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Spacing distribution functions for the one-dimensional point-island model
with irreversible attachment
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We study the configurational structure of the point-island model for epitaxial growth in one dimension. In
particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate
description of nucleation inside the gaps. Nucleation is described by the joint probability density pXY

n (x,y), which
represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional
form for pXY

n (x,y) describes excellently the statistical behavior of the system. We compare our analytical model
with extensive numerical simulations. Our model retains the most relevant physical properties of the system.
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I. INTRODUCTION

The study of the theory of the submonolayer film growth is
of great general interest, in part because of its application in the
construction of microelectronic devices. In epitaxial growth,
monomers are deposited onto a substrate at a constant rate.
The monomers diffuse until they are captured by an island
or another diffusive monomer. The islands are just clusters of
immobile monomers. The size of an island depends on the
number of monomers which have attached to it. Thus, the
island size increases in time due to the capture of diffusing
monomers. These kinds of systems exhibit many interesting
nonequilibrium phenomena, as discussed in, for example,
Refs. [1,2]

There are basically two kinds of models which have been
developed to study these systems: In the extended island
model, the islands occupy more than one site on the lattice,
and their shape is not trivial [2–7]. In the simpler point-island
model, the islands just occupied one site in the lattice, and their
size is simply the number of monomers which belong to the
island [8–16]. In this paper, we focus on the point-island model,
which is very accurate for low coverages. A major advantage
of this simplification is that it produces better statistics than
the extended island model.

In our model only the monomers are mobile; the islands
formed by two or more monomers are completely static
(stable). In the literature this condition is usually denoted
“critical nucleus size” i = 1 (where i is the size of the
largest unstable island). In our irreversible-growth model,
monomers must land or hop onto an already occupied site in
order to be incorporated [8,13]; an alternative model features
incorporation of monomers arriving at sites adjacent to the
island [16].

The quantities that are commonly used to describe the evo-
lution of the point-island model are the density of monomers,
N1; the density of islands with size j , Nj ; the rate of deposition
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of monomers, F ; and the diffusion rate of monomers D. The
evolution of this system is frequently described in terms of the
coverage θ = F t , where t is the time. We restrict our studies
to the aggregation regime, where there is a quasi-steady state.

We are particularly interested in the spacing (gap) distribu-
tion functions between islands p̂(k)(S), the capture zone dis-
tribution P̂ (S), and the island-island pair correlation function
G(r). As usual, p̂(k)(S)dS is the probability that for an island
at the origin we find another island at a distance between S and
S + dS, with the condition that there are k additional islands
inside the gap between them. The standard definition for the
scaled spacing is s = S/ 〈S〉, with 〈S〉 the average of S. The
scaled spacing distributions are given by

p(k)(s) = 〈S〉 p̂(k)(s 〈S〉). (1)

On the other hand, we use the definition for P̂ (S) given in [8].
Then, in our one-dimensional (1D) system, the capture zone
of an island is simply the distance between the midpoints of
the gaps to the left and to the right of the island.

The functional forms of p(0)(s) and P (s) for arbitrary
dimension and critical nucleus size have been the subject
of recent discussion and some controversy [8,17–19]. A
particular issue is whether the generalized Wigner surmise
(GWS),
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adequately describes the distribution and the reliability of
the simple relationship between β and i deduced with mean
field [17] and later refined with more sophisticated arguments
[19]. There is still no general consensus about them even in
the case of i = 1 in one dimension (1D). In this paper we
calculate analytically and numerically the spacing distribution
functions p(k)(s) for k � 0, a meaningful concept for capture
zones in 1D but less so in higher dimensions. All previous
studies focus just in p(0)(s) [1,10,17]. We especially focus
in their functional forms in the limit of large and small
values of s, where deviations from the form of Eq. (2)
were observed in painstaking computations in 1D and 2D
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(see Ref. [8]). We propose an analytical model to find
approximate expressions for these functions. Our model is
based on a detailed description of the nucleation mechanism,
following principally Blackman and Mulheran [1], hereafter
BM. We also calculate the pair correlation function G(r).
In all cases our model is compared with several numerical
simulations. This paper is organized as follows: In Sec. II
we discuss briefly some implications of the 1D model. In
Sec. III we provide an accurate description of the nucleation
process. In Secs. IV and V, we calculate approximately the
spacing distribution functions, while in Sec. VI we calculate
the island-island pair correlation function. In Sec. VII, we
assess the viability of applying Eq. (2) to experimental data.
In Sec. VIII, we give conclusions.

II. 1D POINT-ISLAND MODEL

In the 1D case, we have a ring divided into independent
sections called gaps. Each gap starts and ends with an island.
Within the gaps, there may be several monomers performing
random walks. A monomer inside of a particular gap must
eventually either merge with one of the islands at the ends
of the gap or combine with another monomer to nucleate a
new island. In no case can the monomer reach a different
gap.

The spatial distribution of the islands, that is, the dis-
tribution of the sizes of the gaps, is given by the spacing
distribution functions p(k)(s). The simplest case corresponds
to the nearest-neighbor distribution p(0)(s), which repre-
sents the probability density to find a gap with an scaled
size s between two islands with no additional island in
between.

