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of the model are then the interaction energies between such atoms and/or the barriers

associated with hops between the high-symmetry positions.

The use of lattice-gas models proceeds in two generic ways. In the first, one

posits a few energies that are likely to dominate the physics of interest and then

computes with Monte Carlo simulations the desired equilibrium or dynamic prop-

erties, deriving thereby the values of these energies from fits [1, 7, 8]. The dangers

of this approach are (1) the properties of interest may be relatively insensitive to the

specific interactions and (2) there may be other interactions that are non-negligible,

so that the deduced energies are effective rather than actual.

The second approach [9–12] begins by actually computing the (many) energies of

importance, a task that is now possible with efficient density functional theory pack-

ages such as VASP (the Vienna ab initio simulation package) [13, 14]. This process

can be used to compute interaction energies between relatively distant neighbors.

One should also compute multi-atom interactions, which can also be significant

[3, 15]. As above, these interactions are then used in Monte Carlo simulations to

test whether they account adequately for experimentally observed properties such

as phase diagrams, equilibrium island shapes, or step fluctuations. This approach

is appealing because the calculated interaction energies can be self-consistently

checked for completeness, thereby mitigating the second danger mentioned above.

Assuming that one has sufficient computational power to compute all the interac-

tions that contribute at the level of the desired precision, there is still the danger

that the interactions depend sensitively on the local environment, making a simple

lattice-gas description inadequate. These caveats notwithstanding, lattice-gas mod-

els have been extensively used in the realm of surface physics to describe such

diverse phenomena as phase transitions, phase diagrams, equilibrium island shapes,

concentration-dependent diffusion, step fluctuations, and growth.

The basic assumptions that underlie lattice-gas models are as follows: (i) all

atoms sit at high-symmetry positions and local relaxations produce the final struc-

ture; (ii) a finite set of effective interactions is sufficient to understand all the surface

processes; and (iii) interactions are not sensitive to local positions of the adatoms. In

the simplest scenario, only pair interactions between nearest neighbors are consid-

ered. However, in certain cases, like the orientation dependence of step stiffness and

the equilibrium shape of islands, long-range pair interactions and multisite interac-

tions are required for a complete description [8, 12, 16–20]. The substrates in these

studies are typically mid- or late transition or noble metals, where the electronic

indirect interaction leads to rich behavior [3].

Explicitly, the lattice-gas Hamiltonian of adatoms on a surface is written as

H =

M∑

m=1

Em

∑

〈i j〉m

ni n j+
∑

T

ET
∑

〈ijk〉T

ni n j nk+
∑

Q

EQ
∑

〈ijk`〉Q

ni n j nkn`+· · · (2.1)

where ni is the occupancy of the high-symmetry lattice site indexed i ; ni = 1

denotes an occupied site; and ni = 0 denotes an empty site. Interactions between

adatom pairs up to the mth-neighbor pair Em are included in the model (Fig. 2.1);
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Fig. 2.1 Illustration of NN (nearest neighbor), NNN (next NN), and three NN (third NN) pairs

with interaction energies E1, E2, and E3, respectively. Also shown are the isosceles right triangle

(RT) with energy ERT or, more formally, E112 (denoting a pair of NN legs and one NNN leg), and

an isosceles linear triangle (LT) with energy ELT or, more formally, E113. Lastly, the most compact

quarto interaction has interaction energy EQ1 or, more formally, E1111. For clarity [and physical

relevance], here and in Fig. 2.5, the adatoms are placed in center sites, as for homoepitaxy on the

(100) face of an fcc crystal like Cu, rather than atop sites as for homoepitaxy on a simple cubic

crystal

accordingly, interactions between adatom pairs that are separated by distances

greater than the mth neighbor distance are expected to be insignificant. ET stands

for three-adatom non-pairwise “trio” interactions, with the index running over all

trimer configurations of significant strength. Similarly, EQ stands for four-adatom

non-pairwise (and with trios also subtracted) “quarto” interaction. (The possibility

of quarto interactions has been known for over three decades [3, 21], but, to the

best of our knowledge, it has been invoked only once in an actual calculation of

adsorbate energetics [22]) until very recently [23, 24]. If necessary, pair interactions

with a longer range and/or higher order multi-site interactions (possibly, five-adatom

quintos) are included in the model till adequate convergence between theoretical

predictions and experimental observations is obtained. However, the inclusion of

a large number of interaction parameters makes the lattice-gas model intractable,

thereby severely undermining the efficacy of lattice-gas models in characterizing

overlayer systems.

The nature of the interactions leading to the lattice-gas pair energies has been

reviewed extensively [3, 25–27] so we will present just a quick summary. If there is

charge transfer (workfunction change) during the adsorption process, the adsorbates

can interact electrostatically. Other “direct” interactions between the adatoms them-

selves can occur when the adatoms are at NN (nearest-neighbor) or perhaps NNN

(next NN) sites. These are strong interactions, comparable to the binding energy,

with the substrate playing a minor, sometimes negligible role; they are liable to

produce relaxations that thwart straightforward application of lattice-gas models (cf.

