pressure of approximately 10�7 Torr
and annealed at 500 �C for more than 5 h in order to
remove any adhesive tape residue and to achieve equi-
librium structures. After the annealing procedure, we
observe surfaces of graphene flakes of various thick-
nesses in air using AFM in the tapping mode with silicon
cantilevers with a nominal tip radius of less than 10 nm
(Olympus, OMCL-AC160TS).

III. RESULTS AND DISCUSSION

A. Wrinkling of monolayer graphene

Figure 1 shows typical AFM images of monolayer gra-
phene supported on nanoparticles for various densities �np.

At �np ¼ 11 �m�2 [Fig. 1(a)], graphene adheres confor-

mally to the substrate, as noted previously [17,28–30], with
predominantly isolated protrusions at the nanoparticle lo-
cations. At �np ¼ 22 �m�2 [Fig. 1(b)], some nanoparticle-

induced protrusions are linked by wrinkles (we use the term
‘‘wrinkle’’ in accordance with the literature on graphene).
Additional wrinkles with one free termination are also
observed. The wrinkles between protrusions sag. If the
protrusions have comparable heights as we assume below
for simplicity, the wrinkle sags in the middle, while if the
height difference is large, the wrinkle sags asymmetrically
toward the protrusion of smaller height. With a further
increase in nanoparticle density, the wrinkles connecting
the protrusions proliferate [Fig. 1(c)], and ultimately a
wrinkle network spans the sample [Figs. 1(d) and 1(e)].
These observations indicate the presence of a critical dis-
tance Xc between nanoparticles, below which wrinkling is
induced.
We now analyze the critical nanoparticle separation Xc.

The ridge running along the wrinkle between two nano-
particles with diameters d separated by X follows a cate-
narylike profile with a deflection �ðxÞ as shown in Fig. 2(a).
Additionally, as represented in Fig. 2(b), the profile of the
ridge along the transverse (y) direction can be characterized
with the dihedral angle � and the curvature radius C0ðxÞ�1.
The contour of thewrinkle results from the balance between
elasticity and adhesion. Awrinkle of length X, much larger
than its average width Wav, costs adhesion energyE� �
�XWav, where � is the graphene-SiO2 adhesion energy
per area. The deflection of elastic sheets between two
protrusions creates a stretching strain �� ð�0=WavÞ2 along
the crease of the ridge in a region of width approximately �0
[31], where �0 � �ð0Þ is the maximum deflection.
Balancing the stretching energy Es � E2DX�0�

2 with the
adhesion energy, and assuming thatWav � d, one finds that

�0 � X4=5d1=5ð�=E2DÞ1=5. Precluding wrinkles with deflec-
tions larger than d, one finds a maximum wrinkle length

Xc � dðE2D=�Þ1=4.

(a) (b) (c) (d)
(nm)

10.0

5.0

0.0

(e)

FIG. 1. AFM images (1� 1 �m2) of graphene on SiO2 nanoparticle/SiO2 substrates for a nanoparticle density of (a) 11, (b) 22,
(c) 49, (d) 90, and (e) 170 �m�2, respectively.
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We next present a detailed elastic analysis of the wrinkle
shape including bending energy, which provides an ex-
pression for the full deflection profile �ðxÞ and recovers
the scaling law for Xc. Assuming that the opening angle �
is independent of x as validated in Ref. [31], we find the
width of the deformed region wðxÞ ¼ ð�� �ÞC0ðxÞ�1 and
the deflection �ðxÞ ¼ ½1= sinð�=2Þ � 1�C0ðxÞ�1 within the
effective one-dimensional model. Furthermore, we assume
that the stretching strain in the y direction is irrelevant
according to Ref. [31]. Then, the stretching strain is

also given in one dimension (in the x direction) by �x ¼
½1þ ð@x�Þ2�1=2 � 1 � ð@x�Þ2=2. We find the stretching
energy Es and the bending energy Eb:

Es ¼ E2D

2

Z
dxwðxÞ�2x; (1)

Eb ¼ �

2

Z
dxwðxÞC0ðxÞ2: (2)

The adhesion energy cost is proportional to the area of the
substrate uncovered by the membrane:

E� ¼ �
Z

dxW; (3)

where W is the base of the wrinkle profile as illustrated in
Fig. 2(b). In addition, we take into account bending and
adhesion at the foot of the wrinkle, which cost bending
energy Eb0 and adhesion energy E�0 (see Appendix A for
details), but these turn out to be negligible.