The pair correlation function G(r) is related to p(k)(s) by

G(r) =
∞∑

k=0

p(k)(r). (3)

As noted, the length of the capture zone of an island is
simply the distance between the midpoints of the gaps to
the left and to the right of the island. In our 1D model, the
next-nearest-neighbor distribution p(1)(s) is related to P (s) as
follows. Consider Fig. 1, where the black squares represent
islands. Let S1 + S2 be the distance between the islands A

and B. Then p̂(1)(S1 + S2) is the probability density to find a
gap with size S1 + S2 given that there is an additional island
inside the gap. From its definition, it is clear that p(1)(s1 + s2)
is related to the capture zone distribution P [(s1 + s2)/2]

FIG. 1. Relation between P (s) and p(1)(s). Black blocks are
islands, while white regions are gaps.

according to

P (s) =
∫ ∞

0
dx p(1)(x) δ

(
s − x

2

)
= 2 p(1)(2s), (4)

where x = s1 + s2.
Thus, the capture zone distribution and the next-nearest

spacing distributions are equivalent in 1D.

III. SPATIAL DESCRIPTION OF THE NUCLEATION

In order to find an expression for p(0)(s), we must describe
the creation mechanism of new gaps. To reach an appropriate
description of the nucleation, we make the following defini-
tions: Let pXY

n (x,y) be the joint probability density that a given
new nucleation occurs at position x inside a gap of length y.
Of course x < y; otherwise, pXY

n (x,y) = 0. Let pX
n (x) be the

probability density that a given nucleation occurs at position
x inside a gap of any size. Then

pX
n (x) =

∫ ∞

x

dy pXY
n (x,y). (5)

Similarly, the probability density pY
n (y) that a given nucleation

occurs anywhere inside a gap of length y is given by

pY
n (y) =

∫ y

0
dx pXY

n (x,y). (6)

Finally, the probability density that a nucleation occurs at
position x in a gap of length y under the condition λ = x/y is

p�
n (λ) =

∫ ∞

0
dy

∫ y

0
dx pXY

n (x,y) δ

(
λ − x

y

)

=
∫ ∞

0
dy y pXY

n (λy,y). (7)

The formation of a new island depends directly on the
probability that two monomers reach the same site of the
lattice at the same time. This quantity is, of course, related
to the density of monomers inside the gap. In BM, the average
density of monomers, n1(x,y), inside of a gap of length y was
approximated by using its expression in the stationary state. In
this regime there is quasiequilibrium between the deposition
of new monomers and their merging with existing islands. We
neglect the deposition onto the top of islands. Then n1(x,y)
satisfies a 1D diffusion equation with the boundary conditions
n1(0,y) = n1(y,y) = 0. This leads to

n1(x,y) = (2R)−1x(y − x), (8)

with R = D/F [1]. By using this expression and the assump-
tion that the probability of a new nucleation at x is proportional
to n1(x,y)2, we have

p�
n (λ) = 30 λ2(1 − λ)2, (9)

where λ = x/y [1]. While we have neglected the interaction
among monomers within a gap, a more refined estimate of
p�

n (λ) can be made by taking them into account and using
the full multiparticle density [20,21]. We tested numerically
the validity of this approximation. As seen in Fig. 2, there
is excellent agreement between the numerical data and the
analytical equations. Note that in Fig. 2 we plotted the
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FIG. 2. (Color online) Behavior of (a) the normalized reduced density n(λ = x/y) [see Eq. (10)] and (b) the probability p�(λ = x/y) that
a nucleation occurs at position x in a gap of length y, for different values of R. The agreement between the analytical model and the numerical
data is excellent overall. There are some slight differences near the maximum of p�(λ).

normalized reduced density n(λ) given by

n(λ) =
∫ ∞

0
dy

∫ y

0
dx

12 R n1(x,y)

μ3
p(0)(y) δ

(
λ − x

y

)
(10)

instead of n1(x,y). Here μ3 is the third moment of p(0)(y)
and the factor 12 R/μ3 guarantees the correct normalization
of n(λ) in the interval 0 � λ � 1. From its definition, it is
clear that n(λ) gives the average density of monomers inside
of a gap at the relative position λ = x/y. A major advantage
of n(λ) is that it does not depend explicitly on the length of
the gap, in contrast to n1(x,y). The numerical simulation of
the point-island model was carried out following the standard
procedures [1,9,10]. In our simulations we took a lattice with
length L = 2 × 105 sites (with periodic boundary conditions)
and gathered statistics from over 5000 realizations.

Since p�
n (λ) vanishes for λ = 0 and 1, a new island is

unlikely to form near the boundaries of a gap. This is the
origin of the effective repulsive force between adjacent islands.
As we shall soon see, this implies that for small values of s,
p(0)(s) ∝ sα . We expect that α = 2 because p�(λ) ∝ λ2 for
λ → 0.