Sect. 2.5.2). When adatoms are sufficiently separated that there is insignificant over-

lap of the electron orbitals, there can still be an “indirect” interaction – weaker but



22 T.L. Einstein and R. Sathiyanarayanan

of longer range – mediated by substrate electrons or the elastic field. Elastic inter-

actions tend to be of one sign and decay monotonically with adsorbate separation

distance d, like d−3 asymptotically. They are generally taken to be isotropic, even

when unjustified by the elastic tensor, since computing elastic Green’s functions in

the anisotropic case is notoriously difficult [28]. The electronic indirect interaction

has richer behavior, oscillating in sign and reflecting the isotropy or anisotropy of

the substrate wavefunctions in the surface plane [29]. Asymptotically it is dominated

by the Fermi wavevector and has the Friedel behavior

d−n sin(2kFd +8) (2.2)

where d is the [lateral] distance between the adsorbates; this result is non-

perturbational, the phase factor 8 distinguishing it from the well-known perturba-

tional RKKY expression [30]. (For a non-isotropic Fermi surface, the appropriate

wavevector has velocity parallel to d; see [3] for details.) In the bulk, n = 3, but at

a metal surface the leading term is canceled by that from its image charge, yielding

n = 5. For trio interactions an expression similar to (2.2) holds to lowest order,

with d replaced by the perimeter of the triangle formed by the adatoms. Here the

decay is even faster, with n = 7. In short, interactions mediated by bulk states have

negligible strength for values of d for which the asymptotic expression is valid.

The situation is strikingly different when there is a metallic surface state (i.e.,

a surface band that crosses the Fermi energy), such as found near the 0̄ point on

the (111) faces of noble metals (associated with the (111) necks of the Fermi sur-

face). For this case n is 2 and 5/2 for pair and trio interactions, respectively, so

that the asymptotic regime is physically important [31]. Indeed, trio interactions

may play a role in the formation of 2D clusters of Cu/Cu(110) [32]. Furthermore,

the Fermi “surface” is circular, and kF is much smaller than its bulk counterpart,

leading to the dramatic oscillations (with wavelength π/kF ≈ 15 Å) seen in STM

experiments [33].

Most of the content of this and the second, third, and fifth sections of this chapter

were included in the first author’s presentation at the Vth Stranski-Kaischew Surface

Science Workshop (SK-SSW’2005): “Nanophenomena at Surfaces – Fundamentals

of Exotic Condensed Matter Properties” in Pamporovo, but have been updated. Each

section provides references from which the content was adapted and from which

more information can be obtained.

2.2 Recollection of Two Effects on Statistical Mechanics

In this section we recall two remarkable implications of trio interactions for phase

diagrams [15]. While these ideas are not new, they have been largely ignored by the

community and so bear repeating.
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2.2.1 Pitfall in Transforming Trio Strength Between Lattice-Gas

and Ising Models

Many researchers recast the lattice-gas model into an Ising model before doing

computations. This seemingly innocent procedure invites pitfalls when multisite

interactions are involved. Here we offer a particular example: what seems like a

relatively modest three-spin interaction can correspond to an unphysically large trio

interaction in the lattice-gas Hamiltonian. Our example involves a square lattice

with M = 2 (first and second neighbor pair interactions) and the right-triangle trio

ERT corresponding to two E1 legs at right angles and an E2 hypotenuse (or E112 for

short, in a general formal notation [3]).

The mapping to spin language, with si = ±1, is ni = (1+ si )/2. We see

H =

(
E1

4
+

ERT

2

) ∑

〈i j〉1

si s j +

(
E2

4
+

ERT

4

) ∑

〈i j〉2

si s j +
ERT

8

∑

〈ijk〉RT

si s j sk (2.3)

In Ising or spin language, the three coefficients are called −J1, −J2, and −JRT,

respectively. For the pair interactions, we easily see that

J2

J1
=

E2/E1 + ERT/E1

1+ 2ERT/E1
≈

E2

E1
for |ERT|

<
∼ 4|E1| (2.4)

One might then naively – but incorrectly – expect that JRT/J1 ≈ ERT/E1. Instead

JRT

J1
=

ERT/E1

2+ 4ERT/E1
⇔

ERT

E1
=

2JRT/J1

1− 4JRT/J1
(2.5)

This highly non-linear relation leads to a surprising result: For JRT/J1
<
∼ 1/4,

ERT/E1 � JRT/J1. Furthermore, if JRT/J1 increases to slightly above 1/4, ERT/E1
becomes large and negative. A similar effect would occur in the opposite direction

for ERT/E1 ≈ −1/2, a larger magnitude than one is likely to encounter.