At equilibrium, we expect �Etot=�� ¼ 0, where Etot ¼
Es þ Eb þ E� þ Eb0 þ E�0 , leading to a differential equa-
tion for deflection � . By solving the differential equation
under two boundary conditions �ð�X=2Þ ¼ 0, we find the
deflection on both sides of the center of the wrinkle (see
Appendix A):

��ðxÞ ¼
�
27�

4E2D

�
1=6

�
1

sinð�=2Þ � 1

�
1=3

�
X

2
	 x

�
2=3

: (4)

In Fig. 3(a), we show the line profile along a wrinkle
formed between two protrusions. The observed deflection

is well fitted by the theoretical prediction ��ðxÞ � ðX=2	
xÞ2=3 with a prefactor of 0:32 nm1=3. Then, using d ¼
7:4� 2:2 nm, E2D ¼ 2:12� 103 eV=nm2 [10], � ¼
1 eV [9], and � ¼ 0:6–2:8 eV=nm2 [17,28,32], we mini-
mize the total energy Etot numerically with respect to � for
a given X. Using Eq. (4), we find the maximum deflection
�0 � �ð0Þ as a function of X as illustrated in Fig. 3(b). The
maximum deflection �0 monotonically increases with X,
which is in good agreement with the observations. The
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FIG. 3. (a) Profile of the wrinkle along the white dotted line in
the AFM image shown in the inset. The scale bar in the inset is
50 nm. The solid red lines are theoretical expectations. (b) The
maximum deflection �0 as a function of the wrinkle length. The
error bar indicates the uncertainty of �0 due to the height
difference between the protrusions. We choose wrinkles formed
between protrusions where the height differences are less than
10%. The area shaded in red is the theoretical prediction for the
scaling of �0 with X for � ¼ 0:6–2:8 eV=nm2. The inset is a
typical AFM image of the wrinkles formed between the two
protrusions. The scale bar is 20 nm.
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FIG. 2. Schematics of (a) a wrinkle formed between two nano-
particles with diameters d and (b) the wrinkle profile along the
transverse direction as represented by shaded area in (a).
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theoretical model for a deflection is based on the assump-
tion that a wrinkle is formed between two sharp peaks. The
finite sizes of the protrusions may be a cause of the
decrease of the deflection below the theoretically expected
range in Fig. 3(b). Furthermore, we attribute the most
likely source of uncertainty to the observed dispersion in
nanoparticle sizes.

Since a wrinkle is geometrically suppressed if �ð0Þ> d,
the maximum length of the wrinkle is determined by a
condition that �ð0Þ ¼ d. From Eq. (4), we find the maxi-
mum length Xc ¼ 104–65 nm along with � ¼ 35�–14� for
the adhesion energy � ¼ 0:6–2:8 eV=nm2, respectively, in
rough agreement with the observed maximum wrinkle
length of approximately 200 nm [27]. Neglecting the
contributions of Eb0 and E�0 , Xc slightly decreases to
96–62 nm. The discrepancy between the theoretical pre-
dictions and the observations is likely due to the fluctua-
tions in the nanoparticle sizes d, which strongly influence
the wrinkle length Xc (Xc increases in proportion to d). In
Appendix B, we discuss the link between the detailed
elastic model and the scaling analysis.

B. Random wrinkling model

Figure 4 shows the density of wrinkles �w as a function
of the nanoparticle density �np and the number of wrinkles

per protrusion �w=�np as a function of �np (inset). We find

that �w is almost zero below �np � 25 �m�2 (arrow b)

and then begins to increase rather linearly with �np above

�np � 50 �m�2 (arrow c). We now analyze the behavior

of the wrinkle density �w versus the nanoparticle density
�np within a simple model.