BM also proposed that pY
n (y)/FM (y) ∝ y5, where FM (y)

is the number of gaps with size y given that there are
M gaps. FM (S) is naturally related to p(0)(s) by FM (S) =
(M2/L)p(0)(s). We calculate numerically this quotient for
different values of R. As shown in Fig. 3, our numerical results
suggest that pY

n (y)/FM (y) ∝ yγ with γ ≈ 3 for s > 1.7 and
γ ≈ 4 for s < 1.7 rather than γ = 5. A similar result was
found in Ref. [16] for submonolayer deposition in 2D. Their
numerical results suggests that γ (s) ≈ (4 + s)/(2 + s). Hence,
for small gaps we have γ ≈ 2 while for large gaps γ ≈ 1.

Implicitly in BM, the probability density pY
n (y) was written

as

pY
n (y) =

(∫ y

0
dx n2

1(x,y)

)
p(0)(y) ∝ y5p(0)(s). (11)

Underlying Eq. (11) are the following two approximations:
First, the integral is based on the law of mass action; Fig. 2
justifies this. Second, BM supposed that pY

n (y) can be written

as the product of the probability to have a nucleation inside
a gap of size y and the number of gaps FM (y) with this size.
Our numerical results, shown in Fig. 3, do not support that
simplification.

Following our previous observations, pXY
n (x,y) can be

written as the independent product of the probability pY
n (y) to

nucleate inside a gap with size y and the conditional probability
p�

n (x/y)/y that this nucleation occurs at x. After some algebra
we find

pXY
n (x,y) = 30

μγ

x2(y − x)2yγ−5p(0)(y), (12)

where μγ is the γ th moment of p(0)(y). It is easy to show that
Eq. (12) satisfies the form of p�

n (λ) given in BM. The condition
pY

n (y)/p(0)(y) ∝ yγ is satisfied as well. From Eqs. (5), (6),
and (12), it is straightforward to show

pY
n (s) = sγ

μγ

p(0)(s) (13)

FIG. 3. (Color online) Behavior of the quotient pY
n (s)/p(0)(s). It

seems that there are two different regimes, one for small gaps and the
other for large gaps.
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GONZÁLEZ, PIMPINELLI, AND EINSTEIN PHYSICAL REVIEW E 84, 011601 (2011)

and

pX
n (s) = 30 s2

μγ

∫ ∞

s

dy

y5−γ
p(0)(y)(y − s)2. (14)

Equations (13) and (14) describe the mechanism of formation
of new islands. Equation (13) shows that the probability of
nucleation inside a gap of size y is the product of the number
of such gaps and yγ . As we will see, γ �= 5, in contradiction
to Eq. (11). Equation (14) shows how pX

n (s) depends on the
number of monomers inside the gap; for small s, pX

n (s) ∝
s2, consistent with the law of mass action. The vanishing of
(y − s)2 as y → s and s2 as s → 0 reflects that nucleation does
not occur at the gap borders because ipso facto the monomer
concentration vanishes there.

IV. NEAREST-NEIGHBOR SPACING DISTRIBUTION p(0)(s)

Following BM, it is possible to find an analytical expression
which relates p(0)(y) with pY

n (s) and pX
n (s): The effect of one

single nucleation is described by

FM+1(S) − FM (S) = −pY
n (S) + Rn(S), (15)

with

Rn(S) =
∫ ∞

x

dy

∫ Y

0
dx pXY

n (x,y) [δ(x − S) + δ(x − y + S)]

=
∫ ∞

x

dy
[
pXY

n (S,y) + pXY
n (S − y,y)

]
. (16)

Due to the symmetry of p�(λ) around its maximum,
pXY

n (S,y) = pXY
n (S − y,y). Thus,

FM+1(S) − FM (S) = −pY
n (S) + 2 pX

n (S). (17)

Finally, taking into account the relation between FM (S) and
p(0)(s), we find

s
dp(0)(s)

ds
+ 2 p(0)(s) = −pY

n (s) + 2 pX
n (s). (18)

From Eqs. (13), (14), and (18) we can write

s
dp(0)(s)

ds
+

(
2 + sγ

μγ

)
p(0)(s)

= 60 s2

μγ

∫ ∞

s

dy
(y − s)2

y5−γ
p(0)(y). (19)

This integro-differential equation can be written in the follow-
ing integral form:

p(0)(s) = 2 e
− sγ

γμγ

s2

∫ s

0
dy y pX

n (y) e
yγ

γμγ , (20)

where pX
n (y) is given by Eq. (14). BM attributed the expo-

nential tail of p(0)(s) to the fact that pY
n (s) ∝ yγ , regardless

of the form of p�
n (λ). We recall that, in their case, γ = 5.

Consequently, they claim that, for large values of s, p(0)(s) ∝
exp(−s5/5 μγ ). Furthermore, the exponential tail of p(0)(y)
depends on the value of γ in the ratio pY

n (s)/p(0)(s) ∝ sγ re-
gardless the form of p�

n (λ). This means that the fragmentation
process for large values of s depends on the probability of
choosing the gap to fragment, while for small values of s, it

depends exclusively on the probability of choosing the place
of fragmentation.

From Eqs. (14) and (20) it can be shown that in
the limit s 	 1, p(0)(s) = (15/μγ )s2 + O(s3) and pX

n (s) =
(30/μγ )s2 + O(s3). In the opposite limit s → ∞ we have
p(0)(s) ∝ s−2 exp(−sγ /γ μγ ) (see Appendix).