Finally, it is unfortunate (to say the least) that some researchers (including promi-

nent ones) denote the lattice-gas energy parameters as J . Even in the simplest case

of just a nearest-neighbor interaction, the lattice-gas energy differs from the Ising

energy by a factor of 4; thus, misinterpretation and numerical inaccuracies are very

likely.

2.2.2 Effect on Phase Boundaries: Asymmetries Not Inevitable

A trio interaction, which breaks particle–hole symmetry (or up-down symmetry in

the Ising viewpoint), is generally expected to lead inevitably to substantial asymme-

tries in phase diagrams about half-monolayer coverage. A rather surprising finding

of numerical [Monte Carlo] calculations is that a single type of trio interaction need
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Fig. 2.2 Illustration, for a c(2 × 2) overlayer on a square lattice, of the heuristic guideline, based

on scaling the elementary excitation, used to predict which trios produce observable asymmetries

in phase boundaries. For the simplest case of an NN repulsion, El , the disordering temperature

is known exactly from the Onsager solution to the Ising model; it is indicated by the × on the

temperature-coverage phase diagram. The effect of adding a right-triangle trio repulsion ERT, a

linear trio repulsion ELT, or both was studied using Monte Carlo for the case ERT = ELT = E1/4;

the results for the three cases are plotted with filled triangles, squares, and circles, with dashed,

dotted, and solid curves, respectively, added to guide the eye. The behavior at θ = 0.5 is anticipated

by (2.7) and (2.8). The dashed and dotted curves appear symmetric about θ = 0.5 (short-dotted

line); only with both trios present does the [solid] phase boundary become noticeably asymmetric.

In the plots at the right, the ×’s and dots indicate occupied and vacant sites, respectively, in a

perfectly ordered configuration, with the large symbols denoting a vacancy (θ < 1/2) or extra

adatom (θ > 1/2), respectively. The arrows on the plots depict the lowest energy excitations,

with the linetype of the shaft corresponding to the linetype of the phase boundary on the phase

diagram; for each linetype, this excitation energy is the same for θ < 1/2 and θ > 1/2. According

to the heuristic prescription, these energies scale the disordering temperature. When both trios are

present, there is “frustration” over which excitation to use, the prescription fails, and asymmetries

occur. In the phase diagram, the broad dashed curve is the result of a mean-field calculation, plotted

at half its magnitude (i.e., Tc(θ = 0.5) ≈ 1.2El ); not only is this prediction of Tc far too high and

too broad, it also erroneously predicts substantial asymmetry. From [15]

not necessarily do so. (See also the discussion by Persson of the role of adsorption in

sites not of high symmetry, the equivalence to trio interactions, and the rich effects

on temperature-coverage phase diagrams [2, 34].) This result, illustrated in Fig. 2.2

for the case of a c(2 × 2) overlayer with E1 > 0 and ERT, is in sharp contrast to

the observation in 2D calculations which treat fluctuations approximately – mean-

field and quasi-chemical approximations – that trios must produce such asymmetries

[35]. Likewise we see that a linear trio ELT alone does not produce an asymmetry.

However, when both ERT and ELT are present, the expected notable asymmetry does

appear. To comprehend this effect of trios on the phase boundary, we need some way

to assess the difference in the way the trio interactions affect the lower temperature
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ordered phase compared to the higher temperature disordered phase. Evidently the

breaking by trios of the particle–hole symmetry of the pair interaction lattice-gas

hamiltonian, and the resulting asymmetry in the ground state energy, is not the crux.

We describe a crude approximation scheme for assessing the change in the dis-

ordering temperature Tc of an ordered phase from a known value Tc(0) for some

Hamiltonian to Tc(Enew) for a more complicated Hamiltonian with a new interac-

tion energy Enew. While we have applied our procedure [36] to a wide range of

problems, we still have no formal derivation. In essence, the idea is that Tc scales

with the lowest energy excitation from the ground state. In [36] we show, e.g., that

for a c(2 × 2) overlayer with half-monolayer coverage, characterized by a nearest-

neighbor repulsion E1 and a smaller second-neighbor interaction E2,

Tc(E2) = Tc(E2 = 0)

(
1−

4E2

3E1

)
(2.6)

For this simple problem, Barber [37] showed that the exact coefficient is
√
2 ≈

1.41 rather than 4/3 ≈ 1.33; on the other hand, our value is much better than the

mean-field prediction of 1. For this same problem, the effect of a right-triangle trio

interaction ERT (with E2 = 0) is given by

3E1 + 2ERT

Tc(ERT)
=
3E1

Tc(0)
⇒ Tc(ERT) = Tc(ERT = 0)

(
1+

2ERT

3E1

)
(2.7)

Similarly, for a linear trio ELT

3E1 + ELT

Tc(ELT)
=
3E1

Tc(0)
⇒ Tc(ELT) = Tc(ELT = 0)