We first consider nanoparticles placed at random on the
substrate [27]. Then wrinkles are placed with a probability

�w between neighboring nanoparticles separated by less
than a cutoff length Xc. The probability �w is expected to
encompass not only the true probability to make a wrinkle
between nanoparticles, but also all the information about
wrinkle-orientation correlations, selecting only a fraction
of all possible wrinkles. Since nanoparticles with more
than three connected wrinkles are scarcely observed [27],
we set three as the maximum number of wrinkles.
Employing the probability density for a nanoparticle to
have the ith nearest nanoparticle (i ¼ 1, 2, and 3) at a
distance r, piðrÞ ¼ 2ð��npÞiþ1r2iþ1 expð���npr

2Þ=i!
[33], we find the density of wrinkles:

�w ¼ �np�w

2

X3
i¼1

Z Xc

0
drpiðrÞ

¼ �np�w

2

�
��X2

c�np

�
2þ 1

2
�X2

c�np

�
e���npX

2
c

þ 3ð1� e���npX
2
c Þ
�
: (5)

The factor of 1=2 in �w compensates for the double count-
ing of each wrinkle (i.e., from the particles at each end). In
the small nanoparticle density limit �np 
 X�2

c , the den-

sity of wrinkles is �w ¼ ð1=2Þ�w�X
2
c�

2
np, while in the

large density limit �np � X�2
c , each nanoparticle has at

least three neighboring nanoparticles within distance Xc,
leading to �w ¼ ð3=2Þ�w�np. The red solid lines in Fig. 4

are fits to Eq. (5) with �w ¼ 0:54 and Xc ¼ 120 nm. The
cutoff length is consistent with the observations.
Furthermore, the agreement with Xc predicted from the
above elastic analysis is good. The model indicates a
significant increase of the wrinkle density for the nano-
particle density larger than ð�XcÞ�2, but also suggests that
�w does not exhibit any singularity; i.e., wrinkling is a
crossover phenomenon rather than a sharp transition.

C. Percolation transition in the wrinkle network

With increasing �np, the connectivity of the wrinkle

network increases, and we find a percolation transition at
a threshold density �c (of order X

�2
c ) at which the wrinkle

network spans the system, as shown in the inset of
Fig. 5(a). The expansion of the network via wrinkling is
a purely two-dimensional (2D) phenomenon. Thus, we
analyze this behavior using 2D percolation theory [34]:
In Fig. 5(a), we plot the probability P that a given protru-
sion belongs to the percolating cluster spanning a region of
size L� L, where L ranges from 1 to 3 �m. Also plotted is
the prediction from 2D percolation theory: P�ð�np��cÞ	
for �np � �c with �c ¼ 87:5 �m�2 as determined below

and the ‘‘magnetization’’ exponent 	 ¼ 5=36 [34], which
reproduces the observations well. In Fig. 5(b), we show the
probability � that a cluster connects opposite sides of a
region of size L� L (L ¼ 0:5, 1, 2, and 3 �m). For an
infinite system, � ¼ 1 for �np � �c, while � ¼ 0 for
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�np < �c [34]. Indeed, � displays a sharp transition

around �c ¼ 87:5 �m�2 for L ¼ 3 �m, indicating �c is
in that vicinity.

Next, we probe the width � of the transition region,

which is expected to scale as L�1=
, where 
 ¼ 4=3 is the
correlation-length exponent [34]. We define � as the dif-
ference in density for � ¼ 0:9 and � ¼ 0:1 in Fig. 5(b).
The inset of Fig. 5(b) shows that the data are well fitted
with 
 ¼ 1:0� 0:3, which is consistent with the theoreti-
cal expectation.

Finally, we plot in Fig. 5(c) the mean size S of the
clusters (excluding the percolation cluster) as a function
of �np with the theoretical prediction S� j�np � �cj��,

where � ¼ 43=18 is the ‘‘susceptibility’’ exponent [34].
Some Monte Carlo simulations predict a much
larger prefactor for �np 
 �c (e.g., a critical amplitude

ratio of 50� 26 for a continuum model [35]), which
is in reasonable agreement with the observed ratio of
approximately 30.