As noted in BM, an integro-differential equation like
Eq. (19) is hard to solve analytically or numerically. However,
it can be solved easily in an statistical way: A line of length
L is taken and an array of points on the line is generated.
Each new point is introduced via weighted random number
generation. First, a pair of existing points is selected between
which to introduce the new point. The selection is weighted by
the γ th power of the separation of the points. We used γ = 3,
4, and 5. Then the actual position in the gap for insertion x

is selected with weighting given by the function p�
n (x/y). We

use L = 10 000 and gather data for 100 particles and 50 000
realizations. Henceforth, we call this procedure the statistical
solution of Eq. (19).

We also seek a simple approximate expression for p(0)(s)
which can be used instead of the statistical solution of the
integro-differential equation. In order to find it, we focus on the
known moments of p(0)(s). The first two moments are chosen
to satisfy the standard normalization conditions. In Ref. [1],
it was shown that in the aggregation regime the density of
monomers, N1, is related to the islands density, N , according
to

μ3 = 12 N2N1 R ≈ 1.6, (21)

where μ3 is the third moment of p(0)(s). There is another con-
dition which can be extracted from p(0)(s). In the aggregation
regime, the spacing distribution functions have only a weak
dependence on time. Because of this we can interpret the point-
island model as a 1D system in which the particles (islands)
interact with their nearest neighbors under a potential v(s). In
the limit of small coverage and small values of s, we can write
p(0)(s) ≈ exp[−v(s)/kB T ]. For simplicity, we henceforth set
the temperature to be kB T = 1. It follows that v(s) ≈ −2 ln(s).
It is easy to check the validity of this approximate equation
from our results for p(0)(s). The average interaction energy
per particle u is constant; using the maximum entropy method
(MEM) [22–24], we can approximate u by

u = 1

〈S〉
∫ ∞

0
dS v(S) p

(0)
MEM

(
S

〈S〉
)

. (22)

To determine p
(0)
MEM(s), we take note of four independent

conditions: two normalization conditions, the third moment
of p(0)(s), and the average of v(s). Then p

(0)
MEM(s) is given by

p
(0)
MEM(s) = eC1+C2s+C3s

3+C4ln(s2), (23)

where Ci are constants. We conclude that an approximate
analytical form for p(0)(s) is

p
(0)
MEM(s) = As2e−B s−C s3

, (24)

with A, B, and C constants to be determined.
By using Eqs. (18) and (24), we can calculate pX

n (s), finding
straightforwardly

pX
n (s) ≈ p(0)(s)

2μγ

(sγ + 4 μγ − μγ B s − 3 μγ C s3). (25)
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FIG. 4. (Color online) Comparison of the statistical solution of Eq. (20) and the numerical simulation of the point-island model with i = 1.
In (a) we show the first four spacing distribution functions and (b) shows the behavior of p(0)(s) for large values of s.

Figure 4(a) shows the spacing distribution functions p(k)(s)
calculated from the simulation of the point-island model and
the results of the statistical solution of Eq. (19) with γ = 3, 4,
and 5. In all cases the agreement is good for small values of
s and still good for intermediate values of s with γ = 3 and
4. However, none of them describe correctly p(0)(s) for large
values of s [see Fig. 4(b)]. To improve the model we choose
γ = 4 for s < 1.7 and γ = 3 for s > 1.7, as prompted by
Fig. 3. This two-regime model, hereafter termed TRM, gives
an excellent fit with the point-island model even for large
values of s (see Fig. 4).

Figure 4(b) reveals the important result that p(0)(s) does not
decay as a Gaussian but instead more like exp(−C s3). This
form differs from the ones proposed previously in Refs. [1,17]
but is consistent with Eq. (24).

In Fig. 5 we see that Eq. (24) gives excellent results for
p(0)(s) even for large and small values of s. In Fig. 5(a) we
show the results of a least-squares fit to calculate the extra
parameter of Eq. (24). In Fig. 5(b) we use Eqs. (25) to calculate
pX

n (s). The agreement with the numerical data is excellent.

V. HIGHER SPACING DISTRIBUTION FUNCTIONS

Now we turn to higher-spacing distribution functions.
Equation (4) and the weak correlation between gaps sizes
yields the standard approximate equation for P (s)

P (s) ≈ 2
∫ 2s

0
dx p(0)(x)p(0)(2s − x), (26)

This equation was used satisfactorily in Refs. [1,17] to cal-
culate P (s) from p(0)(s). Numerical evidence there supported
the validity of this approximation, which is usually called the
independent interval approximation (IIA). The solutions given
by Eqs. (24) and (25) will be called the analytical model. In
Ref. [25] there is additional numerical evidence confirming the
validity of the IIA in this kind of model. In IIA the expression
analogous to Eq. (18) for p(1)(s) is

s
dp(1)(s)

ds
+ 3 p(1)(s) = −qY

n (s) + 4 qX
n (s), (27)

FIG. 5. (Color online) The behavior of p(k)(s) and pX
n (s) are shown in (a) and (b), respectively. There is excellent agreement between

Eqs. (24) and (25), respectively, and the numerical data from the simulation of the point-island model.
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where we use

qY
n (s) =

∫ s

0
dx p(0)(s − x)pY

n (s) (28)

and

qX
n (s) =

∫ s

0
dx p(0)(s − x)pX

n (s). (29)

Equation (28) represents the probability density that a new
nucleation event occurs inside a gap (such as the one shown
in Fig. 1), while Eq. (29) is the analog of pX

n (s) for this kind
of gap. In the IIA qY

n (s) and qX
n (s) are written as convolution

products. The p(1)(s) shown in Fig. 5 was calculated by using
Eq. (24) and the IIA. We find excellent agreement even for
small and large values of s. There are some small discrepancies
(less than 6%) near the maximum of p(1)(s).