(
1+

ELT

3E1

)
(2.8)

We caution that this procedure is applicable only if the new interaction does not

alter the symmetry of the ordered state and works well only if the nearby elementary

excitation from the fully ordered state is uniquely defined. Thus, it works well for a

(
√
3 ×

√
3) overlayer on a hexagonal net but not for a p(2 × 2). It is also curious

that this procedure requires a lattice-gas picture in which the number of atoms is

conserved (i.e., a canonical ensemble or Kawasaki dynamics); if the atom instead

hopped to a “bath” (i.e., a grand canonical ensemble, or fixed chemical potential, or

a single spin flip in a spin analogue (Glauber dynamics)), the predictions are quite

poor.

To assess the effect of trios on the symmetry of the temperature-coverage phase

boundary of a c(2×2) overlayer, we look at the elementary excitation near a defect,

either an extra adatom or a missing one (see Fig. 2.2). For just a right-triangle trio,

there are no such trios (no 2ERT) in the excited state when there is a vacancy; when

there is an extra adatom, there are two RT trios in the ordered state which are lost

in hopping to the nearest neighbor (where another two RT trios occur). So in both

cases, there is no change in the number of RT trios, i.e., no change proportional

to ERT is involved. A similar effect occurs with a linear trio, but with a different
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elementary excitation (see Fig. 2.2). In either case, we saw that the phase boundary

computed using Monte Carlo appears symmetric. Only when both trios are present

does a marked asymmetry occur. However, a noteworthy inadequacy of this simple

picture is its inability to give any idea of the coverage dependence of Tc (M.E.

Fisher, private communication).

2.3 Applications to Gases on Metals

As an example of the state of the art in quantitatively determining adsorbate–

adsorbate interactions from combined theory and experiment, we discuss the study

of c(2 × 2) N on Fe(001) by Österlund et al. [8]. Since there is just one ordered

phase, one might expect to be able to extract information about only a handful of

interactions, say E1 > 0, E2, and a trio, from STM observations. The authors use a

new concept called configuration distribution analysis (CDA) to extract much more

information from high-resolution images. Around each nitrogen adatom they obtain

a site map of possible adsorption sites. By comparing the resulting experimental

conditional probabilities with those obtained from Monte Carlo simulations with a

lattice-gas model, they can refine estimates of the various interactions.

The authors first consider a long-established analysis [38, 39] of the pair correla-

tion function g( j), from which they deduce E j = −kBT ln g( j), for j th neighbors,

between fractional coverages 2 = 0.037 and 0.15. They find very little NN site

occupation and enhanced NNN occupation. For j > 4 there is no significant devi-

ation from a random distribution (g = 1). From the data they find E1 = 0.13 eV

and E2 = −0.013 eV. Concerned about poor statistics at 2 = 0.037, the authors

also carried out Monte Carlo simulations and used a least-squares fit of data at

all the coverages, finding similar energies: E1 = 0.14 eV, E2 = −0.023 eV, and

E3 = 0.003 eV. They then did a CDA analysis in conjunction with Monte Carlo

simulations (seemingly at 2 = 0.108), supplemented by a comparison of mea-

sured and simulated island-size distributions. They thus determined E1 = 0.13 eV,

E2 = −0.018 eV, E3 = 0.019 eV, and trio interaction energies E223 = −0.012 eV,

and E225 = 0.006 eV. (These trios correspond to RT and LT triangles on a larger

scale, with insignificant direct interactions.) If 3NN (third NN) sites are considered

in the CDA, then E3 decreases to 0.015 eV. If trios are omitted from the CDA

analysis, E1 is unchanged but E2 increases in magnitude to −0.038 eV, while E3
diminishes to 0.003 eV. In other words, fitted pair interactions are actually effective

interactions that include omitted interactions in some average, unspecified way. The

effect seems to be largest for the most prominent legs of the omitted interactions, in

this case NNN.

The authors also include an elastic repulsion, taken to have the asymptotic

isotropic form C/R3 with strength C/a3 = 0.15 eV, where a is the Fe lattice con-

stant (2.87 Å). Hence, the electronic components of the three pair interactions (for

the CDA analysis including trios and configurations to j = 3) are −0.2, −0.71,

and −0.04 eV, respectively. (There is no comment about adjusting the trios.) Note,

remarkably, that |Eel1 | < |Eel2 |. The authors conclude that the electronic interaction
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is short range. The embedded atom method (EAM), for metals on metals, predicts

that the indirect interaction is repulsive and proportional to the number of shared

substrate atoms [3]. On very general grounds one expects R−5 decay of the envelope

in (2.2). We caution that the distinction between electronic and elastic has long been

recognized as subtle [40] and that the asymptotic limit of the elastic interaction is

likely to be significantly modified at separations O(a) by more rapidly decaying

terms in the multipole series [41].