Thus, all measurements strongly support the existence of
a 2D percolation transition at a critical nanoparticle density
�c � 87:5 �m�2. Since the only length scale is Xc, we
obtain a universal number (i.e., independent of model
parameters such as �, E2D, or d) characterizing the
wrinkle percolation transition: �cX

2
c � 0:9. In contrast,

the simple continuum percolation of penetrable discs of
diameter Xc leads to �cX

2
c � 2:9 [35]. This difference is a

consequence of the unique structure of the wrinkle network
(e.g., no more than three wrinkles merging at a given
nanoparticle [27]).

D. Delamination of graphene multilayers

Finally, we investigate morphological transitions
which occur in multilayer graphene, using the same
nanoparticle-templated substrates. The capability of

multiple layers of graphene to mechanically screen an

asperity recalls the use of multiple mattresses in an attempt

to hide the presence of a pea in the fairy tale ‘‘The Princess

and the Pea.’’ Figures 6(a)–6(f) show typical AFM images

of mono- and multi- layer graphene supported on nano-

particles of density 160� 24 �m�2. The thicker graphene

is partially suspended over the nanoparticles, as schemati-

cally shown in the insets of Figs. 6(d) and 6(f), with the

delaminated area increasing with layer number n.
The phase image in Fig. 7 demonstrates that the sus-

pended graphene is indeed supported by isolated nano-
particles; the mechanical response of the graphene to the
AFM tip allows the detection of the hidden nanoparticle
‘‘peas’’ under the flat graphene ‘‘mattress.’’ The phase
image records the varying phase angle of the (oscillating)
AFM cantilever as it interacts with an inhomogeneous
sample surface. The phase angle increases with increasing
local sample stiffness [36]. Figure 7 shows that the phase
image of 4-layer graphene discriminates between rigid
supported regions (larger phase) and flexible suspended
regions (smaller phase). The high, flat regions in the topo-
graph show small, roughly circular regions of a large phase
indicating the locations of the nanoparticles (arrows) that
support the surrounding suspended graphene (small
phase).
Figure 6(g) shows the areal fraction � of graphene in

contact with the substrate and the characteristic length l of
the delaminated regions as functions of n. As n increases, a
first transition occurs around n ¼ 10, where l increases
rapidly [Fig. 6(d), partial delamination]; second, � de-
creases and becomes negligibly small above n� 15
[Fig. 6(f), complete delamination].
Surface-roughness-induced delamination of graphene

has recently been studied theoretically [11,13,15] and ex-
perimentally [20,21,37]. Models assume the elastic energy
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is dominated either by bending [11] or stretching [15].
Here we consider each regime, and assume that the
adhesion energy between SiO2 and n-layer graphene �n

is independent of n for n > 1 and has the value
1:9 eV=nm2 [32]. In the bending-dominated model [11],
unbinding is controlled by a single dimensionless parame-

ter 
 ¼ ð2�n=�nÞ1=4=½2�ð�npdÞ1=2�, where �n is the bend-

ing rigidity of n-layer graphene for n > 1. Without
interlayer sliding [38], continuum plate elasticity [39]
gives �n ¼ Et3n3=½12ð1� 
2

gÞ�, where t ¼ 0:335 nm is

the interlayer spacing, E � 0:96TPa is the Young’s modu-
lus, and 
g � 0:165 is Poisson’s ratio of monolayer gra-

phene [10]. The threshold for partial unbinding is predicted
at 0:8 
 
 
 1:3, or 3 
 n 
 6, with complete unbinding
at 0:55 
 
 
 0:75, corresponding to 7 
 n 
 10 [11].
Thus, the bending-dominated model underestimates the
critical value of n for unbinding, indicating that it over-
estimates the bending elastic energy. The one-dimensional
character of the bending model limits its ability to make
quantitative predictions. Furthermore, given the small radii
of curvature in our experiment, the bending energy might
well be reduced by partial interlayer sliding. Perfect sliding
would give �n ¼ n�, leading to an unbinding threshold for
n a hundredfold larger; hence, interlayer sliding is ex-
tremely effective in relieving bending stress.
We then develop a stretching-dominated model, using