It can be shown that in IIA, the spacing distribution for small
values of s can be written as p(k)(s) ∝ sαk with αk = 3 n + 2.
In particular, this means that P (s) ∝ s5. This result agrees
with BM’s results but differs from the exponent reported in
Ref. [17].

VI. PAIR CORRELATION FUNCTIONS

The island-monomer pair correlation function g(r) is given
by

g(r) = N1(r)

N1
, (30)

where N1(r) describes the monomer density at a distance r

from a specified island. From this definition of g(r) it is clear
that g(r) ∝ r for small values of r and g(r) → 1 for r → ∞.
In Refs. [1,26], N1(r) was calculated by using a diffusion
equation corresponding to modeling the sea of islands as a
uniform sink. In this way, they found

g(r) = 1 − e−r/ξ , (31)

with ξ the average distance a monomer travels before being
captured by an island or another monomer. The island-island
pair correlation function is defined as G(r) = N (r)/N , with
N (r) the density of islands at a distance r from the center of
a specific island. In this case we have G(r) ∝ r2 for small
values of r; G(r) naturally satisfies the same condition as g(r)
for large values of r . It is well known [27,28] that, at least in
2D systems, G(r) and g(r) satisfy the approximate relation

G(r) ≈ gi+1(r). (32)

If we extrapolate this observation to our 1D case, we have
G(r) ≈ g2(r). By using Eqs. (31) and (32) we can obtain an
expression for G(r). These equations predict that g(r) and
G(r) grow monotonically. However, our numerical results,
displayed in Fig. 6, show a weak oscillation near r = 1. This
oscillation has been observed experimentally in 2D systems
[28–30]. Both models—the one given by the statistical solution
of Eq. (19) with our TRM and the one given by Eq. (24) plus
the IIA—reproduce correctly this oscillation. The behavior of
G(r) is shown in Fig. 6. In the analytical model we use Eqs. (3)
and (24). The solution for G(r) obtained from the statistical
solution of Eq. (19) is plotted as well. The agreement between

FIG. 6. (Color online) Pair correlation function G(r).

these calculations and the numerical simulation is evident. The
calculations even reproduce the weak oscillations.

In a test of the validity of Eq. (32), measuring g(r) directly
from the simulation, we did not find good agreement with
the numerical results. Since G(r) ≈ g2(r) arises from the
assumption that dN(r)/dt ∝ N1(r)i+1, apparently the law of
mass action is not reliable for the whole ring, even though it is
valid for the gaps.

VII. VIABILITY OF GENERALIZED WIGNER SURMISE
FOR EXPERIMENTAL DATA

A. Comments from preceding analysis

While the main goal of this paper has been to fully
characterize the spacing distribution of point islands in 1D,
particularly their tails, an underlying motivation of much
of our work has been to glean physical information from
experimental data. For that, the number of realizations are
generally less than 1000, often significantly less. Hence, the
noise in the tails is too large to assess the effects discussed
above. Fits to data are largely determined by the range
0.5 < s < 2.5. In that range, the agreement between Eq. (2)
and our numerical results is excellent, as seen in Fig. 7. For
the 1D problem with i = 1 treated here, the fitted values of
β are 1.5 and 4 for p(0)(s) and P (s), respectively (for details
see Ref. [17]). As is especially clear from the inset, the fit in
the tails is, unsurprisingly, not very good. According to the
mean-field-like argument in Ref. [17], the capture zone (CZ)
distribution can be described by a Fokker-Planck equation
which has Pβ(s), with β = 2(i + 1) in 1D, as its stationary
solution. In the associated Langevin equation

ds

dt
= K

(
β

s
− B s

)
+ η, (33)

there is a repulsive force K β/s and an attractive force
proportional to s. Here, K is a kinetic coefficient and η arises
from the random component of the external pressure. The
latter is responsible for the Gaussian tail of P (s) while the
repulsive force dominates the behavior of P (s) for small values
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FIG. 7. (Color online) The behavior of P (s) and p(0)(s) are shown in (a) and (b), respectively. It is clear that the GWS is an excellent
approximation to these distributions for intermediate values of s.

of s. The assumption of Gaussian decay underestimates the
attractive force which leads to a consequent underestimation
of the repulsive force. For example, in the case of p(0)(s)
this leads to β = 1.5 rather than value β = 2 given exactly in
Eq. (9) and within error in Fig. 2(b).

While the GWS does not describe well the tails of the
observed distributions, it does a considerably better in the
more central part of the distribution (typically 0.5 < s < 2);
that part is more germane to analysis of experimental data
since the data in the tails is often so sparse (often below the
proper five hits per histogram bin) that noise makes its use
suspect for quantitative analysis.