2.4 Refined Schemes for Extracting Interaction Energies

To extract estimates of interaction energies when there are many such parameters

are a delicate task typically one obtains a large number of simultaneous equations

by computing the total interaction of a large variety of different overlayer structures.

One should have more overlayer structures than interactions so as to be able to check

for robustness of the deduced values. While informal schemes had formerly seemed

sufficient [42], it is safer and sounder to use formal cross-validation schemes used

by several groups [12, 43] to study overlayer systems.

In recent work [44] we used the leave-nv-out cross-validation method [45] to fit

the computed energies for Cu(110) to the interaction parameters (cf. Sect. 2.6). This

method is expected to perform better than the more commonly used leave-one-out

cross-validation scheme [45]. We calculated the interaction strengths in the follow-

ing way: for a particular supercell, we computed total energies for, say, n different

configurations of adatoms. In addition, we posit the number of significant interac-

tions ni . We then use ni (out of n) equations to solve for the interaction energies.

These interactions are then used to predict the energies of the remaining nv = n−ni

equations. We then compute the root mean squared (rms) of the prediction error per

adatom for all configurations j (1 ≤ j ≤ nv), each with a j adatoms in it:

1Erms =

√√√√ 1

nv

nv∑

j=1

(1E j )
2 1E j =

Epred − EVASP

a j

(2.9)

We repeat this procedure for different partitions of (n,ni ), and sets of interactions

from only those partitions whose 1Erms values are lower than a specified threshold

value (10meV/adatom in Ref. [44]) are considered for the final averaging of inter-

action values. Finally, we find the value of ni that leads to the best convergence. As

a check, we perform this procedure on two different computational supercells.

2.5 Effect of Relaxations in Homoepitaxy with Direct

Lateral Interactions

When direct interactions play a significant role, such as for (1×1) homoepitax-

ial partial monolayers, one must be wary of relaxation-induced modification of
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energies near steps or island edges. From bond energy, bond order, bond length

reasoning [46], one can expect such atoms – which lack their full complement of

near-neighbor bonds, to move closer to the remaining neighbors to partially compen-

sate for the loss. Persson showed that relaxation in the form of adsorption away from

high-symmetry sites can lead to effective trio interactions, and attendant effects, in

systems with ostensibly only pair interactions [2, 34]. Our goal here is to show that

these relaxation effects are especially significant for multisite interactions, where

the relaxations are not along the bond directions. Furthermore, multisite interac-

tions, in general, have a large elastic component; hence, a careful consideration of

relaxation effects is needed while computing them. We discuss in particular how

strain-related effects are important when calculating the step stiffness on Cu(100).

Because of adatom relaxation near steps, the inclusion of non-pairwise, quarto inter-

action between four adatoms is required on this square-lattice surface in order to

preserve a lattice-gas description.

2.5.1 Multisite Interactions in Step-Stiffness Asymmetry

Step stiffness (which earlier served as the mass in the 1D fermion model of steps)

underlies how steps respond. It is one of the three parameters of the step-continuum

model [47], which has proved a powerful way to describe step behavior on a coarse-

grained level, without recourse to a myriad of microscopic energies and rates. In the

analogy between 2D configurations of steps and worldlines of spinless fermions in

(1 + 1)D, step stiffness β̃ plays the role of the mass of the fermion. As the inertial

term, stiffness determines how a step responds to fluctuations, to driving forces, and

to interactions with other steps.

We summarize our lattice-gas-based computations of the orientation dependence

of step stiffness for the (001) and (111) faces of Cu [48, 49]. This work illustrates

both successes and some shortcomings of using a lattice-gas model with just NN

interactions: whereas the step stiffness on Cu(111) is well described by NN interac-

tions alone, the step stiffness on Cu(001) requires the inclusion of NNN and perhaps

even trio interactions. We discuss only the latter.

The step stiffness β̃(θ) ≡ β(θ) + β
′′
(θ) weights deviations from straightness in

the step Hamiltonian, where θ is conventional designation of the azimuthal misori-

entation angle; it measured from the close-packed direction. Here β is the step-free

energy per length (or, equivalently, the line tension, since the surface is maintained

at constant [zero] charge [50]). The stiffness is inversely proportional to the step

diffusivity, which measures the degree of wandering of a step perpendicular to its

mean direction. This diffusivity can be readily written down in terms of the energies

εk of kinks along steps with a mean orientation θ = 0: in this case, all kinks are

thermally excited. Conversely, experimental measurements of the low-temperature

diffusivity (via the scale factor of the spatial correlation function) can be used to

deduce the kink energy. A more subtle question is how this stiffness depends on θ .