Schwerin’s solution for a membrane pushed by a point
force [40]. The solution gives the diameter of the detach-

ment zone in n-layer graphene around a protrusion: 2R �
dð4nE2D=3�nÞ1=4 (Refs. [15,41]; see also Appendix C),
where nE2D is the tensile rigidity of n-layer graphene.
Then, we notice that the detached area around each
protrusion is �R2 and, furthermore, we assume that the
detached areas produced by the wrinkles are negligible.
Therefore, the typical length of the delaminated regions
l is estimated to be 2R. The adhered area fraction � is
equivalent to the probability of having no nanoparticle in a
domain of an area of �R2, leading to � ¼ expð��R2�npÞ
(see Appendix D for details). As shown in Fig. 6(g), these
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along the dashed red and blue lines shown in (a) and (b),
respectively. The arrows correspond to those in (b), showing
the locations of nanoparticles beneath graphene.
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predictions reproduce well the observed thickness depen-
dence of � and l below n � 10, indicating that the
stretching-dominated model for isolated protrusions accu-
rately describes the small-n limit where �np 
 l�2.

However, l increases and � decreases much more rapidly
than these predictions for n > 10, indicating that collective
effects have become important. In order to understand the
collective delamination in the high-nanoparticle-density
regime �np > l�2, we may need to solve full elastic mem-

brane equations, i.e., the Föppl–von Kármán equations [39]
allowing for multiple nanoparticles.

IV. PSEUDOMAGNETIC FIELDS IN
WRINKLED GRAPHENE

Finally, while a complete treatment is beyond the scope
of this paper, we briefly discuss the potential impact of
wrinkles on the electronic properties of graphene. Strain in
graphene produces a vector potential in the electronic
Hamiltonian, with strain gradients resulting in effective
magnetic fields [23]. Such pseudomagnetic fields gener-
ated by strain gradients have been proposed as the basis of
engineering graphene’s electronic properties [24–26].

We first evaluate the pseudomagnetic field generated
by strain gradients in the absence of wrinkling, correspond-
ing to the case of small thickness or small nanoparticle
density. In this case, the elastic behavior of graphene on
nanoparticles is predominantly determined by stretching,
resulting in significant strain. The radial strain �r and the

circumferential strain �’ both scale asð�d2=E2DÞ1=3r�2=3 at

0< r < R, although the radial strain is more than 5 times as
large as the circumferential strain (see Appendix C and
Ref. [42]). The gauge fields induced by the axisymmetric
strain can be written as ðAr; A’Þ � ð�0	=aÞð�r � �’Þ�
ðcos3’; sin3’Þ, where �0 ¼ 10�15 Wb is the flux quan-
tum,	 � 2 is the change in the hopping amplitude between
the neighboring atomic sites due to the lattice deformation
[43], a ¼ 0:142 nm is the lattice constant, and ’ is the
azimuthal angle with ’ ¼ 0 in the zigzag direction [25].
Then, the strain-induced pseudomagnetic field is given

by Beff ¼ @’Ar=r� @rA’ � A’=r. Thus, we find Beff �
ð�0	=aÞð�d2=E2DÞ1=3r�5=3 sin3’. The strain in graphene
on an isolated nanoparticle induces threefold-symmetric
pseudomagnetic field profiles with maximum fields along
the armchair directions. The pseudomagnetic field pattern is
similar to a recent experiment [44], in which suspended
graphene was deformed by a sharp tip and pseudomagnetic
fields were found to confine electrons to quantum dots with
charging energies and level spacings both of order 10 meV.
The divergence of the strain at r ¼ 0 is cut off by the finite
radius of the nanoparticles; thus, we may expect that the
maximum pseudomagnetic field appears at a radius com-
parable to the nanoparticle radius. We therefore estimate
that the maximum pseudomagnetic field Beff is of order
300 T for d ¼ 7:4 nm and r ¼ d=2, which is significantly

greater than in Ref. [44], suggesting that the impact on
electronic properties may be even more profound.
Next we evaluate strain and strain-induced pseudomag-

netic fields in a wrinkle. Strain along a wrinkle is given by
�x � ð@x�Þ2. Then, using Eq. (4), we find the strain distri-

bution �x � ð�=E2DÞ1=3ðX=2	 xÞ�2=3. The pseudomag-
netic field is estimated to be Beff � �0	�x=ðaWÞ
[15,23], whereW is the typical wrinkle width. In the strong