We address two questions about the applicability of the
GWS. First, is there a significant difference in the values
of β calculated from the whole range of data and from the
reduced interval 0.5 < s < 2? We find β(all) = 4.229 for the
entire set of data and β(sig) = 4.222 for the reduced range.
Since this difference is insignificant, β can be calculated from
just the data in the central region. Second, is the GWS a
reasonable approximation of P (s) in the range 0.5 < s < 2,
especially in comparison with other analytical models? While
there is no unique measure of “goodness of fit,” we adopt as
our quantitative diagnostic the standard Pearson’s reduced χ2

statistic [31]:

χ̃2 = 1

N − n − 1

n∑
j=1

(
P obs(sj ) − P exp(sj )

)2

P exp(sj )
, (34)

where P obs(s) is the probability of the CZs with size s observed
from the numerical data and P exp(s) is that expected from
the analytical model; in the prefactor, distinguishing this
reduced χ̃2 from χ2, N is the number of bins (typically 239)
and n is the number of fitting parameters. Another possible
metric, for example, would be the area between each model
curve and the numerical data, that is, the sum over |P obs(sj )
− P exp(sj )|.

In Table I we use χ̃2 to compare fits obtained from four
different analytical models for the CZ distribution in 1D. We
consider the GWS with β = 4 suggested in Ref. [19] (GWS-0),
the best fit using the single-parameter GWS (GWS-1), the

MEM + IIA result given by Eq. (26), the single-parameter �

distribution (�D)


α(s) = αα

�(α)
sα−1e−αs, (35)

the generalized � distribution (G�D)


β,ν(s) = Aβsβe−Bβsν

, (36)

and finally our TRM. Note that with ν = 2 Eq. (36) reduces
to the GWS while for ν = 1 it becomes �D. Clearly, the
reduction factor in transforming χ2 to χ̃2 in Eq. (34) is
here a trivial multiplicative factor since N 
 n. However,
in addition to computing χ̃2 using the whole range of the data,
we also find χ̃2 using just the data in the interval 0.5 < s < 2.
In this process, the reduction factor is significant in making
subsequent comparisons.

Based on Eq. (34) the GWS is better than the �D and
the MEM + IIA but worse than the G�D and the TRM.
Additionally, the GWS gives a value of β similar to that of
G�D. We recall that in the MEM + IIA model, P (s) ∼ s5,
which is closer to the G�D result than the β of GWS. With
the extra adjustable parameter, the G�D gives the smallest χ̃2,
but at the price of noninteger values for β and ν. Not only is
the TRM excellent overall, it has nearly identical χ̃2 for the
full and central ranges of s. It is curious that for GWS-1, χ̃2 is
larger for the central range than for the full one.

It is noteworthy that the mean-field reasoning of Ref. [17]
succeeds in 1D. This mean-field argument is based on
knowledge of n(r), which in 1D is n(x,y) = (2 R)−1x(y −

TABLE I. Values for the χ̃ 2(all) and χ̃ 2(sig) for four different
analytical models in 1D. In the case of the �D we have used β =
α − 1; thus, α ≈ 2β + 1 of GWS-1, as noted in Ref. [32].

�D GWS-0 GWS-1 G�D MEM + IIA TRM

103 χ̃ 2(all) 5.155 0.429 0.145 0.038 1.691 0.161
103 χ̃ 2(sig) 2.483 0.353 0.218 0.0285 2.076 0.162
ν 1 2 2 1.815 NA NA
β 8.612 4 4.229 4.650 NA NA
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x). Similarly, Shi et al. [8] found that in 1D P4(s) only
modestly underestimated the asymptotic peak height of the
distribution for their two versions of the point-island model
with irreversible growth. The peak of P (s) obtained from the
TRM is approximately 1.29, which is close to the value 1.31
reported in Ref. [8] for the limit R → ∞.

B. Extension to 2D

The MEM can also be applied in the case of deposition
in 2D. We have two normalization conditions on the CZ
distribution P (s):

∫ ∞
0 ds P (s) = 1 and

∫ ∞
0 ds s P (s) = 1. We

can find an additional condition: It is long known that in the
aggregation regime, the densities of monomers and islands
evolve as N1 ∼ θ− 1

3 and N ∼ θ
1
3 , respectively [33]. On the

other hand, the density of monomers, n(r), inside of a circular
CZ with radius rc is given approximately by [16]

n(r) = 0.25 R−1
(
r2
isl − r2

) + 0.5 r2
c R−1 ln

(
r

risl

)
, (37)

where risl is the radius of the island and r is the distance
from the cell center. As before, R = D/F . Then, neglecting
logarithmic corrections, the number of monomers inside a CZ
with radius rc is proportional to r4

c , that is, the square of the
area of the CZ. Consequently, N1 ∼ 〈S2〉N . The analog of
Eq. (21) for this case is

μ̃2 ∼ N1 N, (38)

where μ̃2 is the second moment of P (s), which is constant
in the aggregation regime. Finally, since P (0) = 0, it is
reasonable to write

P
(2D)
MEM(s) ≈ Asβ e−B s2−C s, (39)

where A, B, and C are constants. Figure 8 shows a compar-
ison between Eq. (39) and numerical simulations of island
nucleation in 2D. According to Ref. [19], as well as Ref. [18],
P3(s), the GWS with β = 3 = i + 2 (rather than the original
mean field result β = 2 = i + 1 in Ref. [17]) is a good

FIG. 8. (Color online) CZ distribution in 2D with i = 1. The
GWS describes correctly the behavior of P (s) for intermediate values
of s. The MEM gives an excellent approximation for P (s) even for
large and small values of s.