Even for temperatures much below εk , there are always a non-vanishing number
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of kinks when θ 6= 0, the density of which is fixed by geometry (and so are pro-

portional to tan θ ). In a bond-counting model, the energetic portion of the β(θ) is

canceled by its second derivative with respect to θ , so that the stiffness is due to the

entropy contribution alone. Away from close-packed directions, this entropy can be

determined by simple combinatoric factors at low temperature T [51–53].

Interest in this whole issue has been piqued by Dieluweit et al.’s finding [54]

that the stiffness as predicted in the above fashion, assuming that only NN inter-

actions E1 are important, underestimates the values for Cu(001) derived from two

independent types of experiments: direct measurement of the diffusivity on vicinal

Cu surfaces with various tilts and examination of the shape of (single-layer) islands.

The agreement of the two types of measurements assures that the underestimate

is not an anomaly due to step–step interactions. In that work, the effect of NNN

interactions E2 was crudely estimated by examining a general formula obtained

by Akutsu and Akutsu [55], showing a correction of order exp(−E2/kBT ), which

was glibly deemed to be insignificant. In subsequent work the Twente group [56]

considered steps in just the two principal directions and showed that by including

an attractive NNN interaction, one could evaluate the step-free energies and obtain

a ratio consistent with the experimental results in [54]. They later extended their

calculations [57] to examine the stiffness.

To make contact with experiment, one typically first gauges the diffusivity along

a close-packed direction and from it extracts the ratio of the elementary kink energy

εk to T . Arguably the least ambiguous way to relate εk to bonds in a lattice-gas

model is to extract an atom from the edge and place it alongside the step well away

from the new unit indentation, thereby creating four kinks [58]. Removing the step

atom costs energy 3E1 + 2E2 while its replacement next to the step recovers E1 +

2E2. Thus, whether or not there are NNN interactions, we identify εk = −
1
2 E1 =

1
2 |E1| (since the formation of Cu islands implies E1 < 0); thus, as necessary, εk > 0.

In the low-temperature limit, appropriate to the experiments [54], we have shown

that

kBT

β̃a
=

m
√

(1− m)2 + 4meE2/kBT

(1+ m2)3/2
−→

m→0+

m + m2

(
1+ m2

)3/2 (2.10)

where m is the step-edge in-plane slope.

Figure 2.3 compares (2.10) to corresponding exact solutions at several temper-

atures when E2 = E1/10. We see that (2.10) overlaps the exact solution at tem-

peratures as high as Tc/6. As the temperature increases, the stiffness becomes more

isotropic, and (2.10) begins to overestimate the stiffness near θ = 0◦. In Fig. 2.4

(using the experimental value [59] εk = 128meV⇒ E1 = −256meV), we com-

pare (2.10) to the NN Ising model at T = 320K, as well as to the experimental

results of [54]. For strongly attractive (negative) E2, kBT/β̃a decreases signifi-

cantly. In fact, when E2/E1 is 1/6, so that −E2/2kBT = (E2/E1)(εk/kBT ) ≈

(1/6)4.64, the model-predicted value of kBT/β̃a has decreased to less than half its

E2 = 0 value, so about 3/2 the experimental ratio. For the NNN interaction alone to
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Fig. 2.3 The range of validity of (2.10) is examined by comparing it to exact numerical solutions

of the SOS model at several temperatures. In the legend Tc refers to the NN lattice-gas (Ising)

model; for |E1| = 256meV, Tc = 1685K. From [48]
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Fig. 2.4 Equation (2.10) is plotted for a range of values of E2 (epsilon on the plot, where E1 and

E2 are NN and NNN interaction energies, respectively, in a lattice-gas picture. The solid curve

denoted “Ising NN” corresponds to E2 = 0. The dots labeled “Exp’t” are taken from figure 2

of [54] and were derived from the equilibrium shape of islands on Cu(001) at 302K, with line

segments to guide the eye. To clarity, we omit similar data derived from correlation functions

of vicinal surfaces at various temperatures. Note that for E2 = E1/4 there is a maximum near

tan θ = 1/2 that is not observed in experimental data. From [48]

account for the factor-of-4 discrepancy between model/theory and experiment [54],

Fig. 2.4 shows that E2/E1 ≈ 0.3 would be required.

2.5.2 Effect of Trio Interactions

If we include an RT trio (E112) the effective NN lattice-gas energy Eeff1 is E1 +

2ERT and more significantly the effective NNN interaction energy is E2 + ERT.

Thus, ERT must be attractive (negative) if it is to help account for the discrepancy in
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figure 2 of [54] between the model and experiment. Furthermore, by revisiting the

configurations discussed in the penultimate paragraph of the Introduction, we find

that the kink energy εk becomes − 1
2 E1 − ERT. Thus, for a repulsive ERT, |E1| will

be larger than predicted by an analysis of, e.g., step-edge diffusivity that neglects

ERT. Lastly, the close-packed edge energy, i.e., the T = 0 line tension β(0) =

− 1
2 E1 − E2, becomes −

1
2 E1 − E2 − 2ERT.