adhesion limit dð�=�Þ1=2 � 1, the wrinkle widthW can be

estimated to be ð�=2�Þ1=2 � 1 nm (see Appendix B).
Thus, we find that, in the middle of a wrinkle, the pseudo-
magnetic field has a broad minimum on the order of 10 T
for X ¼ 100 nm. 10 T is a large magnetic field compared
to the disorder strength 1=�� 1 T in typical graphene
samples (� being the electron mobility) and corresponds
to an energy difference between zeroth and first Landau
levels of approximately 1300 K. Hence, we expect
pseudomagnetic-field effects due to wrinkles in graphene
to be significant.
The pseudomagnetic field near particles in the wrinkled

case will generally be more complicated, depending on the
number of wrinkles terminating on the particle and their
direction with respect to each other and the lattice.
However, qualitatively we expect that since wrinkling
reduces the in-plane strain around the nanoparticles, the
pseudomagnetic field is also reduced. Recent molecular
dynamics simulation results [45] relevant to experiments
by Tomori et al. [46] and our experiments of graphene on
nanoparticles have indeed revealed that when nanoscale
pillars supporting graphene are located far away from each
other, graphene is detached only around the pillars and
threefold-symmetric pseudomagnetic fields are induced
around each pillar, while with decreasing distance between
the pillars, graphene delaminates in regions between the
pillars, resulting in complicated pseudomagnetic field
profiles. Our observations of wrinkling and delamination
combined with a theoretical analysis based on a
continuum-elastic model can be used to place limits on
strain distributions and thus, on pseudomagnetic field max-
ima realizable in monolayer graphene through adhesion to
patterned surfaces.

V. CONCLUSIONS

In conclusion, combining experiments with monolayer
and multilayer graphene, we have obtained a global picture
of the structural evolution of graphene membranes on
surfaces of varying roughness. With increasing nanopar-
ticle density (or graphene thickness), this evolution
proceeds in five stages: conformal adhesion, wrinkling,
wrinkle percolation, partial delamination, and complete
delamination. The results can be used to place upper limits
on the magnitude of pseudomagnetic fields generated in
graphene by adhesion to patterned surfaces. Finally, the
wrinkling and delamination are not specific to graphene;
they should be a general feature of soft membranes adhered
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to rough surfaces, with implications for systems ranging
from cell walls to fabrics.

ACKNOWLEDGMENTS

This work was supported by the University of Maryland
NSF-MRSEC under Grant No. DMR 05-20471 and NSF
under Grant No. DMR 08-04976. The authors acknowl-
edge E.D. Williams for motivating our study of adhesion
transitions in graphene. We thank the Nissan Chemical
America Corporation for providing samples of silica-
nanoparticle dispersions.

APPENDIX A: DETAILED GEOMETRIC
MODEL FOR THE WRINKLE SHAPE

The stretching energy Es, the bending energy Eb,
and the adhesion energy E� given by Eqs. (1)–(3) are
reduced to

Es ¼ E2D

2

Z
dxwðxÞ�2x

¼ E2D

8
ð�� �Þ

�
1

sinð�=2Þ � 1

��1 Z
dx�ð@x�Þ4; (A1)

Eb ¼ �

2

Z
dxwðxÞC0ðxÞ2

¼ �

2
ð�� �Þ

�
1

sinð�=2Þ � 1

�Z
dx��1; (A2)

E� ¼ �
Z

dxW ¼ 2�Xd tanð�=2Þ: (A3)

The combination between the bending and the adhesion
at the foot of the wrinkle forces an equilibrium curvature at

the contact line Ceq ¼ ð2�=�Þ1=2 [47]. Then, assuming a

simple geometry where a constant curvature region
matches the constant slope region as shown in Fig. 2(b),
we find the bending energy Eb0 and the adhesion energy E�0

of the curved zone:

Eb0 ¼ 2
�

2

Z
dx

Z
dyC2

eq ¼ X

�
��

2

�
1=2ð�� �Þ; (A4)

E�0 ¼ 2�XC�1
eq tan	 ¼ Xð2��Þ1=2 tan

�
�� �

4

�
; (A5)

where 2	 is the angle of the curved region as shown in
Fig. 2(b).