TABLE II. Values for the χ̃ 2(all) and χ̃ 2(sig) for four different
analytical models in 2D.

�D GWS-0 GWS-1 G�E G�D MEM

103 χ̃ 2(all) 3.010 1.660 1.726 0.402 0.334 0.518
103 χ̃ 2(sig) 1.722 0.826 0.873 0.381 0.287 0.294
ν 1 2 2 1.5 1.585 NA
β 6.277 3 3.065 4 3.860 4

approximation for P (s); hence, we include it in Fig. 8. In 2D
the GWS evidently approximates P (s) well for intermediate
values of s but differs substantially from the numerical
simulations for small and large values of s. However, Eq. (39)
gives an even better approximation for P (s) over the whole
range of s (see Fig. 8). Based on the numerical results of
Ref. [18], we use β = 4 to calculate the P

(2D)
MEM(s) shown in

Fig. 8.
For the GWS, we compare again the values of β calculated

from the fits using the whole range of data and the restricted
range 0.5 < s < 2: β(all) ≈ 3.07 and β(sig) ≈ 3.04. Again,
we evidently can calculate β just as well using only the
data from the restricted range. In Table II we quantify with
the reduced Pearson’s χ̃2 the goodness of the fits obtained
from some analytical models for the CZ distribution in 2D.
In particular, we consider the GWS with β = 3 suggested in
Ref. [19], Eq. (39) given by the MEM, and the G�D. For the
G�D, we consider not only the best fit (yielding β ≈ 3.86 and
ν ≈ 1.59) but also the particular parametrization β = 4 and
ν = 1.5 suggested by the Evans group [18] and hence denoted
G�E. The one-parameter � distribution (�D) is also included.
Again we compute χ2(all) using the whole range of the data
and χ2(sig) using just the data in the interval 0.5 < s < 2. Our
results are summarized in Table II.

Clearly the GWS is inadequate outside the range 0.5 < s <

2, the χ̃2(all) given by the GWS is around five and four times
as large as the ones given by the G�D and G�E (ν = 1.5),
respectively. In the 2D case, the values of χ̃2 of the GWS
are closer to the ones given by the best fit possible of G�D
than it does in 1D. However, the discrepancies between the
GWS and the numerical data yield an underestimation of the
key parameter β. In fact, the difference between the accepted
values of β and the ones given by the GWS in 2D is 25%. The
χ̃2(sig) for the GWS is around 3 and 2 times as large as the
ones given by the G�D and G�E, respectively. This suggests
that the GWS can be used as a first approximation for the CZ
distribution in the range 0.5 < s < 2. One of the main goals of
the experiments on epitaxial growth is to determine the “critical
nucleus” size i from the experimental data. Then, in order to
estimate i, it is necessary to assume an approximate functional
form for P (s) and then make a fit to find an approximate
value for i. Unfortunately, the functional form of P (s) depends
on i in a nontrivial way. The GWS can be used as a first
approximation to determine i from experimental data because
most of these data are inside the range where the GWS is a
reasonable approximation.

We emphasize that the different analytic fitting functions
must be expected to yield different values of β, that is, the
exponent associated with the power-law rise for s 	 1. In
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Table II the values of β for the two GWS fits is considerably
smaller (by about 1) than the βs from G� and MEM
functions, even though all provide decent accounting of the
central region. The functional forms incorporate different
underlying assumptions, and only the GWS has been related,
if approximately, to the critical nucleus i. Hence, there is
considerable subtlety to extracting i from the values of β

obtained by fits to expressions other than GWS.
In 2D χ̃2(sig) is invariably smaller than χ̃2(all). However,

for G�D and G�E, they are relatively close, indicating the
most consistent fit over the whole range, while the GWS is
significantly better in the central region. The GWS is notably
better than the �D, often used to analyze froths [34] and
quantum dot distributions [35].

In contrast to 1D, the mean-field reasoning of Ref. [17], with
nucleation probability ∝n2(r) [and constant n(r)], is not viable
in 2D. In 2D the better estimate of n(r) given in Eq. (37) comes
from solving the diffusion equation; however, the radial extent
of a CZ fluctuates significantly (as a function of polar angle)
around its mean value rc = (S/π )1/2. Furthermore, the island
is not usually at the geometric center of the CZ. Hence, Eq. (37)
generally does not adequately approximate the local density
of monomers inside a CZ. In 1D newly nucleated CZs obtain
their “area” from just two existing CZs, while in 2D several
existing CZs often contribute. Most of these nucleations occur
near the CZ boundaries, which generally are not well described
as circles.