We also investigated the strain-related effects on calculated trio interaction ener-

gies on Cu(100), where Dieluweit et al. [54] showed that the NN Ising model cannot

explain the experimentally observed step-stiffness anisotropy. In a response, we

showed that the addition of an effective NNN attractive interaction could resolve

the discrepancy. The effective NNN interaction (E2) can be written as the sum of

two components as illustrated in Fig. 2.5a:

• a pairwise second neighbor interaction energy (E2)

• an orientation-dependent right-isosceles trio interaction energy (ERT)

However, when we used VASP to calculate these interactions, we found a large

repulsive value of around 50meV for the right-isosceles trio interaction energy

(ERT). Such a value cancels the calculated attractive second-neighbor interactions

(E2) thereby reducing the model to an NN Ising model. Thus, in the end the dis-

crepancy between theory and experiment could not be resolved.

To see the effect of relaxation, we repeated the calculations with a bigger super-

cell (4 × 4 × 14). If an adatom stripe has kinks, there can be two types of right-

isosceles trios, ones with one/two adatoms on the step-edge and ones with no

adatoms on the step edge (Fig. 2.5b). Since the local geometry of these two adatoms

is different, we could expect the trio interaction energies to be different because the

RT trio adatoms (E ′RT) inside a stripe cannot relax as much laterally as the trios with

its vertices on the step (ERT). The trio energy that we calculated earlier corresponds

to a linear combination of ERT and E ′RT, weighted more dominantly by E ′RT. How-

ever, the calculation of the step stiffness depends on broken step-edge trios, which

necessarily correspond to ERT. To distinguish these two trios here, we calculated the

Fig. 2.5 (a) Effective NNN interactions on a (100) surface [of an fcc crystal], (b) multisite interac-

tions Ed (solid triangle),E ′d (broken triangle), and EQ (square), where the subscript d is RT in our

notation. The trio Ed has adatoms on the step edge whereas E ′d has no adatoms on the step edge.

From [23]
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energies of four different adatom configurations and we solved the resultant linear

system of equations. With this correction, at the step-edge ERT ≈ 12.5meV/atom,

and the effective NNN interaction is thus Eeff2 = E2 + ERT ≈ −35meV/atom.

Though ERT is still repulsive, its magnitude is lower than that of the attractive

E2. The ratio of the effective NN interaction to the effective NNN interaction is

Eeff2 /Eeff1 ∼ 1/9 while E2/E1 ∼ 1/7 (2.11)

which is much closer to experimental expectations.

Distinguishing between the step-edge trios ERT and the bulk trios E ′RT is not

compatible with a proper lattice-gas picture, where interactions should not depend

on local position and geometry. We can remedy this problem by introducing a quarto

interaction. This quarto interaction distinguishes between the two trios because it is

present only in bulk trios E ′RT:

E ′RT = (3/4)EQ + ERT (2.12)

This yields the value of the quarto interaction to be EQ = 53meV. This is a sig-

nificant amount of energy (compared with collinear trio ELT = −15meV/atom and

third-nearest-neighbor interaction E3 = −8meV/atom [60]) and hence is likely to

have consequences in calculations of other properties.

In summary, when calculating trio interactions from first principles, however,

care must be taken; they can be exquisitely sensitive to the geometry and struc-

ture of the supercell used to calculate them. Such sensitivity to local relaxation can

complicate a simple lattice-gas description. To account for the relaxation of trios

near step edges, for example, we introduce a non-pairwise quarto interaction EQ
among four neighboring adatoms. We find that such an interaction is necessary to

bridge the theoretical step stiffness with experimental measurements on Cu(100).

In that case, we find what amounts to a relatively large, repulsive quarto interac-

tion EQ = 53meV that has significant physical consequences in our problem and

presumably more generally. (In the same paper [23] we find that the inclusion of

trio interactions can account for the difference in A- and B-step formation energies

on Pt(111).)

2.6 Connector Models

The expansion in m-adatom interactions can become cumbersome and unwieldy

if the multiparticle energies do not become smaller after, say, quarto interactions.

Seeking an alternative approach to circumvent this issue, Tiwary and Fichthorn

(TF) [24] proposed the connector model (named after the construction-kit toy [61]),

which focuses on the vertices rather than the links of a cluster of adatoms. For

example, consider four adatoms forming an NN square. In the lattice-gas model,

the total energy would be 4E1 + 2E2 + 4ERT + EQ. In the connector model with

just NN spokes (spokes of half the NN bond length and oriented in the appropriate
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directions), this total energy is just four times the energy of a connector hub with

two perpendicular spokes. For this lattice, there are just five types of connectors,

having one, two, three, or four spokes, the two-spoke case having a straight and a

right-angle conformation. More often, one must use connectors with NN and NNN

spokes. For the square of four adatoms, there would still be just one connector, with