Minimization of the total energy Etot ¼ Es þ Eb þ
E� þ Eb0 þ E�0 with respect to � leads to the following
differential equation:

�2½3ð@x�Þ4 þ 12�ð@x�Þ2@xx�� þ 4�

E2D

�
1

sinð�=2Þ � 1

�
2 ¼ 0;

(A6)

with the two boundary conditions �ð�X=2Þ ¼ 0. We an-
ticipate � to be symmetric with respect to x, so that @x�
should vanish at x ¼ 0. However, Eq. (A6) indicates that if
@x� vanishes at x ¼ 0, either � or @zz� should diverge.
Since the solution with diverging � is physically incon-
ceivable, we conclude that @zz� should diverge. This in-
dicates a discontinuity of the slope at x ¼ 0. Physically this
singularity would be regularized at small scales either by
bending along the x direction or by stretching along the y
direction. These contributions are expected to be small. As
a result, we obtain a simple solution on both sides of the
center of the wrinkle as described by Eq. (4).

APPENDIX B: SCALING ANALYSIS FOR Xc

Here we show that Xc scales as Xc � dðE2D=�Þ1=4,
which is analogous to scaling for the diameter of the
detachment zone surrounding a local protuberance [15].
We design a scaling analysis, neglecting E�0 and Eb0 . The
total energy is of the form

Etot ¼ �5=6E1=6
2D X1=3½f1ð�Þ þ �d��5=6E�1=6

2D X2=3f2ð�Þ�;
(B1)

where

f1ð�Þ ¼ 4

31=2
ð�� �Þ

�
1

sinð�=2Þ � 1

�
2=3

(B2)

and

f2ð�Þ ¼ 2 tan
�

2
: (B3)

The minimization of Eq. (B1) with respect to � leads to

@�f1ð�Þ þ �d��5=6E�1=6
2D X2=3@�f2ð�Þ ¼ 0 (B4)

and as a consequence

� ¼ f3ð�d��5=6E�1=6
2D X2=3Þ: (B5)

The critical spacing Xc is given by a condition that
�ð0Þ ¼ d. Hence, using Eq. (4), we find

Xc ¼ d3=2
23=2

33=4

�
E2D

�

�
1=4

�
1

sin½�ðXcÞ=2� � 1

��1=2

¼ d3=2
�
E2D

�

�
1=4

f4ð�Þ

¼ d3=2
�
E2D

�

�
1=4

f4ðf3ð�d��5=6E�1=6
2D X2=3ÞÞ; (B6)

where

f4ð�Þ ¼
�

1

sinð�=2Þ � 1

��1=2
: (B7)

One can check by substitution that

Xc ¼ d3=2
�
E2D

�

�
1=4

f5ð�d2=�Þ; (B8)
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with f6ðuÞ ¼ f5ðuf6ðuÞ2=3Þ and f5ðuÞ ¼ f4ðf3ðuÞÞ. We

now define the elastic thickness hel ¼ ð�=E2DÞ1=2 and the

equilibrium contact curvature Ceq ¼ ð2�=�Þ1=2. Letting

f7ðuÞ ¼ f6ðu2=2Þ, we rewrite Xc as

Xc ¼ d3=2

h1=2el

f7ðCeqdÞ; (B9)

which is the general scaling form of the solution.
We now consider two asymptotic limits; the strong

adhesion limit Ceqd � 1 and the weak adhesion limit

Ceqd 
 1. In the strong adhesion limit, the opening angle

of the wrinkle � goes to zero. Then, one has f1ð�Þ � ��2=3

and f2ð�Þ � �. Hence f3ðuÞ � u�3=5. Since f4ð�Þ � �1=2,

one has f5ðuÞ ¼ f4ðf3ðuÞÞ� ½f3ðuÞ�1=2 � u�3=10, and fi-

nally f6ðuÞ � u�1=4. Therefore one has

Xc � d3=2

h1=2el

ðCeqdÞ�1=2 � dðE2D=�Þ1=4 (B10)

and

�� ðCeqdÞ�1; (B11)

which also confirms that the small-� limit corresponds to
the large-Ceqd limit (strong adhesion limit).