VIII. CONCLUSIONS

BM [1] proposed that pY
n (y)/FM (y) ∝ yγ with γ = 5.

However, we find that γ = 3 and 4 give much better agreement
with our numerical simulation. For example, if we choose
γ = 4 from Eqs. (12) and (24) it is possible to write an
analytical expression for the probability density pXY

n (x,y) in
terms of p(0)(s). In Fig. 9 we show the results of calculating
pXY

n (x,y) numerically compared with our analytical model.
The contour plots are quite similar. However, there is a
small difference in the location (x,y) of the maximum
value of pXY

n (x,y): In the analytical model it is located at

approximately (0.7,1.5), while in the numerical simulation it is
at (0.7,1.3).

However, neither γ = 3 nor γ = 4 describe the statistical
behavior of the system for large values of s. Furthermore,
the TRM gives an excellent quantitative description of the
statistical behavior of the point-island model even for large
values of s, as shown in Fig. 4. This means that a complete
description of the system requires to take into account that γ

is a function of s, that is, the probability to choose a gap pY
n (y)

is different for large and small gaps (see Fig. 3).
We find that the spacing distribution p(0)(s) decays like

exp(−B s3) instead of exp(−B s5) as in BM or exp(−B s2)
as in Ref. [17]. It seems that this is a consequence of the
confinement of the diffusive monomers within the gaps. An
analysis of Eq. (19) shows that the tail depends exclusively
on the probability to choose the gap pY

n (y). This suggests
that the statistical behavior of the system for large values
of s is dominated by the breakup of the biggest gaps where
γ ≈ 3. Meanwhile, the behavior of p(0)(s) for small values
of s depends on the probability to choose the position of the
nucleation inside the gap p�

n (λ).
Figure 5 shows that the maximum entropy principle can be

used to find an excellent analytical approximation for p(0)(s).
Equation (24) gives an excellent fit of the numerical data,
even for large and small values of s, in fact better than other
approximate expressions [1,17]. We find that by using the IIA
and Eq. (24), we can easily handle expressions for p(k)(s) with
k > 0. Those expressions accurately describe the numerical
data, even the weak oscillation in G(r). Apparently, for small
values of s the spacing distribution function satisfies p(k)(s) ∝
s3 k+2. We show that Eqs. (18) and (24) provide an excellent
approximation for pX

n (s), as seen in Fig. 5. While p�
n (λ) ∝

n2(λ) leads to G(r) ∝ g2(r) for small values of r , this relation
is not satisfied for values of r near the maximum of G(r).

From our previous results, it is possible to calculate the
capture number, σs , of an island with size s in the aggregation
regime. As usual [1,12], σs can be determined from

σs = 1

N1

(
dn1(x,y)

dx

∣∣∣∣
x=0+

− dn1(x,y)

dx

∣∣∣∣
x=0−

)
, (40)

FIG. 9. (Color online) Behavior of pXY
n (x,y) from (a) the numerical simulation and (b) Eq. (12) with γ = 4. The data used in this figure

were generated with R = 106 and θ = 0.5
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where N1 is the density of monomers and (dn1(x,y)/
dx)|x=0+[−] represents the derivative of n1(x,y) at the right
(left) boundary of the island. By using the approximation given
previously for n1(x,y), we found

σs = yCZ

N1 R
, (41)

where yCZ is the length of the CZ. In the point-island model
the capture numbers naturally do not depend on the size of the
island. This result also implies that the distribution of σs has
the same form of p(1)(s) and not that of p(0)(s) as was suggest
in Ref. [11]. There the authors supposed that the size of the
gap at the left and the right of an island are equal. A better first
approximation for the distribution of σs can be obtained if we
calculate p(1)(s) from p(0)(s) through a convolution product,
as in Fig. 5(a).

A major result of our analysis, consistent with Refs. [17,18],
is that obtaining an appropriate description of the nucleation
mechanism is the crucial ingredient to arriving at an excellent
approximation for the spacing distribution functions of the
point-island model. Finally, we emphasize that in spite of its
mathematical simplicity, the GWS with the suitable selection
of β is a good approximation for P (s) in 1D and 2D. Because
of this, it is reasonable to use the GWS to analyze experimental
results for epitaxial growth.
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APPENDIX: BEHAVIOR OF p(0)(s) FOR SMALL AND
LARGE VALUES OF s

An expansion of Eq. (14) around s = 0 shows that pX
n (s) ≈

(30/μγ )s2 for small values of s. By using this result in Eq. (19),
we found p(0)(s) ≈ (15/μγ )s2. This result is a consequence of
the fact that p�(λ) ≈ 30 λ2 as λ → 0.

From our numerical results, it is reasonable to propose
p(0)(s) ≈ Asα e−B sρ

for large values of s, where A, B, α, and
ρ are constants. By using this ansatz in Eq. (14) it is clear that
for large values of s, pX

n (s) 	 p(0)(s). Thus, Eq. (19) takes the
form

(2 + α) − B ρ sρ + sγ

μγ

≈ 0, (A1)

which implies α = −2, B = (ρ μγ )−1 and ρ = γ . The behav-
ior of p(0)(s) for large values of s is fully determined by the
probability to choose the gap to fragment.
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