an NNN spoke between the two perpendicular NN spokes (called D6 in [24]). For

the straight-conformation two NN spoke case, one can add one NNN spoke in one

distinct conformation, two NNN spokes in three conformations, three or four (or 0)

each in one distinct conformation, summing to seven possibilities. In other cases

there will be even more. With three NN spokes, the number of possibilities is even

larger. One of the main features of this model is that the type of connector contains

information about the local geometry of the adatom; hence relaxation effects are

expected to be built into the model. However, to keep the number of fitted energies

reasonable, TF use just eight connectors: D1 for an isolated atom; D2 and D3 for

just one NN or NNN spoke, respectively; D4 and D5 for two NN or NNN spokes

in the same direction (linear), respectively; D7 with three NN spokes and two NNN

spokes between them; and D8 for all eight spokes. Thus, as for lattice-gas interac-

tions, success requires that the investigator have enough insight into the system to

select the connectors that capture the essence of the problem.

Other applications to date have been to (110) fcc surfaces, where the rectangular

symmetry leads to a large variety of lattice-gas energies as well as a much greater

number of connectors, since the perpendicular “NN” spokes have different lengths

(though NNN are still the same). However, the multiplicity can be reduced by some-

times neglecting some differences. We used 10 connectors (shown in Fig. 2.6) to

characterize adatom interactions on Cu(110) [44], while TF used the first nine for

Al(110).

For Cu(110) the CV scores are as good as those obtained using a dozen lateral

interactions in the lattice-gas approach [44]. This agreement is plausible since it

is often possible to establish linear relations between the connector and lattice-gas

energies, e.g.,

C6 = E0 +
E1

2
+

E2

2
+

E3

2
+

ET1

3
+

EQ1

4
(2.13)

The sensitivity of multisite interactions to relaxation is not apparent from the con-

nector energy values because each connector has contributions from adsorption

energy (E0 or C1) and other pairwise interactions that dominate over contributions

from multisite interactions; also, the contribution from a particular multisite interac-

tion is divided by the number of participating adatoms (cf. (2.13), further decreasing

the sensitivity of connector energies to adatom relaxations. However, the connector

model incorporates such relaxation effects, as can be seen from the uniformly low

CV scores for all relaxation schemes [44]. Evidently the connector model works

well in the cases of Cu(110), Al(110), and Al(100). It remains to be seen whether

the connector model provides an adequate solution, without the need for any ad

hoc patches, to the overlayer problem. Relaxation effects become prominent during
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Fig. 2.6 Left: Connectors [24] used to characterize Cu adatom interactions on Cu(110). Lighter

(mustard) circles represent adatoms and darker (orange) circles represent atoms in the substrate

layer. Right: Lattice-gas interactions used to characterize Cu adatom interactions on Cu(110).

Multisite interactions ET2, EQ2, and EQ3 were found to be insignificant. From [44], which also

provides tables of the values of these energies

energy calculations of adatoms near step edges; in such calculations the simple

lattice-gas model encounters problems [23, 60]. At the same time, accommodating

the relaxation effects encountered in such calculations within the connector model

might require the usage of connectors that account for the orientations of neighbor

bonds, resulting in an undesirably large number of connectors in the model. A DFT-

based study that compares these two models on a surface like Pt(111), where such

lateral relaxation is known to complicate surface energy calculations [23], might

elucidate this issue.

2.7 Interactions Between Organic Molecules

Understanding the interactions between and consequent self-assembly of organic

molecules on metal surfaces has drawn much recent interest. The adsorption bond

is roughly an order of magnitude weaker than for the chemisorbed systems con-

sidered above. Direct interactions between the organic molecules are often by way

of hydrogen bonds, and there is always a van der Waals attraction which, for these

systems, may play the dominant role. While the coupling to the substrate is relatively

weak, the indirect electronic interactions between adsorbates may be important at

long range when the substrate has metallic surface states.
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Very recently we have considered the adsorption of benzene on Cu(111) [62],

using a DFT approach with a van der Waals functional included. We can account

for the two ordered submonolayer phases observed by Dougherty et al. [63]. The

denser phase is due to direct van der Waals bonding between the benzenes while the

less dense phase appears to be due to the surface-state-mediated interaction.We have

not yet investigated the role of trio interactions in this system. Our ultimate goal is

to explain the dramatic giant regular honeycomb structure formed by anthraquinone

(AQ) molecules on this substrate [64]. In models that treat the admolecules as single

“atoms,” a repulsive trio interaction is crucial to prevent the formation of dense,

unphysical overlayer regions (Kim and Einstein, Unpublished). Our belief is that

the large, regular structure is related to interactions between AQ mediated by the

metallic surface state. A variety of theoretical and experimental techniques are in

progress to confirm this picture (Bartels and Einstein, Unpublished).
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