Alternatively, setting � ¼ �� �, we redo the above
scaling analysis in the weak adhesion limit Ceqd 
 1,

with the argument of f1, f2, and f4 being � instead of �.

Then f1ð�Þ ��7=3, and f2ð�Þ ���1, so that f3ðuÞ �
u3=10. Also f4ð�Þ ���1, leading to f5ðuÞ � u�3=10 and

f6ðuÞ � u�1=4. Consequently, we obtain once again

Xc � d3=2

h1=2el

ðCeqdÞ�1=2 � dðE2D=�Þ1=4 (B12)

and

�� ðCeqdÞ1=2: (B13)

This solution is consistent with the weak adhesion limit
because � 
 1 implies Ceqd 
 1.

APPENDIX C: STRETCHING OF
GRAPHENE ON A NANOPARTICLE

The typical extent of the detachment zone of graphene
caused by the presence of a nanoparticle is discussed here.
In the simplest model, we use the power-law solution of
Schwerin [40] in the regime dominated by stretching. In
this regime, the bending rigidity only contributes as
boundary-layer effects at the attachment lines [42].
Consequently, the Schwerin solution does not match tan-
gentially to the substrate and the nanoparticle (the
matching being forced at a smaller scale controlled by
bending rigidity). Assuming that the nanoparticle diameter
d is much smaller than the radius R of the detachment
zone (see Fig. 8), we obtain the angle of rotation

�ðrÞ ¼ ½8F=ð9�E2DrÞ�1=3 and the vertical distance

from the substrate Z ¼ ½3R2F=ð�E2DÞ�1=3 (see Fig. 8
and Ref. [42]), where F is the force on the apex.
However, the above solution does not match the boundary
conditions, and a better approximate numerical solution

is Z ¼ gð
gÞðR2F=E2DÞ1=3, where gð
gÞ ¼ 1:0491�
0:1462
g � 0:158 27
2

g [42]. For graphene, 
g ¼ 0:165

[10], and gð
gÞ � 1:029 is very close to ð3=�Þ1=3 �
0:984 so that we can safely use the direct Schwerin
solution.
The elastic-stretching energy can be calculated from a

gedanken experiment, where the height Z is increased with
the constant R:

EðZÞ ¼
Z Z

0
dzFðzÞ ¼ �E2D

3R2

Z Z

0
dzz3 ¼ �E2DZ

4

12R2
: (C1)

Assuming that the apex height is equal to the diameter d of
the nanoparticle, one has Z ¼ d, and the total energy reads

EðdÞ ¼ �E2Dd
4

12R2
þ ��R2: (C2)

Minimizing the total energy with respect to R, one finds

2R=d ¼ ð4E2D=3�Þ1=4 as suggested in Ref. [15].
Assuming that a preexisting strain is negligibly small,

one can find radial and circumference components of
the strain present in an isolated graphene protrusion at
0< r < R:

�rðrÞ ¼ 1

E2D

�
G

r
cos�þH sin�� 
g

dG

dr

�

¼ 3� 
g

4

�
4�

9E2D

�
1=3

�
d

r

�
2=3

; (C3)

�’ðrÞ ¼ 1

E2D

�
dG

dr
� 
g

G

r
cos�� 
gH sin�

�

¼ 1� 3
g

4

�
4�

9E2D

�
1=3

�
d

r

�
2=3

; (C4)

where G ¼ F=ð2��Þ ¼ 9E2D�
2r=16 is the stress variable

in the radial direction, H ¼ F=ð2�rÞ ¼ 9E2D�
3=16

is the vertical sheet stress, and we assume � � 0 at
0< r < R [42].

R

d

F

η

z

r

FIG. 8. Schematic of graphene supported on a single nano-
particle. The detachment length is R.
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APPENDIX D: AREA PROBABILITY
DISTRIBUTION

The probability QðAÞ that a nanoparticle has no nano-
particles in a domain of area A obeys QðAþ dAÞ ¼
QðAÞ � dA�npQðAÞ, leading to dQðAÞ=dA ¼ ��npQðAÞ.
Using the normalization constraint

lim
A!0

QðAÞ ¼ 1; (D1)

we find QðAÞ ¼ expð��npAÞ.
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